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1 INTRODUCTION

1.1 Why look at alternatives to the hidden Markov model?

The hidden Markov model (HMM) has proven to be the model which made large-vocabulary auto-
matic speech recognition (ASR) possible. The HMM is robust, versatile and has at its disposal a host
of efficient algorithms to deal with training, speaker adaptation and recognition. However there is
nothing uniquely speech orientated about the HMM. In fact, certain assumptions are made of speech
which are known to be untrue. For example, speech is modelled as a piecewise stationary process
when we know it to be continuous. Also co-articulation, which should be a rich source of information,
simply provides unwanted variation. This variation is generally taken into account by modelling every
phone in every context which in turn leads to problems of data sparcity, making elaborate parameter
tying schemes necessary.

1.2 Better modelling through speech production knowledge

Speech modelling generally occurs in the acoustic domain, which is natural given that this is the
data we have most ready access to. Any practical speech recogniser must of course take acoustic
waveforms as input, however to take these in isolation from the production mechanism which created
them ignores a rich source of prior knowledge.

We propose that modelling speech in the articulatory domain would address some of these issues.
The data here consists of trajectories which evolve smoothly over time, namely coordinates of points
on the articulators. Effects such as co-articulation and assimilation are produced in the articulatory
domain and therefore can be modelled explicitly. This is in contrast to looking at these effects in the
acoustic domain where they are confounded with the representation.

To model these trajectories we use linear dynamic models (see section 3 for a full introduction). These
are particularly well suited to modelling smoothly varying, continuous yet noisy trajectories. We have
access to real articulatory data, collected by Alan Wrench at Queen Margaret college, Edinburgh (see
[8] for further details). This has been used to train neural networks to recover articulatory traces from
the acoustics. In our experiments we have used both real and automatically recovered articulation.
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2 DATA

The data consists of a corpus of 460 TIMIT sentences for which parallel acoustic-articulatory infor-
mation was recorded using a Carstens Electromagnetic Articulograph (EMA) system. Sensors were
placed at three points on the tongue (tip, body and dorsum), upper and lower lip, jaw and also the
velum. Their position in the midsagittal plane was recorded 500 times per second and the acoustic
signal sampled with 16 bit precision at 16 kHz. 30% of the sentences were set aside for testing
and 70% used for training. The data was labelled using an HMM based system where flat-start
monophone models were forced-aligned to the acoustic data from a phone sequence generated by
a keyword dictionary [8].

2.1 Automatic estimation of articulatory parameter values

Other work at CSTR has used neural networks to perform the acoustic to articulatory inversion map-
ping. The simulated articulatory traces used in these experiments were generated using a recurrent
neural network with a 200ms input context window and 2 hidden layers. A single output unit was used
for each articulator coordinate (ie one for � , one for � ), and the networks were trained on simultaneous
streams of acoustic and articulatory data. For details see [3]

2.2 Feature set

A EMA
B EMA + zero crossings + voicing
C EMA + 12 cepstra + energy
D EMA + 12 cepstra + energy + zero crossings + voicing
E 12 cepstra + energy

Table 1: summary of the different feature sets used for experimentation.

Using a feature set consisting only of articulatory parameters lacks certain information. For instance
making a voiced/voiceless classification, or indeed spotting silences, is compromised by the lack of
voicing information and energy. We have experimented with augmenting the feature set to use other
parameters: mel-scale cepstral coefficients, energy, (acoustic waveform) zero crossing rate, and a
voiced/voiceless classification. High values for the zero crossing rate signify noise, i.e. frication and
low values are found in periodic, ie voiced sections of speech. The voiced/voiceless decision was
made from a laryngograph trace using a pitchmarking tool. The different experimental configurations
are given in Table 1. Both real and simulated EMA traces were used, and feature set E, just the
cepstral coefficients, was included for comparison.
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3 LINEAR DYNAMIC MODELS

As mentioned in section 1, we have chosen a linear dynamic model to model the articulatory trajec-
tories. This is a model which appears in a whole host of applications with a variety of names (Kalman
model, Dynamic system model, Continuous state linear Gaussian system etc). It is described by the
following pair of equations:
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with ���������������! "�$# and �����%�&�'��()�! "(*#

The basic premise of the model is that there is some underlying dynamic process which can be mod-
elled by Equation 1. This equation describes how �,+ , the state variable at time - , evolves from one
time frame to the next. A linear transformation via the matrix � and the addition of some Gaussian
noise, �.+ , provide this, the dynamic portion of the model.

