Microbial Transformations of Nitro- and Cyano-arenes.

Shagufta Rafiq

A thesis submitted for the degree of Doctor of Philosophy

University of Edinburgh
January 2001
For my parents,
Jamila and Rafiq
Contents

Aims.

Abstract.

Acknowledgements.

Abbreviations.

1. Introduction.

1.1 *Saccharomyces cerevisiae* : General. 1

1.2 *S. cerevisiae* mediated biotransformations. 2

1.2.1 Hydrolysis of esters. 2

1.2.2 Hydrolysis of phosphates. 3

1.2.3 Formation of C-C bonds. 3

1.2.4 Oxidation. 4

1.2.5 Reductions. 6

1.3 *S. cerevisiae* mediated reduction of N-O containing groups. 22

1.3.1 Nitroarenes. 22

1.3.2 Nitroalkenes. 27

1.3.3 Isoxazoles. 29

1.3.4 N-Oxides. 29

1.3.5 Conclusion. 31

1.4 *S. cerevisiae* mediated reduction of C=N and N=N containing groups. 31

1.5 Chemical reduction of N-O containing groups. 33

1.6 Enzymatic reduction of NO₂ groups using other microorganisms. 35

1.7 Isolated enzymes. 39

1.7.1 Reductases. 40

1.8 Nitrilases mediated biotransformations. 42

1.8.1 Nitrilase hydratases. 43

1.8.2 Nitrilases. 44
1.8.3 Amidases. 45
1.8.4 Hydrolysis of nitriles. 45
1.8.5 Enantioselective hydrolysis of nitriles. 49
1.8.6 Regioselective hydrolysis of dinitriles. 52
1.8.7 Chemical hydrolysis of nitriles/amides. 55
1.8.8 Conclusion. 56

2A. Results & Discussion: Synthesis of Potential Substrates. 57

2.1 Synthesis of dicyanonitroarenes. 57

2.2 Attempted synthesis of 3,6-dinitro-phthalonitrile 245. 59

2.3 Synthesis of nitroarene-sulfinyls. 62
2.3.1 Nitroarene-sulfanyl synthesis. 62
2.3.2 Nitroarene-sulfinyl synthesis. 64

2.4 Synthesis of dinitroarene-sulfinyls. 65

2B. Results & Discussion: Biotransformation of Substrates. 68

2.5 Optimised conditions for S. cerevisiae catalysed reduction. 68

2.6 Microbial and chemical reduction of 2-nitro-benzonitrile 282. 69
2.6.1 S. cerevisiae catalysed reduction of 2-nitro-benzonitrile 282. 69
2.6.2 Chemical reduction of 2-nitro-benzonitrile 282. 69
2.6.3 Conclusion. 70

2.7 Reduction of cyanonitroarenes. 70

2.8 Reduction of dicyanonitroarenes. 71

2.9 2-Amino-6-cyano-benzoic acid 290 formation. 73

2.10 Conclusion. 74

2.11 Reduction of 3,6-dinitro-phthalonitrile 245. 75

2.12 Reduction of nitroarene-sulfinyls. 76

2.13 Reduction of dinitroarene-sulfinyls. 79

2.14 Conclusion. 81
3. Results & Discussion: Nitro-Reductase Studies.

3.1 Isolated enzymes from S. cerevisiae.

3.2 Reduction of dinitrobenzene 320.
 3.2.1 Reduction of dinitrobenzene 320 using NADPH.
 3.2.2 Reduction of dinitrobenzene 320 using NADH.

3.3 Reduction of 2-nitro-benzonitrile 282.
 3.3.1 Reduction of 2-nitro-benzonitrile 282 using NADPH.
 3.3.2 Reduction of 2-nitro-benzonitrile 282 using NADH.

3.4 Conclusion.

3.5 Nitro-reductases present in other microorganisms.

3.6 Regioselective reduction.

4. Results & Discussion: Biotransformation Mechanism.

4.1 Mechanistic studies involving 2-nitrobenzonitrile 282.

4.2 Mechanistic studies involving 3-nitro-phthalonitrile 238.
 4.2.1 GCMS studies.
 4.2.2 Further studies into the intermediate including attempts to isolate.
 4.2.3 HPLC studies.
 4.2.3 LCMS studies.

4.3 Dicyanonitroarene studies.

4.4 Isotopic labelling studies.
 4.4.1 13C-2-nitro-benzonitrile 342 studies.
 4.4.2 $^{2-}{^{13}}$C-3-nitro-phthalonitrile 343 studies.

4.5 Conclusion.

4.6 Tautomeration.

4.7 Conclusion.

5. Results & Discussion: Combined Hydrolysis & Reduction.

5.1 General.
5.2 Hydrolysis of cyanonitroarenes. 126
5.3 Reduction of nitro-benzoic acids. 127
5.4 Hydrolysis of amino-benzonitriles. 128
5.5 Conclusion. 129
5.6 Hydrolysis of dicyanoarenes. 130
5.7 Regioselective hydrolysis of dicyanonitroarenes. 131
5.8 Conclusion. 138
5.9 Reduction of cyano-nitro-benzoic acids. 138
5.10 Conclusion. 140
5.11 Hydrolysis of amino-cyano-benzamides. 141
5.12 Conclusion. 144
5.13 Enzyme catalysed reduction and hydrolysis of aromatic arenes. 144
 5.13.1 Reduction and hydrolysis of 3-nitro-phthalonitrile 238. 144
 5.13.2 Reduction and hydrolysis of 3-nitro-terephthalonitrile 233, 225. 145
 5.13.3 Reduction and hydrolysis of 2-nitro-isophthalonitrile 230. 147
 5.13.4 Reduction and hydrolysis of 5-nitro- and 4-nitro-isophthalonitrile 221, 294. 148
5.14 Conclusion. 149

6. Experimental: Synthesis. 150
6.1 General experimental. 150
6.2 Synthesis of dicyanonitroarenes. 153
6.3 Synthesis of dicyano(di)nitroarenes. 161
6.4 Synthesis of nitroarene-sulfinyls. 166
6.5 Synthesis of dinitroarenes-sulfinyls. 175
6.6 Synthesis of 13C-2-nitro-benzonitrile 342. 184
6.7 Synthesis of 13C-3-nitro-phthalonitrile. 343.
 6.7.1 Method I. 185
 6.7.2 Method II. 188

6.8 Intermediate synthesis. 190

7. Experimental: Biotransformations. 194
 7.1 General Experimental. 194
 7.2 Preparation of acetone-washed $S. cerevisiae$. 195
 7.3 General Procedure I: $S. cerevisiae$ catalysed reduction of nitroarenes. 195
 7.3.1 Reduction of nitroarenes. 196
 7.3.2 Reduction of cyanonitroarene. 197
 7.3.3 Reduction of dicyanonitroarenes. 199
 7.4 Biotransformation: controls. 202
 7.5 General Procedure II: $S. cerevisiae$ catalysed reduction of (di)nitroarene-sulfynyls. 205
 7.5.1 Reduction of nitroarene-sulfynyls. 206
 7.5.2 Reduction of dinitroarene-sulfynyls. 210
 7.6 General Procedure III: Nitro-Reductase Studies: Qualitative Studies. 215
 7.6.1 4-Nitroaniline 321. 215
 7.6.2 2-Amino-benzamide 284. 217
 7.7 General Procedure IV: Intermediate isolation. 220
 7.7.1 Label studies. 220
 7.8 General Procedure V: $Rhodococcus$ sp. catalysed hydrolysis of (di)cyano-nitroarenes. 223
 7.8.1 Hydrolysis of cyanonitroarenes. 224
 7.8.2 Hydrolysis of dicyanonitroarenes. 226
 7.9 General Procedure VI: $Rhodococcus$ sp. catalysed hydrolysis of $S. cerevisiae$ products. 232
7.9.1 Hydrolysis of amino-benzonitriles. 232
7.9.2 Hydrolysis of amino(amido)-benzonitriles. 234

7.10 General Procedure VII: *S. cerevisiae* catalysed reduction of *Rhodococcus* sp. products. 238
7.10.1 Reduction of nitro-benzoic acids. 238
7.10.2 Reduction of nitro-cyano-benzoic acids. 240

8. Bibliography. 243
Aims.

The initial aims of this project were several-fold. First, to investigate the scope of *Saccharomyces cerevisiae* catalysed nitroarene reduction in (di)cyanonitroarenes and to further probe the substrate specificity particularly with respect to regioselective and enantioselective transformations in (di)nitroarene sulfinyl substrates.

Second, to elucidate the mechanism of enzyme-catalysed nitro group reduction by the introduction of isotopically labelled substrates and to determine the intermediates involved in this pathway.

Third, to identify and characterise the nitro-reductase enzymes presents in *S. cerevisiae*, which catalyse the reduction of nitroarenes.

Finally, to carry out hydrolysis of (di)cyanonitroarenes using another whole cell microorganism (*Rhodococcus* species) and to further investigate the combination of nitro-reductases and nitrilases to provide access to a wide range of functionalised aromatic compounds.

![Biocatalytic reduction and hydrolysis of (di)cyanonitroarenes.](image-url)
Abstract.

Saccharomyces cerevisiae is known to reduce aromatic nitro groups to the corresponding anilines in a range of compounds\(^1\), but the mechanism employed by this whole-cell microorganism remains largely unexplored. We have reported on the reduction of a range of (di)cyanonitroarene compounds by *S. cerevisiae* in aqueous media, at neutral pH at room temperature. The work was extended to determine the stereoselectivity of *S. cerevisiae* towards racemic (di)nitroarene-sulfinyls. The sulfinyls were excellent substrates for the *S. cerevisiae* catalysed reduction but the reactions proceeded with little or no enantioselectivity and/or regioselectivity.

Mechanistic studies of the biotransformations of dicyanonitroarene substrates suggest that heterocyclic intermediates are involved in this reduction process. A mechanism has been proposed and by carrying out isotopic labelling studies, steps have been taken towards the elucidation of the intermediate(s) involved in the reduction process catalysed by *S. cerevisiae*.

3 Nitro-reductases isolated from *S. cerevisiae* have been studied with respect to their ability to reduce the nitro group in simple nitro aromatic compounds.

Finally, the hydrolysis of cyano groups in (di)cyanonitroarenes by *Rhodococcus* species containing a nitrilase has been investigated. The reduction and hydrolysis of (di)cyanonitroarenes using nitro-reductases and nitrilases respectively has been combined to obtain highly functionalised aromatic compounds.
Acknowledgements.

I would like to thank Professor Nicholas J. Turner for his help and encouragement over the course of my research. Dr Andrew Wells deserves a special mention for his support and allowing me to spend three enjoyable months at SmithKline Beecham Pharmaceuticals in Tonbridge and to Drs. Trevor Grinster and Alan Negus whom were the fortunate ones to have me in their lab during that time. Gratitude is also extended to Dr John Hayler who took over Dr. Wells role for the final 3 months. I would like to thank Zylepsis (Andrew Willetts) for the gift of *Rhodococcus* species and Marina Alexeeva for the nitro-reductase work.

This thesis won’t be complete without thanking the excellent technical staff we have working at the University of Edinburgh. Wesley Kerr, John Miller and Dr. David Reed for the NMR services; Alan Taylor and Harry Mackenzie for the mass spectrometry; Donald Robertson and Patrick Hencher for allowing the use of their IR spectrometer; Tim Calder for the elemental analysis; Derek Burgess, Raymond Borwick and Kenny Lorimer for being the friendliest people anybody could have at the chemical stores; Sally Shirrrran for help with LCMS work.

Dr. Gideon Grogan is appreciated for his initial help during my work. Nick, Gideon, Dave, Mark and Ian have been invaluable in proof-reading my thesis.

I have had a most enjoyable three years and want to thank a few people who have contributed towards this time period. Ian, my ally in cricket crime (☹); Alan the poor victim (☹) and for the laughs; Suzanne, my bench partner in Lab 120; ‘the foreigners’ Laurence, Ines and François. Minesweeper requires an extra mention—without it I would have gone insane while writing up, Denise and Mark my competitors in minesweeper. Other co-workers in Turner/Flitsch group, past and present have been an added bonus.

Finally, last but not least, my Mum, Dad and Family for their support throughout the three years and always being there. I love you and Thank you.
Abbreviations.

There follows a list of common abbreviations used in the text of this thesis.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Bp</td>
<td>Boiling point</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>Bu</td>
<td>Butyl</td>
</tr>
<tr>
<td>CDCl<sub>3</sub></td>
<td>Deuterochloroform</td>
</tr>
<tr>
<td>CHCl<sub>3</sub></td>
<td>Chloroform</td>
</tr>
<tr>
<td>Cl</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>D</td>
<td>Doublet</td>
</tr>
<tr>
<td>Dd</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>δ<sub>H</sub></td>
<td>Chemical shift of proton (NMR)</td>
</tr>
<tr>
<td>δ<sub>C</sub></td>
<td>Chemical shift of carbon (NMR)</td>
</tr>
<tr>
<td>D</td>
<td>Day</td>
</tr>
<tr>
<td>d.e.</td>
<td>Diastereomeric excess</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>e.e.</td>
<td>Enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>Electron impact ionisation</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalent</td>
</tr>
<tr>
<td>ES</td>
<td>Electrospray</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FAB</td>
<td>Fast atom bombardment</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>J</td>
<td>Spin coupling constant</td>
</tr>
<tr>
<td>LCMS</td>
<td>Liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Mp</td>
<td>Melting point</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>Nicotinamide adenine dinucleotide (oxidised form)</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>Nicotinamide adenine dinucleotide phosphate (oxidised form)</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate (reduced form)</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>Nuclear Overhauser effect</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Pr</td>
<td>Propyl</td>
</tr>
<tr>
<td>Rₙ</td>
<td>Retention factor (TLC)</td>
</tr>
<tr>
<td>Rᵣ</td>
<td>Retention Time (HPLC/GCMS/LCMS)</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>sept</td>
<td>Septet</td>
</tr>
<tr>
<td>sat.</td>
<td>Saturated</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecylsulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>sp.</td>
<td>Specie</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>td</td>
<td>Triplet of doublets</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume to volume ratio</td>
</tr>
</tbody>
</table>
1. Introduction.

1.1 Saccharomyces cerevisiae: General.8,9

Saccharomyces cerevisiae (S. cerevisiae) is a yeast that is rich in intra- and extracellular enzymes. This microorganism, commonly known as baker’s yeast, is widely used in synthetic organic chemistry, primarily because it is inexpensive and readily available. The yeast is available in freeze-dried form and hence is ideally suited for non-microbiologists since it does not require sterile conditions and can be handled using standard laboratory equipment and techniques.

S. cerevisiae can be used in three forms:
(a) Resting cells: The commercially available freeze-dried cells can be activated by resuspension in water and buffer and stored in a flask before the substrate is added. The main advantage of resting cells is that the reactions are cleaner and simpler and the method is generally applicable for laboratory-scale preparations. Co-factor regeneration occurs at the expense of endogenous carbohydrate stored in cells of S. cerevisiae leading to facile product recovery.

(b) Fermenting conditions: (i) use of carbohydrates (glucose or sucrose) as energy sources. Reaction times can range from several hours to several days with further addition of S. cerevisiae and/or carbohydrate at fixed time intervals. The carbohydrates are used to regenerate the NAD(P)H which is necessary for the reduction.10

(b) Fermenting conditions: (ii) ethanol can be used as a substitute for carbohydrates in S. cerevisiae reduction. The reaction in the presence of ethanol is much cleaner and does not form by-products.

(c) Immobilised cells: cells of S. cerevisiae can be absorbed or adhered onto a water-
insoluble support such as a commercial resin, agar or calcium alginate. An alternative is the crosslinking of the functional groups present on the surface of *S. cerevisiae* with the support. Application of this technique seems to offer little advantage over the above procedure, since yields obtained are usually lower.11

Use of organic solvents in *S. cerevisiae* biotransformations can be more advantageous over conventional water suspensions. Organic solvents can increase the conversion of poorly water soluble substrates or products by decreasing the substrate or product concentration in the pure water phase thus minimising the inhibitory effect and any undesired side reactions taking place during the biotransformation.

1.2 *S. cerevisiae* mediated biotransformations10,12-15

The majority of studies on the synthetic capability of *S. cerevisiae* deal with the reduction of carbonyl groups and C=C double bonds to afford a product which has one or more asymmetric carbon atoms. There are many examples of *S. cerevisiae* catalysed biotransformations in the literature and some of these reports are reviewed in the next section.

1.2.1 Hydrolysis of esters.

The hydrolysis of esters has only recently been a focus of thorough studies with esterases from *S. cerevisiae* shown to have hydrolytic activity.16 Thus, esters of racemic mappicine acetate 1a, 1b were enantioselectively hydrolysed by fermenting *S. cerevisiae* to yield (S)-mappicine 2a, 2b in high optical purity in 48 % and 47 % yields respectively (Fig 1-1).17,18 The unchanged (R)-mappicine 3a, 3b acetate was hydrolysed chemically to afford the optically active (R)-mappicines in 48 % and
47% yields respectively.

\[\text{Fig 1-1: } S. \text{ cerevisiae catalysed hydrolysis of esters.} \]

1.2.2 Hydrolysis of phosphates.

S. cerevisiae contains phosphatases which have been reported to selectively hydrolyse phosphates in positions 3, 4 and 5 of phytic acid 4 leading to the formation of an optically active inositol derivative 5 which exhibits anti-inflammatory properties (Fig 1-2).\(^\text{19}\)

\[\text{Fig 1-2: } S. \text{ cerevisiae catalysed hydrolysis of phosphate esters.} \]

1.2.3 Formation of C-C bonds.

A recent example of a yeast catalysed acyloin condensation, which was first reported 60 years ago,\(^\text{20}\) is the formation of alkylated cyanoketones 7. The racemic alkylated derivatives 7 were obtained from 6 in moderate yields (59-75%) in a two phase solvent system comprising of petrol and water (Fig 1-3).\(^\text{21}\)
Introduction.

Fig 1-3: S. cerevisiae catalysed C-C bond formation in aliphatic compounds.

Fuganti et al. have proposed a mechanism for this alkylation reaction using ethyl cyanoacetate 8 as the substrate (Fig 1-4).22

\begin{equation}
\text{EtCN} \quad \text{EtOH, H}_2\text{O} \quad \text{EtCN}
\end{equation}

Fig 1-4: Proposed mechanism for S. cerevisiae catalysed C-C bond formation.

The first step was believed to be the S. cerevisiae oxidation of ethanol to acetaldehyde. Condensation between the aldehyde and the active methylene group of the nitrile 8 afforded the α-β-unsaturated ketone 9 and finally a double bond reduction afforded the racemic product 10.

1.2.4 Oxidation.

The oxidative capabilities of S. cerevisiae are limited and hence literature examples of oxidations carried out by S. cerevisiae are scarce. A recent paper described the Baeyer-Villiger oxidation of substituted cyclic lactones 11 using recombinant S. cerevisiae.23 The reaction was carried out by a cyclohexanone monooxygenase, which was cloned from the bacterium Acinetobacter sp. NCIMB 9871 and over-expressed in S. cerevisiae (Fig1-5).
Introduction.

\[\text{Oxidation of alkyl-substituted cyclohexanones 14 have also been reported to yield the corresponding lactones 15 with good purities and e.e. greater than 92 \%, whereas the other enantiomer 16 remained intact (Fig 1-6).} \]

Overall, cyclohexanone derivatives 14 were oxidised more efficiently compared to their cyclopentanone 11 counterparts.

Cyclic sulfoxides, which are important chiral intermediates in organic synthesis have been synthesised by the oxidation of cyclic dithiolanes 17 and dithianes 18 mediated by \textit{S. cerevisiae} (Fig 1-7).25 The corresponding sulfoxides 19 were obtained in lower optical purity and a higher proportion of the corresponding sulfone 20 was produced.
Introduction.

Fig 1-7: *S. cerevisiae* catalysed oxidation of dithiolanes and dithianes.

1.2.5 Reductions.

Reduction reactions have constituted the major part of *S. cerevisiae* mediated transformations. Most simple aromatic and aliphatic compounds 21 are reduced by *S. cerevisiae* according to Prelog’s rule 26 to afford the corresponding (S)-alcohols 22 in good optical purity (Fig 1-8), although exceptions to the stereospecificity are known: long chain ketones and several bulky phenyl carbonyl compounds do not follow this rule.

Fig 1-8: Prelog’s rule: Model representing reduction of the carbonyl moiety.

Typical substrates include:

- β-Keto esters: aromatic, cyclic, heterocyclic, halogen and aliphatic.
- α-Keto esters: cyclic and aliphatic.
- γ-Keto esters and acids.
- δ-Keto esters and acids.
- Diketones: cyclic, heterocyclic and acyclic.
- Monocarbonyl compounds: cyclic, aliphatic, heterocyclic, polycyclic, sulfur, nitro and hydroxy.
- C=C double bond reduction: cyclic and aliphatic.
- α-β-Unsaturated enone systems: cyclic, aliphatic and halogen.
1.2.5.1 β-Keto ester reduction.

Although the reactions have been known and exploited for a very long time, *S. cerevisiae* catalysed reduction of β-keto esters to afford optically active β-hydroxy esters is still a very active field of research owing to the numerous synthetic applications of the synthons produced.

The enantioselective reduction of ethyl 3-oxobutanoate 23 mediated by *S. cerevisiae* has been studied extensively to afford the optically active hydroxy ester (S)-24.27 Whilst the yields were only moderate (50-70 %), the reduction proceeded with excellent e.e. of 99.5 % (Fig 1-9).28

![Fig 1-9: *S. cerevisiae* catalysed reduction of ethyl 3-oxobutanoate.](image)

Dahl et al. have shown the selectivity of the above reduction can be reversed using anaerobically grown *S. cerevisiae* to afford the alcohol (R)-24 with an e.e. of 96 %.29

S. cerevisiae may still be the catalyst of choice for the reduction of some cyclic keto esters since optically pure diastereomeric hydroxy esters can be obtained (Fig 1-10).30 The hydroxy ester 26 obtained in 40 % yield was a result of the kinetic resolution of the racemic starting material 25.

![Fig 1-10: *S. cerevisiae* catalysed reduction of cyclic β-keto ester.](image)
The reduction of heteroatom substituted β-keto esters by *S. cerevisiae* has been reported. Enantiomerically pure β-hydroxy ester derivatives 28 possessing a sulfur heteroatom group were obtained in moderate yields and high e.e. of 92-99 % by the reduction of heterocyclic keto ester derivatives 27 (Fig 1-11). \(^{31}\)

![Figure 1-11](image)

Fig 1-11: *S. cerevisiae* catalysed reduction of heterocyclic β-keto ester.

Under non-fermenting conditions, the reduction of a cyclic β-keto ester 29 afforded an enantiomer of substituted 2-piperidone 30 in 88 % optical yield with e.e. of 91 % (Fig 1-12). These optically active hydroxy piperidine esters are present in many pharmaceutical and alkaloid compounds. \(^{32}\)

![Figure 1-12](image)

Fig 1-12: *S. cerevisiae* reduction of a heterocyclic β-keto ester.

There have been reports on the selective inhibition of different enzymes with opposite specificity when different additives are used in the reduction of β-keto esters. \(^{33}\) A recent report has described the effect of using allyl chloride or allyl alcohol as additives in the presence of *S. cerevisiae* to obtain both the (R)- and (S)-32 enantiomers of trifluoro-3-oxo-butanoate 31 with e.e.'s in the range of 56-80 % (Fig 1-13). \(^{34}\)
Introduction.

Another paper has reported on the synthesis of an acetal protected 4-amino-2-pentanone 35, the key step being the reduction of an aliphatic 4,4-dimethyloxy-butan-2-one 33 to afford the optically active hydroxy derivative 34 in 75 % yield with e.e. of 98 % (Fig 1-14).³⁵

α-Hydroxy-β-keto esters are good substrates for stereospecific reduction catalysed by S. cerevisiae to yield the corresponding dihydroxy esters 37 with high e.e.’s ranging from 95-98 % (Fig 1-15).³⁶ Only one enantiomer of the racemic substrates 36 was reduced to the optically active trans dihydroxy compounds 37 effecting a resolution of the starting material.

The reduction of α-substituted-β-keto esters by S. cerevisiae was strongly dependent on the pH of the medium. Thus ethyl-2-hydroxy-3-oxo-3-phenylpropanoate (R = OH) 38a was reduced by S. cerevisiae immobilised on calcium alginate beads,
affording 2-3-dihydroxy-3-phenylpropanoate 39a as the major product in 82 % yield at low pH (Fig 1-16).37

\[
\begin{align*}
\text{O} & \quad \text{CO}_2\text{Et} & \text{S. cerevisiae} & \text{OH} \\
R = \text{OH}, & \quad 38a & \text{glucose, buffer} & \quad 39a \\
R = \text{N}_3, & \quad 38b & \text{r.t} & \quad 39b \\
\text{or immobilised} & \quad \text{S. cerevisiae} & \quad 40a & \quad 40b
\end{align*}
\]

Fig 1-16: \textit{S. cerevisiae} catalysed reduction of cyclic \(\alpha\)-substituted-\(\beta\)-keto esters.

Variation in the pH of the reaction resulted in a significant change in the diastereomeric and enantiomeric purity of the dihydroxy esters obtained. A higher ratio of 10:1 (39a and 40a) respectively was observed at a low pH of 4, which gradually reached the expected value of 1:1 at pH 7.

The same effect was observed in the reduction of an \(\alpha\)-azido-\(\beta\)-ketoester 38b (\(R = \text{N}_3\)) using immobilised \textit{S. cerevisiae}. A higher ratio of 11:1 (39b and 40b) respectively was observed at pH 4 (e.e. 99 %, d.e. 79 %).38 Whilst the stereospecificity of the reduction was maintained, a loss of diastereoselectivity occurred at pH 7 where a 1:1 diastereomeric mixture was obtained.

\textbf{1.2.5.2 \(\alpha\)-Keto ester reduction.}

\(\alpha\)-Keto esters have been successfully reduced by \textit{S. cerevisiae} to \(\alpha\)-hydroxy esters, a simple example being the reduction of substituted \(\alpha\)-keto esters 41 to afford the optically active (\textit{R})-alcohols 42 with high e.e. in the range of 82-92 % (Fig 1-17).39
Introduction.

A stereoselective synthesis of α-hydroxy-β-lactams 44 mediated by the microbial reduction of azetidin-2-3-dione 43 has recently been carried out using fermenting *S. cerevisiae* in water with the reduction proceeding slowly in 57 % yield with e.e. of 66 % (Fig.1-18).^{40}

Fig 1-17: *S. cerevisiae* catalysed reduction of aliphatic α-keto esters.

Fig 1-18: *S. cerevisiae* catalysed reduction of α-keto-β-lactams.

1.2.5.3 γ-Keto ester reduction.

S. cerevisiae catalysed reduction of cyclic γ-keto esters 45 proceeded with enantio-, diastereo-selectivity and simultaneous kinetic resolution affording the corresponding optically active cyclic *trans*-alcohols 46 (41 % and 48 % respectively) as the major product, *cis*-alcohols 46 (16 % and 19 % respectively) as the minor and the unaltered ketone 47 with optical purity of 98 % (Fig 1-19).^{41}

Fig 1-19: *S. cerevisiae* catalysed reduction of cyclic γ-keto ester.
The optically enriched enantiomer of the γ-keto ester 47 can be employed as a precursor in the synthesis of lipoic acid, which is a growth factor for a variety of microorganisms.42

S. cerevisiae catalysed reduction of aliphatic β-chloro-γ-keto esters 48 afforded the corresponding hydroxy product 49 and in some cases the γ-lactone 50 was obtained as a minor product (Fig 1-20).43

```
\begin{equation}
\begin{array}{c}
\text{R}^1 = \text{Me, Et, Et, n-Bu,} \\
\text{R}^2 = \text{Et, Me, Et, Et}
\end{array}
\end{equation}
```

Fig 1-20 : *S. cerevisiae* catalysed reduction of aliphatic alkanoates.