The complexity of the motion that Equation 1 can model is determined by the dimensionality of
the state variable. For example, a 1 dimensional state space would allow exponential growth or
decay with an overall drift ( ��/ can be non-zero) and 2 dimensions could describe damped oscillation
with a drift. Increasing the dimensionality beyond 4 or 5 degrees of freedom allows fairly complex
trajectories to be modelled.

The observation vectors, given at time - by �,+ , represent realisations of this unseen dynamical
process. A linear transformation with the matrix � and the addition of measurement noise, �,+0�������1��! "(*# (Equation 2) relate the two. The trajectories could be modelled directly. However using a
hidden state space in this way makes a distinction between the production mechanism at work and
the parameterisation chosen to represent it. In the case of the articulatory data we are working with,
fewer degrees of freedom are needed for modelling purposes than are originally present in the data.
This is no surprise; for example there are three coils giving us x and y coordinates over time for the
motion of the tongue. These six data streams are clearly going to be highly correlated and so there
will be redundancy of information.

The models are segment-specific, with one set of parameters � , � ,  "( ,  "� , ��1��2� / , and ��3 describ-
ing the articulatory motion for one unit of speech, although it is possible to share parameters between
models. For practical reasons, the segments used so far have been phones.

The model can be thought of as a continuous state HMM [4]. Having a state which evolves in a
continuous fashion, both within and between segments, makes it an appropriate choice to describe
speech. Attempts to directly model speech in the acoustic domain using LDMs have been made,
however the defining feature of these models is that they are able to model smoothly varying (but
noisy) trajectories. This makes them ideally suited to describing articulatory parameters. Further-
more, the asynchrony between the motion of different articulators is absorbed into the system, and
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the critical versus non-critical nature of articulators (see below) is captured in the state to observation
mapping covariance  ( . Lastly, parameter estimation is made much simpler through having a linear
mapping between state and observation spaces, which is a reasonable assumption for observations
in the articulatory domain.

3.1 Training

The Expectation Maximisation (EM) algorithm is used to train the models. As mentioned in Section
2, we have a time-aligned phonetic transcription of the data. This was used to extract all the training
tokens for each segment type. EM was then used to train the parameters of an LDM on each of
these subsets of the data. Each iteration consists of two stages. Firstly in the E-step statistics are
accumulated over the training tokens, using the most recently estimated parameter values. This is
followed by the M-step in which these statistics are used to update the model parameters. See [4] for
mathematical details.

Overfitting occurred fairly rapidly; models trained on simulated articulatory parameters in general
needed 5-7 iterations of the EM to converge, whereas 3-4 was sufficient for models trained on real
data.

3.2 Critical versus non-critical articulators

The behaviour of the lips and velum have a fundamental role in the production of a /p/, whereas the
motion of the tongue is far less important. Here the lips and velum are critical articulators and the
tongue non-critical. It was reported in [5] that ’critical articulators are less variable in their movements
than non-critical articulators’.

Examination of model parameters shows evidence of this effect. For example, Figure 1 shows vari-
ance terms for selected articulatory streams from trained models of the three voiced oral stops in
English. These variances are the noise terms associated with the transformation from the hidden
space to the observation space, and indicate the confidence the model places on its prediction of the
articulator’s position. The more consistent (critical) an articulator, the more confidence the model will
have in predicting its position, and this will be expressed with a lower variance term.

If we first consider the velum, which is critical for all three voiced stops, we see that the variance of its
movement is uniformly low for all three models. However, the picture is different for unshared critical
articulators: for the /b/ model, the lower lip has the lowest variance; for the /d/ and /g/ models, it is
the tongue tip and tongue dorsum respectively that show the lowest variance.

These findings tie in with the notion of critical articulators, and also offer insight into the nature of
the acoustic-to-articulatory mapping necessary for a speech recognition system. Lower significance
will be placed on the position of a non-critical articulator and so more emphasis should be put onto
faithfully recovering important features of a segment rather than recovering all articulation perfectly
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Figure 1: Variances put on the projection from state to observation space for normalised, real EMA data on
segments /b/, /d/, and /g/

all of the time.

It is worth pointing out that non-critical articulators are as useful as critical ones in characterising and
distinguishing segments as the model learns to put different emphasis on different parts of the data
stream.