Alkanoates with small alkyl groups (R1 = Me, Et) were reduced to the chiral alcohols 49 in good yields, whereas longer chain (butyl, octyl) compounds afforded lower yields of the reduced product 49 with formation of the lactone 50 as a minor impurity.

1.2.5.4 δ-Keto ester reduction.

The formation of enantiopure δ-lactones condensed with alicyclic rings has been achieved by the reduction of the corresponding δ-keto esters 51a and acids 51b by *S. cerevisiae* with e.e and d.e greater than 99% (Fig 1-21).44

```
\begin{equation}
\begin{array}{c}
\text{R} = \text{Et} \quad 51a \\
\text{R} = \text{H} \quad 51b \\
\text{n} = 1, 2
\end{array}
\end{equation}
```

Fig 1-21 : *S. cerevisiae* catalysed reduction of aliphatic δ-keto esters and acids.
The reduction proceeded with excellent stereospecificity when $n = 1$, forming only the cis-fused ring system 52 (86-99 %, e.e.) but was less diastereoselective for the larger ring size ($n = 2$) in which case both lactones (cis- and trans-52) were formed. The keto acids 51b ($R = H$) proved to be worse substrates for the reduction than the keto esters 51a with low yields obtained (5 %) with high diastereoselectivity (50 %).

1.2.5.5 Diketone reduction.

A simple method involving the microbial reduction of β-diketones to prepare β-aminoketones has been achieved by the asymmetric reduction of 2,4-pentanediione ($n = 1$) 53a to the enantiomerically pure (S)-ketol 54 in 82 % yield with e.e. of 98 % (Fig 1-22).

\[
\begin{align*}
\text{S. cerevisiae} & \quad \text{OH} \\
\text{sucrose, H}_2\text{O} & \quad 12 \text{ d, r.t} \\
55 & \quad 53a \\
n = 1 & \\
53b & \quad 54 \\
\text{S. cerevisiae} & \quad \text{sucrose, H}_2\text{O} \\
& \quad 6 \text{ d, 30°C} \\
\text{n = 1} & \\
\text{n = 2} & \\
\end{align*}
\]

Fig 1-22: S. cerevisiae catalysed reduction of aliphatic β-diketones.

In the case of acetonyl acetone ($n = 2$) 53b, the pure diol 55 was obtained with 59 % yield, d.e. and e.e greater than 99 % (Fig 1-22). A high concentration of substrate was used which improved both the reaction rate and selectivity with no traces of other stereoisomers formed.

A kinetic resolution of substituted bicyclic diketones under various conditions has been reported recently (Fig 1-23).
Introduction.

S. cerevisiae catalysed reduction of bicyclic diketones.

After 24 h, the diketones \((n = 1)\) **56a** were reduced preferentially to the chiral alcohols **57a** in 54 % yield with e.e. greater than 72 %. A high concentration of substrate and **S. cerevisiae** was used which increased the enantioselectivity and the reaction rate leading to the recovery of enantiomerically pure diketone **58a**.

Expansion of the 5-membered ring by one carbon \((n = 2)\) **56b** resulted in the reduction proceeding much slower. Despite this, the enantiomerically pure alcohols **57b** were obtained in 32 % yield with e.e. of 99.5 %, along with the unreacted ketone **58b** in 60 % yield.

Other reducible groups present were tolerated in the synthesis of substituted spiroketalts, which are found as substructures of many naturally occurring compounds present in plants and animals. The key step is the reduction of nitro-aliphatic diketones **59** to afford **60** which proceeded in moderate yields of 55 % and 67 % respectively while the nitro group remained intact (Fig 1-24).\(^48\)

Fig 1-23: **S. cerevisiae** catalysed reduction of bicyclic diketones.

Fig 1-24: **S. cerevisiae** catalysed reduction of nitro-diketones.
1.2.5.6 Carbonyl reduction.

The chemo- and stereo-selective reduction of a β-cyanoketone by S. cerevisiae at low temperature has been reported. The reduction of 3-oxo-3-phenylpropanenitrile derivatives 6 proceeded to afford exclusively the (S)-3-hydroxy-3-phenylpropanenitriles 62 in moderate yields with no alkylated product 7 produced at a low temperature of 4 °C (Fig 1-25).49

\[\text{S. cerevisiae} \quad \text{H}_2\text{O}/\text{organic} \quad 7 \text{ d, 4 °C} \]

\[\begin{align*}
\text{6} & \quad \text{R = 2-OMe, 3-OMe} \\
\text{61} & \quad \text{R = H} \\
\text{62} & \\
\text{7} & \\
\end{align*} \]

Fig 1-25: S. cerevisiae catalysed reduction of aliphatic ketones.

With 3-oxo-3-phenylpropenitrile 61, both the reduced 62 and alkylated 7 products in 10 % and 40 % yields respectively were obtained when the reaction was carried out in a mixture of organic solvent and water at room temperature.21

Substituted aromatic rings 64 and 66 can be used in cancer chemotherapy and radiotherapy and the synthesis of these type of compounds involve a key step in which the reduction of 3-(hydroxyacetyl)-benzonitrile 63 affords the (R)-diol 64 in 44 % yield (Fig 1-26).50 The optically active alcohol 65 with opposite stereochemistry was obtained in 85 % yield when the OH group was replaced with the OAc moiety.
Fig 1-26: *S. cerevisiae* catalysed reduction of β-hydroxy-ketone.

A mixture of concentrated yeast and sugar was used to reduce a series of methylsulfonylalkan-2-ones 67 with e.e. ranging between 71-87% (Fig.1-27).

\[
\begin{align*}
& \text{R} = \text{H, Ac} \\
& \text{R} = \text{C}_4\text{H}_9, \text{C}_4\text{H}_{11}, \\
& \text{C}_6\text{H}_{13}, \text{C}_7\text{H}_{15}, \\
& \text{Ph(\text{CH}_2)_3}, \\
& \text{Ph(\text{CH}_2)_4} \\
\end{align*}
\]

Fig 1-27: *S. cerevisiae* catalysed reduction of aliphatic keto-sulfones.

The yields of (S)-alcohols 68 obtained, percentage conversions, e.e. and reproducibility were more satisfactory compared to those biotransformations carried out in dilute yeast and sugar mixtures. Using dilute conditions, (R)-alcohols were obtained for those substrates which had bulky substituents attached.

An efficient dynamic kinetic resolution of 5- and 6-membered cyclic β-keto sulfones 69 has been achieved using *S. cerevisiae* to afford the corresponding cis-benzene-sulfonylcyloalkanols 70 in d.e. and e.e. of 98 % and 95 % respectively (Fig 1-28).

The reduction of the 7- and 8-membered ring derivatives was much less efficient with very low enantiopurity obtained.
Introduction.

Fig 1-28: *S. cerevisiae* catalysed reduction of cyclic keto-sulfones.

The reduction of heterocyclic ketones has been investigated where the ketones 71 are enantioselectively reduced to afford the corresponding (S)-alcohols 72 in 80-90 % yields with 100 % e.e. (Fig 1-29).

Fig 1-29: *S. cerevisiae* catalysed reduction of heterocyclic ketones.

The asymmetric reduction of thiiranes 73 was found to be a useful method for the preparation of optically active β-hydroxy sulfides 74 with (R) configuration obtained in yields of 56-91 % with e.e. of 64-99 % (Fig.1-30).

Fig 1-30: *S. cerevisiae* catalysed reduction of heterocyclic ketones.

The reduced hydroxy sulfides 74 obtained could be further converted into the corresponding optically active amino-alcohols which display the molecular features of potential β-blockers used in cardiovascular disease.
There have been reports of *S. cerevisiae* biotransformations occurring in mixtures of water and organic solvents. The effect of changing the medium of the reaction on the enantioselectivity obtained has been investigated by Molinari *et al.* γ-Nitro ketone (n = 2) 75b was reduced to afford the chiral (S)-nitro alcohol 76b with e.e of 89 % when buffer was used as the medium (Fig 1-31). The e.e was further increased to 95 % when a mixture of benzene and hexane was employed. Similarly β-nitro ketone (n = 1) 75a in water was reduced to 76a with 85 % e.e. and further increased to 97 % when a mixture of water and an organic solvent was used.

![Fig 1-31](image)

Fig 1-31: *S. cerevisiae* catalysed reduction of γ- and β-nitro ketones.

The reduction of π-deficient heterocyclic aldehydes 77, 78, 79, 80 can be catalysed by *S. cerevisiae* under fermenting conditions to afford chiral alcohols which are obtained by easy work-up in moderate yields of 50-83 % (Fig.1-32).

![Fig 1-32](image)

Fig 1-32: *S. cerevisiae* catalysed reduction of heterocyclic aldehydes.

1.2.5.7 Enol and Enone reduction.

Fuganti *et al.* have reported on the reduction of unsaturated aldehydes 81 to afford diastereomerically enriched forms of saturated (S)-alcohols 82 in modest yields (51-54 %). The stereoselectivity of the reduction was greatly influenced by the E:Z ratio of the starting material (Fig 1-33).
Introduction.

The reduction of α-bromo-substituted enone systems 83 to produce the enantiomerically pure 2-bromoindan-1-ol 84 in 75 % yield with e.e. of 99 % has been reported (Fig 1-34).

Monitoring of the reaction indicated that the carbon-carbon double bond of 83 was reduced first to yield the ketone intermediate followed by reduction of the carbonyl moiety to produce the optically active saturated alcohol product 84.

1.2.5.8 C=C Double bond reduction.

S. cerevisiae displays chemoselectivity in thioacetals 85 which possess both a carbon-carbon double bond and a carbonyl moiety with the reduced ketones 86 obtained in 87 % e.e. in (S)-configuration (Fig 1-35).

Fig 1-33: S. cerevisiae catalysed reduction of α-β-unsaturated aldehydes.

Fig 1-34: S. cerevisiae catalysed reduction of cyclic enones.

Fig 1-35: S. cerevisiae catalysed reduction of aliphatic C=C.
The preparation of enantiomerically pure electron rich 3-aryldien-1-ones 88 with (S)-configuration has been reported with the reduction of 87 proceeding in moderate yields (50-81 %) with e.e. of 99 % (Fig 1-36).61

It was reported that changing the location of the electron-donating groups on either aromatic ring had little effect on the reaction outcome. The reduced product 88 was a key intermediate in the synthesis of a receptor-antagonist SB 217 42 which at present is in clinical trials at SmithKline Beecham Pharmaceuticals.

Parthenin 89, an important terpenoid, when treated with \textit{S. cerevisiae} underwent chemoselective reduction of the double bond(s) (Fig 1-37).62 Both the double bonds were reduced to afford the saturated cyclic ketone 90 in 64 % yield with the carbonyl groups present remaining intact.
Ketoxime derivatives 91 are reduced to afford the corresponding optically active (R)-alcohols 92 in yields ranging from 48-75 % with excellent e.e. between 88-99 %. Two exceptions, where \(R = \text{Me or H} \), afforded the reduced product 92 in poor e.e. and a low chemical yield of 14 % (Fig 1-38).\(^63\) The low yield obtained was due to subsequent reactions in the medium to form the optically active diol 93, whereas the other optically active oximes were relatively stable.

![Chemical diagram](attachment:image)

Fig 1-38 : *S. cerevisiae* catalysed reduction of ketoximes.

The reduction of the carbon-carbon triple bond in phenylbutyne 94 mediated by *S. cerevisiae* afforded the saturated compound 95 in a low yield of 7 % with the hydroxylated product 96 present as a minor impurity, hence displaying poor stereoselectivity (Fig 1-39).\(^64\)

![Chemical diagram](attachment:image)

Fig 1-39 : *S. cerevisiae* catalysed reduction of C≡C triple bond.
1.3 *S. cerevisiae* mediated reduction of N-O containing groups.

Nitro groups are useful in synthetic chemistry because they can be easily converted into hydroxy, carbonyl and amino moieties which can be versatile synthetic intermediates. There have been a number of reports on the use of *S. cerevisiae* for the reductive cleavage of N-O bonds in a variety of functional classes including nitroarene, nitrosoarenes, nitroalkenes, N-oxides, isoxazoles, imines and azides and are discussed below.

1.3.1 Nitroarenes.

Neuberg reported on the conversion of nitrobenzene to aniline using fermenting *S. cerevisiae* in the early 1900's. Until recently, little attention has been paid to the influence of the substituents attached to the nitro aromatic ring undergoing reduction.

In 1989, Takeshita *et al.* established some information about the substituent effects on the reduction of nitroarenes. The presence of an electron-withdrawing group substituted ortho, para or meta to the nitro group on the aromatic ring resulted in the reduction proceeding smoothly to afford the amino derivatives in yields ranging from 61-88 %. In contrast, the presence of an electron-donating group resulted in little or no reduction taking place with low yields (0-25 %) obtained (Fig 1-40).

![Fig 1-40: *S. cerevisiae* catalysed reduction of substituted nitroarenes.](image)

The same substituent effect was found to be present in the reduction of nitro groups substituted on heteroaromatics. An electron-donating group substituted
ortho, para or meta to the nitro group resulted in little or no reduction taking place, whereas the presence of an electron-withdrawing group greatly enhanced the rate of reduction of the nitro group with yields ranging from 41-95% (Fig 1-41).

\[
\begin{align*}
\text{EWG} = \text{Cl} \\
\text{EDG} = \text{NH}_2, \text{OH}, \text{CH}_3, \text{OCH}_3
\end{align*}
\]

Fig 1-41: *S. cerevisiae* catalysed reduction of nitro-heteroaromatics.

Davey *et al.* have reported on the regioselective reduction of substituted dinitroarenes 102 affording low yields of reduced products 103 (7-35%) (Fig 1-42).\(^2\)

\[
\begin{align*}
\text{R} & = \text{Me, Et, OMe, OEt, SMe, SOMe} \\
\text{102} & \quad \text{103}
\end{align*}
\]

Fig 1-42: *S. cerevisiae* catalysed reduction of dinitroarenes.

The regioselectivity was controlled by two competing factors, steric and electronic; the most sterically demanding R-substituted group directed reduction towards the para position, but the presence of a lone pair on the R-group directed reduction to the ortho position (Fig 1-43).

Fig 1-43: Model representing the selectivity in dinitroarenes.
Baik et al. have reported on the selective and rapid reduction of aromatic nitroarenes 104 to afford 105 using S. cerevisiae under a slightly unusual set of reaction conditions: a basic solution with methanol or ethanol as a co-solvent and a high temperature was used (Fig 1-44). 65

\[
\begin{align*}
\text{NO}_2 & \xrightarrow{S. \text{ cerevisiae}} \text{NH}_2 \\
\text{H}_2\text{O}, \text{MeOH} & \quad 70-80 \, ^\circ\text{C} \\
\text{R} & = \text{halogen, NO}_2, \text{OMe, CHO, COCH}_3, \text{COPh}
\end{align*}
\]

Fig 1-44: S. cerevisiae catalysed reduction of nitroarenes under basic conditions.

High yields of the corresponding ortho, para and meta substituted anilines 105 were reported despite the presence of other reducible (carbonyl) and labile groups and only one nitro group was selectively reduced when para-dinitrobenzene was used as the substrate. Surprisingly, electron-withdrawing groups substituted on the aromatic ring 104 were tolerated, although the yields of the corresponding reduced products 105 were low (18-25 %).

It is known that the reduction of nitro compounds to the corresponding amine proceeds through intermediate stages involving nitroso and hydroxylamine compounds. 66, 67 Baik et al. have investigated the reductive cyclisation of ortho-nitrophenylnazodyes 106 using S. cerevisiae under basic conditions to determine the intermediacy of the reaction pathways (Fig 1-45). 68

The N-oxide intermediate 107 was isolated and underwent subsequent reduction to the benzotriazole 108 in 90 % yield when twice the amount of S. cerevisiae and longer reaction times were employed. This study revealed that this reduction pathway proceeded via an N-oxide intermediate 107 which went on to afford the triazole 108. It was concluded that simple nitro aromatics underwent reduction so fast to the corresponding amine product that intermediate(s), e.g. nitroso species could not be detected.
Introduction.

Blackie et al. subsequently commented that two distinct sets of conditions were being employed for the reduction of nitroarenes mediated by *S. cerevisiae*. Most of the literature described the use of type 1 conditions (Takeshita et al.) whereas Baik reported type 2 conditions (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Type 1 conditions</th>
<th>Type 2 conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>30 °C</td>
<td>70-80 °C</td>
</tr>
<tr>
<td>pH</td>
<td>5.5-6.0</td>
<td>>12 (high)</td>
</tr>
<tr>
<td>Work-up</td>
<td>None</td>
<td>Some cases, involving reflux</td>
</tr>
<tr>
<td>Co-solvent</td>
<td>None</td>
<td>Methanol/ethanol</td>
</tr>
</tbody>
</table>

Table 1: Two distinct types of conditions for nitro reduction using *S. cerevisiae*.

These complementary reaction conditions led to different selectivity in the reduction of nitroarenes. Under the type 1 conditions, electron-donating groups could not be tolerated (low yields of product were isolated); electron-withdrawing groups were required for reduction to proceed smoothly and in high yield. In the latter set of conditions, electron-donating groups could be used, affording aniline derivatives.
The reduction of nitrobenzene 109 was used to discriminate between the two sets of reaction conditions (Fig 1-46, 1-47).

Fig 1-46: *S. cerevisiae* catalysed reduction of nitrobenzene and derivatives using type 1 conditions.

Fig 1-47: *S. cerevisiae* catalysed reduction of nitrobenzene and derivatives using type 2 conditions.

Examination of both reaction mechanisms highlighted differences in the reduction of the same substrates (Table 2).
Table 2: Differences observed in the reduction of simple nitroarenes.

Differences in reaction mechanisms when employing both types of conditions were evident from the investigation of the reduction of nitrobenzene 109 and other similar substrates 110, 111, 112. For instance, azoxybenzene 112 was not reduced under type 1 conditions whereas it was detected en route to aniline 113 under type 2 conditions and thus proposed as an intermediate in the reduction pathway.

Further study of type 2 reaction conditions led to the conclusion that *S. cerevisiae* was simply acting as a source of carbohydrate and that the reduction was in fact non-enzymatic. It seemed very unlikely that the *S. cerevisiae* cells remained active at high temperatures and high pH, since it is known that simple nitroarenes can be reduced to the corresponding anilines and azoxybenzene compounds under strong basic conditions in solutions that contain alcohol and/or glucose/fructose.\(^7^0-7^2\)

1.3.2 Nitroalkenes.

A method for the formation of saturated nitroalkanes could involve the reduction of \(\alpha\)-\(\beta\)-unsaturated nitro aromatic compounds using *S. cerevisiae*. Takeshita *et al.* carried out studies on the chemoselective reduction of aromatic and heteroaromatic nitroalkenes using *S. cerevisiae*.\(^5\)
The presence of an electron-withdrawing group (Br, Cl, CN) substituted on the ring 114 afforded the corresponding ortho and meta substituted saturated nitroalkanes 115 in yields of 41-81 % with the reduction proceeding smoothly (Fig 1-48).

Fig 1-48:
S. cerevisiae catalysed reduction of substituted nitrostyrene.

Selective reduction of the nitro group substituted on the aromatic ring occurred in methyl substituted nitrostyrenes 116 to afford the corresponding aniline derivatives 117 as the major products (16-61 % yield) and the nitroalkanes 118 were obtained in low yields (10-24 % yields) (Fig 1-49).

Fig 1-49:
S. cerevisiae catalysed reduction of methyl-substituted nitroalkenes.

Heteroaromatic and 5-membered ring systems 119 (thiophene, furan and pyrole) were also studied. It was found that the carbon-carbon double bond was selectively reduced to afford the corresponding nitroalkanes 120 in moderate yields irrespective of what substituent was present on the heteroaromatic ring (Fig 1-50).

Fig 1-50:
S. cerevisiae catalysed reduction of heteroaromatic ring systems.
1.3.3 Isoxazoles.

An efficient synthesis of substituted isoxazoles 122 can be mediated by *S. cerevisiae* acting on nitroalkenes 121 with moderate yields in the range of 50-82 % obtained (Fig 1-51).[^6]

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{CN} \\
\text{R} & \quad \text{Ph} \\
\text{S. cerevisiae} & \\
\text{glucose, buffer} & \\
2-6 \text{ h}, 30 ^\circ \text{C} & \\
\text{121} & \quad \rightarrow & \quad \text{122} \\
\text{R} = \text{H, Me, Ph, 2-furyl, 2-thienyl, 4-PhNO}_2, & \\
& \quad \text{4-PhCl, 4-PhMeO} \\
\end{align*}
\]

Fig 1-51: *S. cerevisiae* catalysed reduction of substituted nitroalkenes.

The initial step was presumed to involve the reduction of the vinylic nitro group 121 to the hydroxylamine derivative which underwent cyclisation to form the 3-alkyl- and 3-aryl-4-aryl-5-amino-isoxazoles 122.

The reductive cleavage of the N-O bond in substituted isoxazoles 123 has been reported affording the ring-opened compounds 124 in modest yields (Fig 1-52).[^73] *S. cerevisiae* has been used as an alternative to metal catalysis in the cleavage of this N-O bond in cases when other groups susceptible to reduction were present.

\[
\begin{align*}
\text{X} & \quad \text{O} & \quad \text{Ar} \\
\text{S. cerevisiae} & \\
\text{sucrose, H}_2\text{O} & \\
24 \text{ h}, 37 ^\circ \text{C} & \\
\text{123} & \quad \rightarrow & \quad \text{124} \\
\text{X} = \text{O, CH}_2 & \\
\text{Ar} = 2, 6 \text{ PhCl}_2 & \\
\end{align*}
\]

Fig 1-52: *S. cerevisiae* catalysed reduction of substituted isoxazoles.

1.3.4 N-Oxides.

Another class of compounds that have been shown to undergo reductive cleavage of the N-O bond are N-oxides. In this case, substituted aromatic N-oxides 125 were reduced to the corresponding deoxygenated derivatives 126 (Fig 1-53).[^7]
An electron-donating group (Me, OH, OMe) substituted on the pyridine ring \(\text{125} \) resulted in the reduction proceeding smoothly to afford the deoxygenated products \(\text{126} \) in yields of 22-44 %. In contrast, the reaction proceeded with poor yields (0-7 %) when an electron-withdrawing group (NO\(_2\), CN or Br) was substituted. Aliphatic \(N \)-oxides were reduced in very good yields (60-80 %) regardless of what groups were present.

Upon incubation of acetylpyridine \(N \)-oxide \(\text{127} \) with \(S. \text{cerevisiae} \), the carbonyl group was reduced in preference to the N-O bond to afford the alcohol \(\text{128} \) with (S)-configuration (Fig 1-54).

Fig 1-53: \(S. \text{cerevisiae} \) catalysed reduction of pyridine \(N \)-oxides.

Fig 1-54: \(S. \text{cerevisiae} \) catalysed asymmetric reduction of acetylpyridine \(N \)-oxides.
1.3.5 Conclusion.

The reductive cleavage of N-O bonds mediated by *S. cerevisiae* in substrates of many classes has been explored but further work is necessary to understand the reduction process employed by this whole-cell system.

In general, the biotransformations have been shown to proceed with high chemo-, regio- and stereo-selectivity under mild reduction conditions (Takeshita *et al.*).\(^2\)\(^4\), \(^6\), \(^7\)

The 'harsh conditions' that have been employed to effect 'difficult reductions' are postulated to result in a non-enzymatic process with the *S. cerevisiae* acting solely as a source of carbohydrate (Baik *et al.*).\(^5\)\(^6\), \(^7\)\(^4\)

1.4 *S. cerevisiae* mediated reduction of C=N and N=N containing groups.

1.4.1 Imines.

Imines are of particular interest as enzyme substrates because stereoselective reduction would afford either a \((R)\)- or \((S)\)-secondary amine depending on choice of the substrate having \((E)\)- or \((Z)\)-configuration.

Immobilised *S. cerevisiae* efficiently reduced the carbon-nitrogen double bond in *N*-benzylidinemethylamine \(\text{129}\) to afford the corresponding amine product \(\text{130}\) in the presence of aprotic solvents and 18-crown-6 (Fig 1-55).\(^7\)\(^5\) The imine substrate \(\text{129}\) underwent decomposition in the presence of water and glucose with no reduction taking place.

Fig 1-55: *S. cerevisiae* catalysed reduction of imine derivative.
1.4.2 Azides.

S. cerevisiae can be employed for the chemoselective reduction of aryl azides 131 to aryl amines 132 with high yields (83-92 %) obtained under exceptionally mild reaction conditions (Fig 1-56).\(^7^6\)

\[
\begin{align*}
\text{R}^1 & = \text{R}^2 = \text{R}^3 = \text{H} \\
\text{R}^1 & = \text{R}^3 = \text{H}, \text{R}^2 = \text{Cl}, \text{F}, \text{Me}, \text{OMe} \\
\text{R}^1 & = \text{R}^2 = \text{H}, \text{R}^3 = \text{CO}_2\text{H} \\
\text{R}^1 & = \text{Me}, \text{R}^2 = \text{H}, \text{R}^3 = \text{OH}
\end{align*}
\]

Fig 1-56: *S. cerevisiae* catalysed reduction of aryl azides.

The biocatalytic reduction of azides has been extended to the synthesis of antitumour agents, the key step being the chemoselective reduction of 4-azidopodophyllotoxin 133 to 134 with *S. cerevisiae* which proceeded with excellent selectivity under mild conditions (Fig 1-57).\(^7^7\)

\[
\begin{align*}
\text{N}_2 & \quad \text{S. cerevisiae} \\
\text{H}_2\text{O}, \text{EtOH} & \quad \text{MeO} \quad \text{OR} \\
\text{pH 7.2, 4 h} & \quad \text{MeO} \quad \text{OMe} \\
\text{R} = \text{Me}, \text{CBZ} & \quad \text{R} = \text{Me}, \text{CBZ}
\end{align*}
\]

Fig 1-57: *S. cerevisiae* catalysed chemoselective reduction of cyclic azides.

The reaction was high yielding (88 % and 84 % respectively) and chemoselective since the ortho-carboxybenzyl group (CBZ) remained totally intact to afford 4-β-aminopodophyllotoxins 134.
1.5 Chemical reduction of N-O containing groups.

Nitro groups can be reduced in two general ways:

(a) Catalytic hydrogenation employing molecular hydrogen over a platinum or nickel catalyst and pressure maybe required.\(^7^8\)

(b) Acidic conditions employing heavy metals such as tin, zinc or iron.\(^7^9\)

Other reagents such as hydrazine (catalyst)\(^8^0,8^1\), titanium trichloride\(^8^2\) and sulfide derivatives\(^8^3\) have also been reported.

The hydrogenation of a nitro compound 135 to the corresponding amine 136 takes place smoothly when a solution of the nitro compound is shaken with finely divided nickel or platinum under a hydrogen atmosphere (Fig 1-58).

![Chemical reduction using hydrogen over a catalyst.](image1)

Molecular hydrogen cannot be employed chemoselectively when the molecule 137 contains other reducible groups such as a carbon-carbon double bond. Both the double bond and nitro group would be reduced to the saturated amine 138 product (Fig 1-59).

![Chemical reduction using hydrogen over a catalyst.](image2)

Chemical reduction in the laboratory is most often carried out by addition of an acid to a mixture of the nitro compound 139 and heavy metal. In the acidic solution, the amine 140 is obtained as its salt with the free amine 141 liberated by the addition of a base (Fig 1-60).
Introduction.

Fig 1-60: Chemical reduction using heavy metal and acid catalysis.

A couple of reported examples which involve the reductive cleavage of the N-O bond are discussed below.