4 CLASSIFICATION

To make a decision as to which model generated each segment of the unseen data, we need to
calculate a likelihood for each of the competing models. This is the likelihood of the observations
given the model parameters and cannot be computed directly as the LDM has a hidden state space.
However an approximation to this likelihood can be computed if we first infer values for these ’miss-
ing’ parameters. We have experimented with two approaches to this task. The first was by using the
expected state values computed in the forward Kalman recursions, as in the E-step of the EM algo-
rithm. The other, which we found to be marginally more successful, is to use the posterior predictive
distribution of the state variable, �,+54 67+ , where 67+8�9�'�;:<�>=?=>=��@�,+A#2B .

Once computed, a Viterbi search using a bigram language model chooses the most likely model.

4.1 Results

There was some degree of flexibility in the dimensionality chosen for the state space. Figure 2 shows
how raw (no language model) classification scores are affected by varying the state dimension. The
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Figure 2: Raw (no language model) classification score against state dimension for a validation set consisting
of 20 utterances. Models were trained and tested on real EMA data only.

feature set in use here is the real EMA data. Between 3 and 9 degrees of freedom seems ideal, with
higher dimensionalities and correspondingly higher numbers of parameters producing slightly worse
results.

data feature set accuracy
A 51%

real B 63%
articulatory C 77%

D 74%
A 46%

simulated B 47%
articulatory C 55%

C* 64%
D 56%

acoustic E 68%

Table 2: Classification results for a 46 phone model set using both real and simulated articulatory data.
* denotes trained on real, tested on simulated data

Table 2 summarises the results of experimentation with the system. For each system, the number of
training iterations and the dimension of the hidden state was optimised. The best result for each is
the one quoted.

Training and testing models on the real articulatory data produced a classification score of 51%.
Augmenting the feature set to also include zero crossing rate and the voiced/unvoiced decision gave
a 12% improvement with a result of 63%. The best result, 77% came from feature set C, which
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consists of the articulatory and acoustic data. It seems slightly anomalous then that including the
zero-crossing rate and voicing decision should reduce this score to 74%. However this is a marginal
drop in performance.

Replicating these experiments using the automatically estimated articulatory parameters gave a
slight drop in performance. 46% and 47% were the scores based on using the articulatory data
only and then including the zero crossing rate and voicing decision. Adding the cepstra to the auto-
matically produced articulation gave a score of 55%, and 56% was obtained for feature set D, which
also includes zero crossing rate and the voicing decision. Using the acoustic observations only as
input (E) gave a result of 68%.

4.2 Discussion

The first thing to note is that adding real articulatory information to the acoustic data gave a 9% (7.5%
relative) increase in classification performance. This supports the notion that articulatory information
has the potential to be valuable to ASR. Other studies have also found evidence of this, for example
see [7].

From the scores of the systems which use only articulation as input, we see that the real articu-
latory data performs better than the simulated, although the difference is not huge. However, the
performance of the acoustic system alone is better than that of the system which also includes re-
covered articulatory information. We believe the reason that the data becomes more confusable in
combination is that the neural network mapping provides an average articulatory configuration given
a sequence of acoustic observations.

This means that for a given segment type, a non-critical articulator which in the training set can follow
many different trajectories is in fact given a consistent set of paths in the test set (network output).
We have been investigating techniques for producing multi-modal output from the networks to deal
with this.

The models trained on real data give a better score than the models trained on the recovered data,
when both perform classification on recovered traces (see C* in the table 2). Furthermore, the models
trained on simulated articulation show lower variance terms than their real data trained counterparts.
These findings support the notion that the networks learn consistent patterns when there should be
none, i.e. making all articulators ’critical’ all of the time.

5 PHONE RECOGNITION

Recent work has been to use the models for recognition, rather than just classification. For this task
we have implemented a stack decoder which is very similar to that in [6].
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5.1 Stack decoding for linear dynamic models

The search algorithm is built around a tree-structured lexicon which means that computation can be
shared by paths which have common prefixes. For example the words /bit/ and /bik/ would share
computation of likelihoods for the phone sequence /b/ /i/.

The stack consists of an ordered heap which holds a number of partial phone hypotheses. These
hypotheses each contain a phone sequence, a likelihood for this sequence, and an estimate of the
remaining likelihood to the end of the utterance. Clearly the longer the hypotheses, the lower its
likelihood will be, so by computing the sum of the two likelihoods (one computed for the phone
sequence so far and the other an estimate of what remains), it is possible to compare hypotheses of
different lengths.