The synthesis of optically active alcohols with excellent stereoselectivity can be achieved by the reductive cleavage of the N-O bond in substituted hydroxylamines 142 to afford the (R)-allylic diols 143 in yields of 51 % and 94 % respectively with e.e. of 95 % (Fig 1-61).84

A range of reducing reagents were employed without success which included hydrogenolytic procedures and finally sodium in liquid ammonia was found to afford the desired bond cleavage in a high chemical yield with excellent stereoselectivity.

Another paper has reported on the reduction of aryl nitro compounds 144 under acidic conditions to afford the corresponding amines 145 which are obtained as N-formamide compounds 146 in yields ranging from 47-86 % (Fig 1-62).85 Both nitro groups of dinitrobenzene were reduced to form the diformamide in 86 % yield.
Introduction.

Fig 1-62: Reductive cleavage of N-O bond in aryl nitro compounds.

1.6 Enzymatic reduction of NO₂ groups using other microorganisms.⁸⁶

Nitro aromatic compounds are abundant in nature and are of considerable industrial importance in the production of plastics, pharmaceuticals, dyes and agricultural chemicals. Nitro compounds in most cases are highly toxic to the living organisms, so several microorganisms are capable of mineralising or converting nitro-aromatics. Natural nitro compounds are readily biodegradable and serve as sources of carbon, nitrogen and energy for the microorganisms. Several pathways and enzymes used by these microorganisms in the degradation and conversion of nitro aromatics are discussed below.

1.6.1 Monoxygenase: catalysed initial reduction.⁸⁷

- Oxidative removal of the NO₂ group from the aromatic nucleus by the addition of single oxygen leading to the elimination of the NO₂ group in the form of a nitrite molecule.

A monooxygenase from *Pseudomonas putida* isolated from soil is responsible for the reduction of 2-nitro-phenol 147 to afford catechol 148 with the release of a nitrite molecule. The catechol 148 produced in this reaction could be further metabolised (Fig 1-63).
1.6.2 Dioxygenase: catalysed initial reduction.

- Insertion of two hydroxyl groups into the aromatic ring with the elimination of the NO₂ group.

A Nocardia sp. has been reported to mineralise 3-nitro-benzoate 149, the initial step being the dioxygenase catalysed attack at the 3 and 4 position of the molecule with subsequent release of nitrite to form protocatechuate 150 (Fig 1-64).

1.6.3 Reduction of the aromatic ring.

- Complete reductive elimination of the NO₂ group in the form of a nitrite molecule.

The reduction of picric acid 151 by Rhodococcus erythropolis is believed to be initiated by the hydride attack on the aromatic ring, followed by decomposition to liberate the nitrite and generate 2,4-dinitro-phenol 152 (Fig 1-65).
Introduction.

1.6.4 Partial reduction of the NO$_2$ group.89,90

- Formation of hydroxylamine (intermediate) which after subsequent replacement is further metabolised with the release of nitrogen from the molecule as ammonia.

The degradation of 4-nitro-benzoate 153 catalysed by *Comamonas acidivorans* NBA-10 under aerobic conditions showed an incomplete reduction of the nitro group (Fig 1-66). The hydroxylamine 154 was identified as an intermediate but was not reduced further to the expected 4-amino-benzoate product. Instead, hydroxyaminobenzoate 154 was converted to the dihydroxybenzoate 155 with the release of ammonia.

Fig 1-65: Reduction of the aromatic ring in picric acid.

![Reduction of the aromatic ring in picric acid](image)

Fig 1-66: Proposed pathway for the partial degradation of 4-nitro-benzoate.

![Proposed pathway for the partial degradation of 4-nitro-benzoate](image)

The degradation pathway employed by this microorganism did not follow the general pattern of aerobic metabolism since no molecular oxygen was employed. Instead the hydroxyl groups of dihydroxybenzoate 155 were a result of water addition which led to the release of nitrogen from the molecule as ammonia.
1.6.5 Reduction to form amine.91

The amine produced could be further metabolised.

A recent paper has reported on the complete reduction of the NO\textsubscript{2} group on a range of nitroarenes 147, 153, 156 to the corresponding amino-compounds by the use of a bacterial sludge bed reactor under anaerobic conditions (Fig 1-67). The amino compounds obtained were further mineralised to afford methane and carbon dioxide gas.

\begin{center}
\begin{tabular}{c c c}
147 & 153 & 156 \\
\end{tabular}
\end{center}

Fig 1-67: Complete mineralisation of selected nitro-aromatics.

1.6.6 Miscellaneous (Nitro-reductases).

Some bacteria and fungi are able to reduce the NO\textsubscript{2} group of nitro-aromatics but cannot mineralise the compounds any further. Nitro-reductases from these bacteria and fungi have a wide spectrum of substrates in contrast to those reductases from microorganisms which are capable of utilising nitro-aromatics as the sole carbon and energy source.

A nitro-reductase purified from \textit{Pseudomonas pseudoalcaligenes} JS45 catalysed the reduction of nitrobenzene 109 to hydroxy-amino-benzene 111 and not to the expected amino-benzene product (Fig 1-68).92

\begin{center}
\begin{tabular}{c c c}
109 & NADPH & 111 \\
\end{tabular}
\end{center}

Fig 1-68: Reduction catalysed by nitro-reductase.
The phototrophic bacterium *Rhodobacter capsulatus* E1F1 reduced 2,4-dinitrophenol 152 to 2-amino-4-nitro-phenol 157 by a nitrophenol reductase activity which was present in this bacterium (Fig 1-69). The reductase require NAD(P)H as an electron donor for the catalysed reduction of several nitro-phenol derivatives.

![Reduction catalysed by nitro-phenol reductase.](image)

1.6.7 Nitro-reductases.

To our knowledge, very little has been reported on the reducing ability of enzymes isolated from *S. cerevisiae*. In our laboratories, 3 enzymes from *S. cerevisiae* have been isolated and purified. Each has been shown to reduce the nitro group of simple nitro aromatic compounds to the corresponding amino moiety. This work will be discussed in Chapter 3. However, nitro-reductases isolated from other microorganisms afford the corresponding amino derivatives and have been discussed in section 1.6.6 and in Chapter 3.

1.7 Isolated enzymes.

Advances in biocatalysis have recently been focused on the growing number of applications of enzymes in organic synthesis. This is a consequence of the increased availability of new biocatalysts for both laboratory and industrial scale use. The stereoselectivity exerted by a whole cell system on an artificial substrate is not always satisfactory: poor stereoselectivity is often the result of simultaneous action of several enzymes that exert opposite stereochemistry towards the substrate. In such a case, the use of an isolated enzyme is recommended in order to obtain a single enantiomer.
1.7.1 Reductases.

Recently, several enzymes have been isolated and characterised from *S. cerevisiae* and reported to have reducing capabilities which are discussed below.

The isolation of a Yeast Keto Ester Reductase-1 (YKER-1) from *S. cerevisiae* afforded the corresponding (2R, 3S, 1'R)-hydroxy esters 159 from 158 in excellent stereoselectivity (Fig 1-70).\(^96,\ 97\) The keto ester reductase discriminated three chiral centres simultaneously producing useful chiral building blocks with e.e. and d.e of 98 % and 87 % respectively.

\[
\text{YKER-1 catalysed reduction of } \beta\text{-keto esters.}
\]

YKER-1 is a very useful enzyme in the field of organic synthesis because of its excellent stereoselectivity and easy availability. The reductase can catalyse the formation of optically active hydroxy esters and hydroxy ketones from the corresponding keto esters and diketones (Fig 1-71).\(^98\)

\[
\text{YKER-1 catalysed reduction of } \alpha\text{-keto ester and } \alpha\text{-diketones.}
\]

The reduction of \(\alpha\)-keto esters 160 afforded the corresponding (R)-161 or (S)-161 hydroxy esters selectively with e.e. of 82 %. The stereochemical course depended on
the chain length of the alkyl substituent, a short chain \((R^{1})\) afforded the \((S)\)-configured hydroxy ester whereas a long alkanoate chain yielded the corresponding \((R)\)-hydroxy ester. In contrast, the reduction of \(\alpha\)-diketones 160 only afforded the corresponding \((S)\)-hydroxy ketone 161 with e.e. greater than 95 % irrespective of the chain length of the alkyl substituent.

An NADPH dependent reductase from \(S.\) \(cerevisiae\) displayed reducing activity towards several non-natural substrates 162 with excellent stereoselectivity, 98 % e.e. \(\text{Fig 1-72}.^{99}\)

\[
\begin{array}{llll}
R^1 & R^2 & \text{purified reductase} & \text{NADPH} \\
\text{pentyl} & \text{penta} & \text{pentyl} & \text{pentyl} \\
\text{Me} & \text{Me} & \text{Me} & \text{Me} \\
\end{array}
\]

\[
\begin{array}{llll}
R^1 & R^2 & \text{NADP}^+ \\
\text{pentyl} & \text{pentyl} & \text{pentyl} & \text{pentyl} \\
\end{array}
\]

\[
\begin{array}{llll}
162 & \text{R}^1 & \text{R}^2 & \text{R}^1 & \text{R}^2 \\
\text{(R)-163} & \text{(S)-163} & \text{(R)-163} & \text{(S)-163} \\
\end{array}
\]

\(\text{Fig 1-72} : \) Purified reductase catalysed reduction of ketones.

Substrates which contained chlorine \((R^{1})\) afforded the corresponding optically active alcohols with \((R)\)-configuration 163, whereas the non-chlorinated substrates afforded the \((S)\)-configured alcohol products 163.
1.8 Nitrilases mediated biotransformations

Organic compounds containing the cyano group (CN) are synthesised in plants, animals, insects and fungi and hence are numerous and widespread throughout the environment. Nitriles are also products of petrochemical solvents, recrystallising agents and chiral synthons. The highly reactive CN functional group is toxic to living cells in nature and is able to inhibit biochemical pathways. The compounds are highly significant intermediates in organic synthesis for the preparation of amines, amides and carboxylic acids/esters (Fig 1-73).

Fig 1-73: Nitrile hydrolysis using hydratases and nitrilases.

The most common reaction for the microbial metabolism of the nitrile compound is the hydrolysis of the CN group. It is recognised that there are two enzymatic pathways available (Fig 1-73). Aliphatic nitriles 164 are generally metabolised in two stages: Firstly, they are converted to the corresponding amide 165 by a nitrilase hydratase and then an amidase converts the amide 165 to the corresponding carboxylic acid 166 and ammonia.

Aromatic, heterocyclic and certain unsaturated aliphatic nitriles 164 are hydrolysed directly without the formation of the amide intermediate to the acid 166 with the release of ammonia which is catalysed by a nitrilase. The enzymology of microbial nitrile metabolism is well understood and the main enzymes that take part in the metabolism are discussed below.
1.8.1 Nitrilase hydratases100, 103

Of all the nitrilase hydratase activities reported so far, the enzymes in the genus \textit{Rhodococcus} have been characterised the most, both with respect to their biochemical properties and their growth conditions required for optimal expression. Nitrile hydratases have been described in many bacteria including \textit{Rhodococcus} spp.104, 105, \textit{Pseudomonas}106, \textit{Agrobacterium}107, 108 and \textit{Corynebacterium} spp.109

Nitrilase hydratases are known as metalloenzymes, which possess a tightly bound divalent metal ion, either cobalt or iron that is required for catalysis. The reaction sequence for the conversion of a nitrile \textbf{164} to the amide \textbf{165} is catalysed by this class of enzymes.

As interest in the biotechnological applications of nitrile transforming enzymes grew, it was inevitable that those enzymes capable of the partial hydrolysis of acrylonitrile \textbf{167} to the important commercial product acrylamide \textbf{168} would be among the first sought (Fig 1-74).110, 111

\begin{center}
\begin{tikzpicture}
 \draw[thick] (0,0) -- (1,0) node[anchor=center] {\textbf{167}};
 \draw[thick] (1,0) -- (2,0) node[anchor=center] {\textbf{168}};
 \draw[thick,->] (1,0) -- (1,-0.5) node[anchor=center] {\text{Hydratase}};
 \draw[thick] (0,-0.5) -- (0,0) node[anchor=north] {N};
 \draw[thick] (1,-0.5) -- (1,0) node[anchor=north] {\text{NH}_2};
\end{tikzpicture}
\end{center}

\textit{Fig 1-74} : Nitrile hydratase catalysed hydrolysis of acrylonitrile.

The Nitto Chemical Industry in Japan, started the industrial production of acrylamide \textbf{168} through a biotechnological route in 1985 using \textit{Corynebacterium} sp. N-774. The productivity of this Nitto process was further enhanced in 1991 by another powerful biocatalyst, \textit{Rhodococcus rhodochrous} J1. This microorganism, which contained a cobalt nitrile hydratase, was superior in terms of activity and productivity with the recovery of unreacted acrylonitrile unnecessary as the conversion was more than 99.99\%.
1.8.2 Nitrilases

Discovered 40 years ago, the distribution of the nitrilases appear to be wider than that of the nitrilase hydratases but they have been studied in less detail. Early work concentrated on the nitrilases which catalysed the production of acrylamide whereas nitrilases convert nitriles directly into the carboxylic acid with the release of ammonia and no accumulation of the amide. Nitrilases have been described in many bacteria including *Pseudomonas* \(^{112, 113}\), *Nocardia* spp. \(^{114, 115}\) and *Rhodococcus* spp. \(^{116}\)

Nitrilases employ a different mechanism compared to the nitrilase hydratases, where the co-ordination of metals or co-factors is not required. Instead important cysteine residues within the enzyme take part in the hydrolysis process (Fig 1-75).

![Proposed mechanism of nitrilase catalysed nitrile hydrolysis.](image)

Fig 1-75: Proposed mechanism of nitrilase catalysed nitrile hydrolysis.

Initially, a nucleophilic attack of the thiol from the cysteine residue within the enzyme onto the carbon of the nitrile molecule 164 affords an enzyme-bound imine 169. This is hydrolysed to yield a tetrahedral intermediate 170 which loses ammonia to form an acyl-enzyme complex 171, finally hydrolysis occurs liberating the carboxylic acid 166.
1.8.3 Amidases.103

Amidases are a subgroup of proteases which hydrolyse carboxamides to yield the corresponding acids. A number of amidases actively participating in the hydrolysis of amides have been found to have diverse substrate specificity and are always linked with nitrile hydratases. Amidases have been described in many bacteria including \textit{Arthrobacter} 80, \textit{Rhodococcus} spp.117 and \textit{Brevibacterium} spp.118,119

Interestingly, besides hydrolysing amides 165 different amidases have been reported to exhibit acyl transfer activity in the presence of hydroxylamine. This has been described for the amidases of \textit{Rhodococcus} sp. R312 which afforded a range of hydroxamic acids 172 (Fig 1-76).120

\[
\begin{align*}
R-\text{CONH}_2 & + \text{Enz} \rightarrow \text{R-NHOH} + \text{Enz} \\
R = \text{H, n-Pr, i-Pr, n-Bu, i-Bu, pentyl, Ph}
\end{align*}
\]

\textbf{Fig 1-76}: Amidase catalysed acyl transfer on hydroxylamine.

1.8.4 Hydrolysis of nitriles.

Recently, there has been considerable interest in carrying out biotransformations in low water systems. The main advantage of this is that the concentration of poorly water-soluble substrates can be greatly increased, however problems arise from the fact that a number of enzymes are denatured in the presence of organic solvents. Enzymatic hydrolysis in low water systems using a nitrilase hydratase from \textit{Rhodococcus} sp. DSM 11397 and a nitrilase from \textit{Pseudomonas} DSM 11387 has been studied by Layh and Willetts.121

Both these bacteria retained their activity in organic/aqueous biphasic mixtures with hexadecane solvent (50-100 \%, v/v) giving the best activity. Less hydrophobic solvents caused a significant loss of activity in both bacteria. In addition,
Rhodococcus sp. retained some activity in water-saturated (buffer) organic monophases with the best results obtained using hexanol or decanol as the organic solvent.

Graham *et al.* have reported on the performance of free and immobilised cells of a *Bacillus* spp. which contained both a nitrile hydratase and an amidase and was capable of transforming a variety of straight and branched aliphatic and cyclic nitriles 173 to the corresponding acids (Fig 1-77).\[^{122,123}\]

\[
\begin{align*}
R = &\text{Me, Et, } n\text{-Pr,} \\
&\text{i-Pr, } n\text{-Bu} \\
R' = &\text{H, } R'' = \text{H} \\
R = &\text{Ph, Bz}
\end{align*}
\]

Fig 1-77: *Bacillus* spp. catalysed hydrolysis of mono-nitriles.

In addition, the *Bacillus* bacterium could be employed in amide synthesis when used in combination with urea, which inhibited the amidase activity of the bacterium.

A recent paper has reported on the nitrilase activity of an amidase from *Rhodococcus rhodochrous* J1. The amidase catalysed the hydrolytic cleavage of the carbon-nitrogen triple bond in benzonitrile (R = Ph) 164b to afford the corresponding acid 166 with the release of ammonia.\[^{124}\] Interestingly, no corresponding acid product 166 was detected when benzamide (R = Ph) 165 was incubated with the amidase.

Considering the acyl-enzyme mechanism of amidase and its nitrilase activity, a mechanism to explain the above results (which was likely to be analogous to that of the nitrilase) was proposed (Fig 1-78).
Introduction.

Fig 1-78: Proposed mechanism of nitrilase/amidase catalysed hydrolysis.

When an amide 165 was used as the substrate in an amidase reaction, the carbonyl group of the amide would undergo attack by the nucleophilic part of the amidase enzyme (route i) resulting in the formation of a tetrahedral intermediate 170. The release of ammonia would result in the formation of an acyl-enzyme bound molecule 171 which could be hydrolysed to the corresponding acid 166.

No nitrilase activity was detected for the amidase, therefore when a nitrile 164b was used as a substrate, the same nucleophilic part of the amidase enzyme (with amide as a substrate) would be nucleophilic for the carbon-nitrogen triple bond of the nitrile substrate (route iii) to form the acid product 166.

The same authors have also reported on the hydrolytic activity of a nitrilase to amides present in *Rhodococcus rhodochrous* J1. The nitrilase was known to catalyse the hydrolytic cleavage of the carbon-nitrogen triple bond in nitriles 164a to afford the corresponding acids 166. Surprisingly, however it was also found to catalyse the hydrolysis of specific amide substrates (benzamide) 165 to the corresponding acids 166.

In the nitrilase catalysed reaction (Fig 1-78), the nucleophilic attack on the nitrile carbon 164a by the nitrilase enzyme leads to the formation of a tetrahedral intermediate 170 via an enzyme-bound imine 169 (route iii). The tetrahedral
intermediate 170 could be broken down to produce an amide 165 (route ii) instead of the expected acid product 166. The authors proposed that routes (i) and (ii) took place with nitrilases only under specific reaction conditions and with specific substrates to afford the amide product 165.

Rhodococcus rhodochrous IFO 15564 contains both a nitrile hydratase and an amidase. The amidase activity can be inhibited by a specific functional group present on a molecule. The boric acid 174 was hydrolysed to the amide 175 in 75 % yield (Fig 1-79i). Subsequent palladium cross coupling afforded the dienes 176 and re-treatment with the same microorganism afforded the corresponding acid 177 (87 %) (Fig 1-79ii).

It was proposed that the inactivity of the amidase enzyme in the first transformation (Fig 1-79i) was due to the presence of the boronic acid moiety on the substrate 174 otherwise the corresponding acid product would have been obtained.

A versatile building block for the synthesis of new antituberculous agents has been prepared by whole-cell biotransformations. 2-Cyanopyrazine 178 was hydrolysed to the pyrazine carboxylic acid 179 using a nitrilase present in *Agrobacterium* sp. DSM
6336 and then hydroxylated using a dehydrogenase to afford 5-hydroxy-pyrazine-2-carboxylic acid 180 (Fig 1-80).\(^\text{127}\)

\[\text{Nitrilase} \quad \text{Agrobacterium sp.} \quad \text{Nitrilase} \quad \text{dehydrogenase} \]

Fig 1-80: Agrobacterium sp. catalysed hydrolysis of 2-cyanopyrazine.

Meth-Cohn and Wang have reported an in depth study on the hydrolysis of a variety of aliphatic 181, di-substituted 182 and tri-substituted 183 aromatic nitriles into amides and/or acids using *Rhodococcus* sp. AJ270 under mild reaction conditions (Fig 1-81).\(^\text{128}\)

\[\text{R} \quad \text{CN} \quad \text{R} \quad \text{CN} \]

\[\text{R} = \text{Bu, t-Bu, Bn, vinyl, allyl} \quad \text{R} = \text{H, NH}_2, \text{NO}_2, \text{Me, MeO, OH, Cl, PhO} \quad \text{R} = 2, 6-\text{F}_2, 2, 6-\text{Cl}_2, 2, 6-\text{Me}_2, 2, 6-(\text{MeO})_2, 3, 4-(\text{OCH}_3)_2 \]

Fig 1-81: *Rhodococcus* sp. AJ270 catalysed nitrile hydrolysis.

Para- and *meta-* substituted mono-benzonitriles 182 were hydrolysed efficiently to afford the corresponding acids (irrespective of the nature of the substituents attached) with yields ranging from 28-99 %. The amide product was produced when the more sterically hindered compounds 183 were employed. Saturated and unsaturated aliphatic nitriles 181 were hydrolysed smoothly to the corresponding acids in yields ranging between 60-99 %.

1.8.5 Enantioselective hydrolysis of nitriles.

The enantioselectivity of hydrolysing reactions carried out by nitrilases have been investigated only recently with both nitrilases and nitrile hydratases found to be relatively unspecific with respect to the chirality of the substrate. Generally, no
stereoselectivity was identified in the nitrilase biotransformation route, both with regard to the initial hydrolysis and the direct hydrolysis of the nitrile.

However, amidases have been known to produce enantiomERICALLY enriched forms of products from the kinetic resolution of racemic substrates and play an important role in amino-acid synthesis. As a rule the 'natural' (L)-configured enantiomer from the racemic ester 184 was usually converted to the acid 185, leaving the (D)-enantiomer 186 behind (Fig 1-82).

\[
\begin{align*}
\text{(DL)-amino acid} & \rightarrow \text{(L)-acid} + \text{(D)-enantiomer} \\
184 & \rightarrow 185, 186
\end{align*}
\]

Fig 1-82: Amidase catalysed hydrolysis of an amino acid.

Wang et al. have reported on the use of Rhodococcus sp. AJ270 as an efficient biocatalytic system which is capable of stereoselective conversion of racemic \(\alpha\)-substituted phenylacetonitriles 187 and amides 188 to the enantiopure carboxylic acids and derivatives under mild reaction conditions (Fig 1-83).

\[
\begin{align*}
\text{Rhodococcus sp. AJ270} & \rightarrow \text{(S)-nitrile} + \text{(S)-acid} + \text{amides}\ \\
187 & \rightarrow 188
\end{align*}
\]

Fig 1-83: \textit{Rhodococcus} sp. AJ270 catalysed enantioselective hydrolysis.
Whilst the nitrile hydratase present in this bacterium displayed low (R)-selectivity when aliphatic nitriles were used as substrates, it was found to have a broad substrate spectrum with phenylacetonitriles irrespective of the electronic nature of the α-substituent. The amidase was sensitive to both the electronic and steric factors of the α-substituted amides for which it displayed high (S)-enantioselectivity against amides. Unfortunately the opposite selectivity of the nitrile hydratase and amidase led to very low e.e.'s of (R)-amides (3-9 %) obtained.

Optically active α-substituted carboxylic acids (amino acids and hydroxy-carboxylic acids) have various biological functions and usually only one enantiomer is metabolically effective. Stolz et al. have reported on the attempts to obtain new nitrile converting enzyme systems from nature which possess the ability to convert racemic nitriles or amides to the corresponding optically active carboxylic acids.

Of all the enzymes screened, the purified amidase from Rhodococcus erythropolis MP50 hydrolysed 2-phenylpropionamide, ketoprofen amide and naproxen with excellent e.e. of 99 % and up to 49 % conversion of the respective substrates (Fig 1-84).

In addition, the partially purified nitrile hydratase from Agrobacterium tumefaciens d3 hydrolysed 2-phenylpropionitrile and ketoprofen nitrile to the corresponding (S)-amides with e.e. of 90 % and up to 30 % conversion of the respective substrate.

Rhodococcus rhodochrous IFO 15564 mediated hydrolysis of a range of cyano-cyclohexane derivatives has been studied. The nature and polarity of the substituents affected the activity of the amidase but not the nitrile hydratases that...
were present in the microorganism. The typical cyclic-nitrile 194 gave the (R, R)-amide 195 in 41 % yield, with e.e. of 99 % and the (S, S)-acid 196 in 49 % yield, with e.e. of 73 % (Fig 1-85).

![Chemical reaction]

Fig 1-85: *Rhodococcus rhodochrous* IFO 15564 catalysed hydrolysis of cyclic nitriles.

1.8.6 Regioselective hydrolysis of dinitriles.

The selective hydrolysis of one nitrile group out of several in a molecule is generally very difficult to do using traditional chemical catalysis, often resulting in the formation of complex product mixtures. In contrast, the use of microbial whole-cells can be very efficient for this transformation.

The hydrolysis of dinitriles 197 by nitrile metabolising enzymes presents an interesting means of synthesising a wide range of organic compounds not amenable to preparation in high yields by the conventional chemical methods. In addition, 5 different potential types of product 198, 199, 200, 201 and 202 could be afforded in high yields when these enzymes are used, whereas only 2 products, a diamide 198 and diacid 199, are possible with chemical synthesis (Fig 1-86).
Microbial cells displaying aliphatic nitrilase activity (Acidovorax facilis) or a combination of nitrile hydratase and an amidase activity (Comamonas testosteroni) have been employed in the preparation of 5- and 6-membered ring lactams.132 The enzyme-catalysed hydrolysis of aliphatic \(\alpha\)- and \(\omega\)-dinitriles 203 occurred at the primary cyano group to afford the corresponding cyano acids as their ammonium salts 204 in high yields (83-100\%\). The ammonium salt 204 was converted directly to the corresponding \(N\)-alkyl-lactam 205 by hydrogenation in aqueous solution (Fig 1-87).

The corresponding dicarboxylic acid di-ammonium salt was produced as a side-product but its formation was minimised by heating the suspension of the catalyst in buffer prior to addition of the substrate.
The regio- and stereo-selective hydrolysis of various aliphatic, aromatic nitriles and amides 206 has been elucidated in depth recently using resting cells of *Rhodococcus* sp. C3II and *Rhodococcus erythropolis* MP50 (Fig 1-88). Both an alkyl and an aryl substituent in the α-position was required for high enantioselectivity affording the (S)-acid with e.e. of 99%.

\[
\begin{align*}
R^2 & \quad \text{OH} \\
R^1 & \quad \text{CONH}_2 \\
R & \quad \text{CH}_3
\end{align*}
\]

\[
\begin{align*}
X & \quad = \text{CONH}_2, \quad R^1 = 4-(\text{i-PrCH}_2)\text{Ph}, \quad R^2 = \text{Me} \\
X & \quad = \text{CN}, \quad R^1 = \text{Et}, \quad R^2 = \text{Ph}
\end{align*}
\]

206

Fig 1-88: Regioselective hydrolysis of nitriles and amides.

The same authors have reported on the regioselective hydrolysis of aromatic, aliphatic and unsaturated dinitriles 207 with these resting cells, which contain two enzymes, each causing nitrile-to-amide and amide-to-acid conversion (Fig 1-89).

\[
\begin{align*}
\text{NC} \cdot X \cdot \text{CN} & \quad \text{hydratase} \quad \rightarrow \quad \text{NC} \cdot X \cdot \text{CONH}_2 + \text{NC} \cdot X \cdot \text{COOH} + \text{HOOC} \cdot X \cdot \text{CONH}_2 \\
X & \quad = 1,4-\text{Ph}, \quad 1,3-\text{Ph}, \quad \text{n-Bu}, \quad \text{C}_2 \text{H}_4
\end{align*}
\]

207 208 209 210

Fig 1-89: Regioselective hydrolysis of nitriles using a combination of enzymes.