At each cycle of the algorithm the best partial phone hypothesis is ’popped’ from the stack, extended
by every allowable phone, and these new hypotheses ’pushed’ back. Pruning then throws away
unlikely paths to keep the heap size down. The time-asynchronous ordering of the search means
that a minimum of time is used in exploring unlikely paths.

It was mentioned in Section 3 that the linear dynamic model could be thought of as a continuous
analogue to the HMM. However, there is one crucial difference which affects the task of searching for
the best phone alignment. To illustrate this it is useful to make the following definition:

A Markov chain is a random process which moves from state to state, where given the present, the
past and future are independent. Letting � � represent the state at time - , this can be written as:

C �'�D�'E;�F4 �D�!�@�G�
	��*�?=>=>=��@�GH*#�� C ���G�'E;�F4 �G�I# (3)

Now an HMM is a Markov chain where each state emits samples from a probability distribution over
the observations. This makes the assumption that speech is made up of a series of locally invariant
regions, represented by the states. The present state affects the probability with which the system
moves to each other state, however not the realisation i.e. output of that state.

Property (3) also holds for LDMs, where � � is now the state vector at time - , and so as with the HMM
all state information is encompassed in the present time. However, unlike the HMM which can jump
from one state to any other, the LDM is constrained to follow a trajectory which will depend on �GH ,
its value at the start of the segment. This means that for decoding purposes, a separate Kalman
smoother has to be run for each candidate segment start time. In our implementation, the cost of this
extra computation is reduced by caching the probabilities for each model and each start time as they
are computed.

5.2 Results and discussion

So far we have implemented the decoder and have a preliminary result. On the same task as before,
using feature set D, we achieve a phone accuracy of 50%.
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data feature set correct accuracy
real
articulatory D 57% 50%

Table 3: Recognition scores based on real articulatory data.

This result should be treated as work in progress, as the implementation of the decoding is not yet
complete. The first addition to be made is that of an explicit duration model. The phone classification
score for the same models and feature set is considerably better (74%) than that for recognition
(50%) which suggests that the segmentation needs to be improved. Duration modelling is implicit in
the LDM, as likelihoods peak at the end of regions which have been explained well by the model. For
example, you would expect the likelihood for a /b/ model to peak toward the end of a /b/ in the data.
Overlaying an explicit duration model would emphasise these peaks, improving the model’s power to
choose segment boundaries. This addition to the segment model is straightforward and is assumed
integral in [1].

Furthermore, at present the state space is continuous within, but not between segments. �D� is reset
(to a value learnt during training) at the beginning of each segment. It should in fact be initialised to
the last state value of the phone it is following. In the future each partial hypothesis in the stack will
include state vectors corresponding to the candidate end times.

The decoder will also be used for Viterbi training. This involves alternately updating model param-
eters and then re-segmenting according to the most recent models. Full embedded EM training is
impractical for the LDM as a separate forward-backward Kalman smoother would be needed for every
possible alignment of models. For further details see [2]. It is expected that Viterbi training will im-
prove performance, as to date the models have been trained using alignments from an acoustic HMM
system. This is likely to be different to the segmentation produced using LDMs and a combination of
articulatory and acoustic gestures.

6 Conclusion

Our classification scores demonstrate that a combination of articulatory and acoustic features gives
a better performance than either does singly. This encourages us to explore the use of articulatory
modelling for ASR further.

Using a feature set comprising articulatory and acoustic derived observations begs the question
of what units the system should be based on. If phones were used, the articulatory and acoustic
portions of the feature set would produce slightly different segmentations. As such we intend to
investigate alternative units which reflect the nature of the data better. The phenomenon of co-
articulation confounds phone-based systems; however a longer unit based on articulatory features
would be capable of storing a certain amount of co-articulation information within it.
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Our use of the decoder is in its infancy, however shows promise. We anticipate that adding an explicit
duration model will improve performance, as will Viterbi training.

A practical speech recognition system cannot in the end rely upon real articulatory data. We are using
the data to take advantage of the useful properties it possesses; smoothly changing trajectories, built-
in context information etc., but really it can only be seen as a development tool. As the recogniser
grows in scale, the articulatory aspect of the system will be reduced to that of a latent variable, and
the two parts of the system will be trained together.
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