Both bacterial strains complemented each other due to the different activities and substrate preferences of the respective nitrile hydratases and amidases present in both systems. The *Rhodococcus* sp. C3II selectively afforded mononitrile/monoamide derivatives 208, while *Rhodococcus erythropolis* MP50 preferentially produced mononitrile/mono-acid 209 and mono-acid/monoamide 210 derivatives.

Meth-Cohn and Wang have carried out an exhaustive study on the hydrolysis of dinitriles 211 using *Rhodococcus* sp. AJ270 (Fig 1-90).
Their results showed that the mono-acid 212 was produced with those aliphatic dinitriles (dicyanoalkanes) which had short chains and the diacid 213 was preferred for longer chains. On inclusion of a heteroatom, the regioselectivity was dependent on its position in the chain. Mono-acids 212 were only produced in compounds with an oxygen atom β, γ or δ to the nitrile or with a sulfur atom in the β or γ position.

1.8.7 Chemical hydrolysis of nitriles/amides.

Nitriles can be hydrolysed using traditional chemical methods with the most widely employed procedures involving strongly acidic, basic and/or oxidising (H\textsubscript{2}O\textsubscript{2}) conditions. These methods have several drawbacks: the reaction has to be carried out under harsh reaction conditions and high temperatures which may not be compatible if other functionalities are present on the molecule. The formation of by-products such as toxic HCN or large amounts of salts pose a problem.

Compared with the chemical (non-enzymatic) route, the biotechnological route may have the following advantages: (a) less severe (mild) reaction conditions can be employed; (b) substrate and product specificity might be exhibited in cases where chemo-, stereo- and regio-selective transformations are difficult to achieve through non-enzymatic route; (c) formation of products with high purity; (d) the process is environmentally benign.

The mechanism for acid catalysed nitrile 164 hydrolysis is well known with the initial product formed being the amide 165 which is known to hydrolyse under these
conditions to afford the corresponding carboxylic acid 166, which is most often isolated as the final product (Fig 1-91).135,136

\[
\begin{align*}
R\equiv N & \xrightleftharpoons{H^+} R\overset{+}{\equiv} NH \\
& \xrightleftharpoons{H^+} R\overset{+}{\equiv} NH + OH \\
& \xrightarrow{H^+} R\overset{+}{\equiv} NH_2 \\
& \xrightarrow{H^+} R\overset{+}{\equiv} NH_2 + OH
\end{align*}
\]

Fig 1-91: Chemical hydrolysis of nitriles under acidic conditions.

\textbf{1.8.8 Conclusion.}

The versatile biocatalytic nature and applications of nitrile converting enzymes are now recognised for the production of several pharmaceuticals and fine chemicals. Microbial nitrile hydrolysis is a potential method for the preparation of optically active nitriles, amides and carboxylic acids, which are not generally feasible by chemical routes.

All though recent developments broaden the scope of potential applications of these versatile biocatalysts in chemical synthesis, further application-orientated studies are required to fully harness their biotechnological potential.
2A. Results & Discussion : Synthesis of Potential Substrates.

The first part of this chapter deals with the synthesis of a range of substrates (dicyanonitroarenes and (di)nitroarene-sulfinyls) for *S. cerevisiae* catalysed biotransformations. The attempted synthesis of dinitro-phthalonitrile has also been discussed.

2.1 Synthesis of dicyanonitroarenes.

To investigate the scope of *S. cerevisiae* catalysed nitroarene reduction, a range of nitroarenes with two cyano groups substituted around the ring were synthesised. Of the six possible isomers in which two cyano groups could be substituted on the aromatic ring along with the nitro group, two were commercially available.

Synthesis of the remaining four substrates was carried out in the following way. In general, the diacid 214 was converted into the diacid chloride 215 followed by conversion to the diamide 216 by the addition of aqueous ammonia solution. The dehydration of the diamide 216 was achieved by using phosphorus pentoxide or phosphorus oxychloride under different reaction conditions to afford crude dicyanonitroarenes 217 in moderate yields (Fig 2-1, Table 2-1).
Results & Discussion: Synthesis of Substrates.

I NO NO₂ acid chloride NO₂ 2 conc NH₃(aq)

Fig 2-1: Synthesis of dicyanonitroarenes 217.

<table>
<thead>
<tr>
<th>Diacid</th>
<th>Acid chloride</th>
<th>Diamide</th>
<th>Dicyanoarenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>218 1,3-COOH, 5-NO₂</td>
<td>97 % 219</td>
<td>56 % 220</td>
<td>50 % 221</td>
</tr>
<tr>
<td>222 1,4-COOH, 2-NO₂</td>
<td>82 % 223</td>
<td>94 % 224</td>
<td>37 % 225</td>
</tr>
<tr>
<td>227 1,3-COOH, 2-NO₂</td>
<td>25 % 228</td>
<td>96 % 229</td>
<td>67 % 230</td>
</tr>
</tbody>
</table>

Table 2-1: Yields of products obtained in the synthesis of dicyanonitroarene.

In the case of 2-nitro-isophthalonitrile 230, the diacid 227 was obtained from the oxidation of 1,3-dimethyl-2-nitrobenzene 226 by aqueous potassium permanganate (Fig 2-2).

Fig 2-2: Synthesis of 2-nitro-isophthalonitrile 230.

4-Nitro-isophthalonitrile 233 was produced by the permanganate oxidation of 3-methyl-4-nitro-benzoic acid 231 to afford the diacid 232 followed by reaction with
phosphorus pentachloride and para-toluenesulphonamide to yield the final product 233 in 22 % yield (Fig 2-3).

$$\begin{align*}
\text{NO}_2 \quad \text{NO}_2 \quad \text{NO}_2 \\
\text{CH}_3 \quad \text{K MnO}_4 \quad (\text{aq}) \\
\text{4-MeC}_6\text{H}_4\text{SO}_2\text{NH}_2 \\
\text{CO}_2\text{H} \\
\text{231} \quad \text{232} \quad \text{233}
\end{align*}$$

Fig 2-3: Synthesis of 4-nitro-isophthalonitrile 233.

2.2 Attempted synthesis of 3,6-dinitro-phthalonitrile 245.

3-Nitro-phthalonitrile 238 (for the synthesis of 3,6-dinitro-phthalonitrile 245) was used as a model study since it was similar in structure to 245. The synthesis planned was analogous to the synthesis of dicyanonitroarenes (Fig 2-1), involving conversion of the diacid 234 into the diacid chloride 235, followed by diamide 237 formation and then dehydration to afford 3-nitro-phthalonitrile 238. If successful, this procedure could then be further applied to the synthesis of 3,6-dinitro-phthalonitrile 245 starting from the corresponding diacid 240.

3-Nitrophthalic acid 234 was converted to the diacid chloride 235 in 78 % yield using thionyl chloride. However, a problem arose in the next step, instead of the desired diamide 237, the corresponding imide 236 was obtained in a high yield of 73 % when the diacid chloride 235 was stirred with aqueous ammonia solution (Fig 2-4).

$$\begin{align*}
\text{NO}_2 \quad \text{COOH} \\
\text{COOH} \\
\text{234} \quad \text{SOCl}_2 \\
\text{235} \\
\text{236} \\
\text{amide not formed} \\
\text{237}
\end{align*}$$

59
Results & Discussion: Synthesis of Substrates.

Subsequent treatment of the imide 236 in the minimum amount of concentrated aqueous ammonium hydroxide while stirring at 45 °C for 5 h followed by work-up afforded the diamide 237 in 62 % yield. Under anhydrous conditions the diamide 237 was then dehydrated using thionyl chloride in dimethylformamide to yield 3-nitrophthalonitrile 238 in 72 % yield (Fig 2-5).

\[
\text{NO}_2 \xrightarrow{\text{SOCl}_2, \text{DMF}} \text{NO}_2
\]

Fig 2-5: Synthesis of 3-nitro-phthalonitrile 238.

The above procedure was then applied to the synthesis of 3,6-dinitro-phthalonitrile 245. The starting material 3,6-dinitro-phthalic acid pyridinium salt 239 was converted to the diacid 240 using anionic resin followed by treatment with thionyl chloride to afford the diacid chloride 241, which was then stirred with aqueous ammonia solution to yield 4-amino-7-nitro-isoindole-1,3-dione 242 (Fig 2-6, Table 2-2) and not the corresponding imide 243 or diamide 244 which was expected (Fig 2-7).

\[
\text{NO}_2 \xrightarrow{\text{anionic resin}} \text{NO}_2 \xrightarrow{\text{SOCl}_2} \text{NO}_2 \xrightarrow{\text{NH}_3 (aq)} \text{NO}_2
\]

Fig 2-6: Synthesis of 4-amino-7-nitro-isoindole-1,3-dione 242.
Table 2-2: Yields of products obtained in the synthesis of 4-amino-7-nitroisoindole-1,3-dione 242

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>92 %</td>
</tr>
<tr>
<td>241</td>
<td>75 %</td>
</tr>
<tr>
<td>242</td>
<td>73 %</td>
</tr>
</tbody>
</table>

It is believed that the presence of a para-nitro group and an ortho-electron withdrawing group on 3,6-dinitro-phthaloyl dichloride 241 activated the displacement of the other nitro group to afford 242 when stirred in aqueous ammonia solution. The presence of the amino group was evident from the mass spectrum data obtained, where a molecular ion with a molecular weight of 207 Da was recorded (Fig 2-8). Similar displacements of nitro groups in compounds that have cyano and para-electron withdrawing groups attached to the aromatic ring with various nucleophiles have been reported.137-139

Fig 2-7: Imide 262 and amide 263.

Alternative reagents for diamide 244 formation from the diacid chloride 241 or even the diacid 240 were sought to prevent this exchange occurring in aqueous ammonia solution. 3-Nitro-phthaloyl dichloride 235 was then used as a model study and the problem with the nitro group displacement was partially solved by using
hexamethyldisilazide. However, only one acid chloride group in 235 was converted to the amide and the second remained intact to afford 2-carbamoyl-3-nitrobenzoyl chloride 246 (Fig 2-9). Stronger bases than hexamethyldisilazide were used but the desired diamide 237 product was not obtained. Evidence for the structure of 246 was provided by comparison of the expected and observed frequency positions of the carbon atoms in 246 with those of its regioisomer 247.

![Chemical structure]

Fig 2-9: Synthesis of 2-carbamoyl-3-nitrobenzoyl chloride 246.

2.3 Synthesis of nitroarene-sulfinyls.

A range of substrates were synthesised which differed only by the substituent attached to the sulfur atom. The synthesis involved a two step process: the formation of the sulfanyl 248 followed by oxidation to the corresponding sulfinyl derivative 249 (Fig 2-10).

![Chemical structure]

Fig 2-10: General synthesis of nitroarene-sulfinyls 249.

2.3.1 Nitroarene-sulfanyl synthesis.

In general, the nitroarene-sulfanyls 248 were obtained from the reaction of ortho-chloro-nitrobenzene 250 with the corresponding thiol in different solvents and reaction conditions with moderate yields obtained (Fig 2-11, Table 2-3).
Results & Discussion: Synthesis of Substrates.

\[
\begin{array}{c}
\text{Cl} & \text{NO}_2 \\
\downarrow & \downarrow \\
\text{R-SH} & \text{R}^\text{S-NO}_2 \\
\text{solvent} & \\
\text{R} = \text{Et, i-Pr, t-Bu, Ph} & \\
\end{array}
\]

Fig 2-11: Synthesis of nitroarene-sulfanyls 248.

<table>
<thead>
<tr>
<th>Thiol R-SH</th>
<th>Yield: sulfanyl (248)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et</td>
<td>73% 251</td>
</tr>
<tr>
<td>i-Pr</td>
<td>84% 252</td>
</tr>
<tr>
<td>t-Bu</td>
<td>42% 253</td>
</tr>
<tr>
<td>Ph</td>
<td>11% 254</td>
</tr>
</tbody>
</table>

Table 2-3: Yields of nitroarene-sulfanyls 248.

Ortho-nitro-benzenethiol 256 was synthesised by the displacement of chloride from *ortho*-nitro-benzenesulfenyl chloride 255 by zinc metal in conc. sulfuric acid. Thereafter, bromobutane was added to a solution of *ortho*-nitro-benzenethiol 256 and NaOH in ethanol resulting in the displacement of the bromide in bromobutane to afford 1-butylsulfanyl-2-nitrobenzene 257 in 46% yield (Fig 2-12).

Fig 2-12: Synthesis of 1-butylsulfanyl-2-nitrobenzene 257.

The synthesis of 1-benzhydrylsulfinyl-2-nitrobenzene 259 did not involve the use of thiol intermediates. Instead, triethylamine was added to a solution of *ortho*-nitrobenzenesulfenyl chloride 255 and diphenylmethane 258 in toluene resulting in the displacement of the chloride to afford the corresponding sulfanyl 259 in a low yield of 10% (Fig 2-13).
Results & Discussion: Synthesis of Substrates.

2.3.2 Nitroarene-sulfinyl synthesis.

In general, sulfanyls could be oxidised to the corresponding sulfinyls using either meta-chloroperoxybenzoic acid, sodium meta-periodate or urea-hydrogen peroxide (Fig 2-14). A 1:1 ratio of oxidising agent to sulfanyl was used to afford the sulfinyl since excess of oxidant used results in formation of the sulfone.

Initially, urea-hydrogen peroxide was used to oxidise the sulfanyls to the sulfinyls because this was considered a safer alternative than m-CPBA, which may form explosive peroxides and could be considered dangerous over a period of time. However, the peroxide reagent failed to oxidise the sulfanyls to the corresponding sulfinyls and low yields of sulfinyls were obtained when sodium meta-periodate was used. When a slight excess of m-CPBA was used, however, the sulfanyls were oxidised to the corresponding sulfinyls in moderate yields (Fig 2-15, Table 2-4).
Results & Discussion: Synthesis of Substrates.

\[
\begin{align*}
\text{R-S-NO}_2 & \xrightarrow{m\text{-CPBA}} \text{R-S'O-NO}_2 \\
\text{CHCl}_3 & \ -7 \ ^\circ \text{C}
\end{align*}
\]

\(R = \text{Et, } i\text{-Pr, } t\text{-Bu, } n\text{-Bu, Ph, } \text{CH}_2(\text{Ph}) \)

248 \hspace{1cm} 249

Fig 2-15: Oxidation of nitroarene-sulfanyl to nitroarene-sulfinyls 249.

<table>
<thead>
<tr>
<th>Yield : sulfanyl (248)</th>
<th>Yield : sulfinyl (249)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{RSC}_6\text{H}_4\text{NO}_2)</td>
<td>(\text{RS(O)C}_6\text{H}_4\text{NO}_2)</td>
</tr>
<tr>
<td>251 Et</td>
<td>99% 261</td>
</tr>
<tr>
<td>252 i-pr</td>
<td>84% 262</td>
</tr>
<tr>
<td>253 t-Bu</td>
<td>51% 263</td>
</tr>
<tr>
<td>254 Ph</td>
<td>63% 264</td>
</tr>
<tr>
<td>257 n-Bu</td>
<td>64% 265</td>
</tr>
<tr>
<td>259 CH(_2)(Ph)(_2)</td>
<td>31% 266</td>
</tr>
</tbody>
</table>

Table 2-4: Yields of nitroarene-sulfanyl 249 obtained using \(m\text{-CPBA} \).

2.4 Synthesis of dinitroarene-sulfinyls.

A range of substrates were synthesised which differed only by the substituent attached to the sulfur atom. The synthesis involved a two step process: the formation of the sulfanyl 267 followed by the oxidation to the corresponding sulfinyl derivative 268 (Fig 2-16).

Fig 2-16: General synthesis of dinitroarene-sulfinyls 268.
The synthesis of dinitroarene-sulfinyls was very similar to the nitroarene-sulfinyl synthesis (Section 2.3). The sulfanyls 267 were obtained by the reaction of ortho-chloro-2,4-dinitrobenzene 269 with the appropriate thiol. Subsequent oxidation of the sulfanyls 269 to the corresponding sulfinyls 268 in moderate yields was achieved using m-CPBA (Fig 2-17, Table 2-5).

![Synthesis of dinitroarene-sulfinyls 268.](image)

<table>
<thead>
<tr>
<th>Thiol</th>
<th>Yield : sulfanyl (267)</th>
<th>Yield : sulfinyl (268)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-SH</td>
<td>RSC₆H₄(NO₂)₂</td>
<td>RS(O)C₆H₅(NO₂)₂</td>
</tr>
<tr>
<td>Et</td>
<td>19 % 270</td>
<td>63 % 275</td>
</tr>
<tr>
<td>i-Pr</td>
<td>62 % 271</td>
<td>21 % 276</td>
</tr>
<tr>
<td>t-Bu</td>
<td>35 % 272</td>
<td>-----</td>
</tr>
<tr>
<td>Ph</td>
<td>34 % 273</td>
<td>54 % 277</td>
</tr>
<tr>
<td>n-Bu</td>
<td>32 % 274</td>
<td>68 % 278</td>
</tr>
</tbody>
</table>

Table 2-5: Yields of dinitroarene-sulfinyls 267 and sulfinyls 268.

Different reaction conditions were examined in an attempt to oxidise tert-butylsulfinyl-2,4-dinitrobenzene 272 to the corresponding sulfinyl but the starting material was recovered in quantitative yield in all cases.
The synthesis of benzhydrylsulfanyl-2,4-dinitrobenzene 280 did not involve the use of thiol intermediates. Instead, triethylamine was added to a solution of 2,4-dinitrobenzenesulfenyl chloride 279 and diphenylmethane 258 in toluene to afford the corresponding sulfanyl 280 in 42% yield (Fig 2-18). Oxidation of the sulfanyl 280 using m-CPBA afforded 1-(diphenyl-methanesulfinyl)-2,4-dinitrobenzene 281 in 41% yield.

![Synthesis of 1-(diphenyl-methanesulfinyl)-2,4-dinitrobenzene 281.](attachment:image.png)

Fig 2-18: Synthesis of 1-(diphenyl-methanesulfinyl)-2,4-dinitrobenzene 281.
2B. Results & Discussion: Biotransformation of Substrates.

The second part of this chapter describes *S. cerevisiae* catalysed nitro group reduction of the substrate types described in Chapter 2A as well as others which were commercially available. Initially, the reduction of (di)cyanonitroarenes is discussed followed by (di)nitroarene-sulfinyl reduction.

2.5 Optimised conditions for *S. cerevisiae* catalysed reduction.

GCMS was used to monitor the progress of the biotransformation of (di)cyanonitroarenes. Chiral HPLC and reverse-phase HPLC were employed for the progress of reduction of (di)nitroarene-sulfinyl substrates. The optimised method reported by Blackie *et al.*\(^6^6\) was employed to obtain clean and reasonable yields of the reduced products (Fig 2-19) and *S. cerevisiae* was pre-washed with acetone at -20 °C prior to its use. Using this procedure, the biotransformations were found to be much cleaner with fewer impurities present.

![Diagram](image)

*Fig 2-19: Optimised method for *S. cerevisiae* catalysed reduction.*
2.6 Microbial and chemical reduction of 2-nitro-benzonitrile 282.

2.6.1 *S. cerevisiae* catalysed reduction of 2-nitro-benzonitrile 282.

Previous studies on the reduction of 2-nitro-benzonitrile 282 using *S. cerevisiae* afforded the expected 2-amino-benzonitrile 283 product. But, Davey *et al.* reported on this reduction to give an unexpected result, with the formation of 2-amino-benzamide 284 as a major product and the expected 2-amino-benzonitrile 283 as a minor product in the biotransformation (Fig 2-20).^2

\[
\begin{align*}
\text{NO}_2 & \quad \text{CN} \\
\text{S. cerevisiae} & \quad \text{H}_2\text{O}, 30 ^\circ\text{C} \\
3.3 \text{h} & \quad 10 \% + 35 \%
\end{align*}
\]

Fig 2-20: *S. cerevisiae* catalysed reduction of 2-nitro-benzonitrile 282.

2.6.2 Chemical reduction of 2-nitro-benzonitrile 282.

In 1895, Pinnow *et al.* reported on the chemical reduction of 2-nitro-benzonitrile 282 under various reducing conditions. Interestingly, the addition of cooled (-10 °C) acetic acid and water to 282 followed by the addition of zinc powder resulted in the formation of 2-amino-benzamide 284 and a side product which was not then identified (Fig 2-21).^143

\[
\begin{align*}
\text{NO}_2 & \quad \text{CN} \\
\text{Zn} & \quad \text{CH}_3\text{COOH} \\
\text{H}_2\text{O} & \quad \text{side product}
\end{align*}
\]

Fig 2-21: Chemical reduction of 2-nitro-benzonitrile 282.

A recent paper has reported on the formation of the expected 2-amino-benzonitrile product 283 using nickel in iso-propanol followed by the addition of 2-nitro-benzonitrile 282 with 100 % conversion to 283 (Fig 2-22).^144
Results & Discussion: Biotransformation of Substrates.

Fig 2-22: Chemical reduction of 2-nitro-benzonitrile 282.

2.6.3 Conclusion.

It appears that *S. cerevisiae* catalysed reduction and chemical reduction of 2-nitro-benzonitrile 282 afford similar products, 2-amino-benzamide 284 and 2-amino-benzonitrile 283. Therefore, similar mechanism and intermediate(s) may be involved in both processes. The chemical reduction of a nitro group to the corresponding aniline is known to proceed *via* a series of two electron additions to form a nitroso derivative and hydroxylamine. Intermediates similar in structure to the nitroso and hydroxylamine derivatives may be involved in the microbial reduction of 2-nitro-benzonitrile 282 which is further discussed in Chapter 4.

2.7 Reduction of cyanonitroarenes.

The reduction of the nitro group to the expected amino product was also observed to occur when the cyano group was substituted *meta* 285 or *para* 287 to the nitro group on the aromatic ring. However, the cyano group remained intact to afford the reduced products 286, 288 in moderate yields (Fig 2-23, Fig 2-24).

Fig 2-23: *S. cerevisiae* catalysed reduction of 3-nitro-benzonitrile 285.
Results & Discussion: Biotransformation of Substrates.

Fig 2-24: \(S.\ cervisiae\) catalysed reduction of 4-nitro-benzonitrile 287.

This protocol was extended further to investigate the reduction of dicyanodinitroarenes by \(S.\ cervisiae\) to determine whether similar products would be formed.

2.8 Reduction of dicyanodinitroarenes.

Incubation of 3-nitro-phthalonitrile 238 with \(S.\ cervisiae\) resulted in the reduction of the nitro group and the conversion of the \textit{ortho} cyano group to the amide moiety 289 in a yield of 50% and 2-amino-6-cyano-benzoic acid 290 was obtained in a low yield of 10% (Fig 2-25).

Fig 2-25: \(S.\ cervisiae\) catalysed reduction of 3-nitro-phthalonitrile 238.

The regioselectivity was investigated in substrates similar in structure to 3-nitro-phthalonitrile 238. The first class of compounds 225, 230, 233 consisted of one cyano group substituted \textit{ortho} to the nitro group on the aromatic ring and the other cyano group at either 4, 5 or 6 position to the nitro group (Fig 2-26).
Results & Discussion: Biotransformation of Substrates.

Reduction of the nitro group occurred as expected and the selective conversion of the ortho cyano group was observed to afford the amide products 291, 292, 293 in moderate yields (Table 2-6).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 4-CN</td>
<td>30 min</td>
<td>62%</td>
</tr>
<tr>
<td>225 5-CN</td>
<td>45 min</td>
<td>62%</td>
</tr>
<tr>
<td>230 6-CN</td>
<td>30 min</td>
<td>74%</td>
</tr>
</tbody>
</table>

Table 2-6: Yields and reaction times of reduced products obtained.

For the reduction of 2-nitro-isophthalonitrile 230, where both cyano groups were substituted ortho to the nitro group on the ring, only one group was selectively converted to the amide and the other remained intact to afford 293 in 74% yield (Fig 2-27).

Fig 2-27: *S. cerevisiae* catalysed reduction of 2-nitro-isophthalonitrile 230.

The reduction of the nitro group to the expected amino products 295, 296 occurred in the substrates 221, 294 that had no cyano groups substituted ortho to the nitro group on the ring (Fig 2-28). Generally, the reaction times were longer compared to those
isomeric substrates which had a cyano group substituted ortho to the nitro group on the ring (Table 2-7).

\[\text{S. cerevisiae} \quad \text{H}_2\text{O, 30 °C} \]

\[
\begin{array}{cccc}
\text{Substrate} & \text{Reaction Time} & \text{Yield} \\
\hline
294 & 4-CN & 2 h & 46 \% \\
221 & 5-CN & 7 h & 76 \% \\
\end{array}
\]

Table 2-7: Yields and reaction times of reduced products obtained.

2.9 2-Amino-6-cyano-benzoic acid 290 formation.

2-Amino-6-cyano-benzoic acid 290 (Fig 2-29) was produced in the reduction of 3-nitro-phthalonitrile 238, whereas no acid product was detected in the reduction of the other dicyanonitroarenes 225, 230, 233 previously mentioned.

\[
\text{Fig 2-29: 2-Amino-6-cyano-benzoic acid 290.}
\]

A series of control experiments were carried out to determine whether the acid 290 was a result of the biotransformation or a side product. Firstly, 2-amino-6-cyano-benzamide 289 was incubated with S. cerevisiae with the progress monitored by GCMS. The acid 290 was detected over a period of time as the concentration of the amide 289 decreased (Table 2-8). Similarly, the addition of the amide 289 to water
resulted in the formation of the acid 290 whereas the starting material was recovered in quantitative yield when the acid 290 was incubated with *S. cerevisiae*.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>289 Amide</td>
<td>Incubation with S. cerevisiae</td>
<td>Acid 290</td>
</tr>
<tr>
<td>289 Amide</td>
<td>Addition to water</td>
<td>Acid 290</td>
</tr>
<tr>
<td>290 Acid</td>
<td>Incubation with S. cerevisiae</td>
<td>Starting material</td>
</tr>
</tbody>
</table>

Table 2-8: Controlled experiments.

It was evident that 2-amino-6-cyano-benzoic acid 290 was a result of the spontaneous hydrolysis of 2-amino-6-cyano-benzamide 289 which was produced when 3-nitro-phthalonitrile 238 was incubated with *S. cerevisiae* (Fig 2-30).

![Fig 2-30: S. cerevisiae catalysed reduction of 3-nitro-phthalonitrile 238.](image)

In contrast, no acid formation occurred with the other amide products 291, 292, 293 when incubated under the same conditions. It is possible that the presence of the cyano group ortho to the amide moiety on the ring in 2-amino-6-cyano-benzamide 289 plays a significant role which leads to the hydrolysis of the amide group to afford 290.

2.10 Conclusion.

The cyano group underwent selective conversion to the amide when it was substituted ortho to the nitro group on the aromatic ring in (di)cyanonitroarene substrates, whereas the meta or para substituted cyano group(s) remained intact. Therefore this provides a basis for selectively converting and manipulating one
cyano group in the presence of another. Dicyanonitroarene substrates underwent reduction faster than those substrates that had only one cyano group substituted on the ring.

2.11 Reduction of 3,6-dinitro-phthalonitrile 245.

The aim was to chemically synthesise 3,6-dinitro-phthalonitrile 245 and test it as a substrate for \textit{S. cerevisiae} reduction. If the substrate was transformed, one possibility for the reduced product could be a 1,2,3,4-tetra-substituted aromatic ring 297 where all 4 functional groups are different (Fig 2-31). This would result from the reduction of one of the nitro groups (which is expected) and also selective conversion of one cyano group.

\begin{center}
\begin{tikzpicture}
 \node[above] at (0,0) (a) {245};
 \node[above] at (1,0) (b) {297};
 \draw[->] (a) -- (b);
 \draw[dashed] (0,0.5) -- (1,0.5);
 \draw[dashed] (0,-0.5) -- (1,-0.5);
 \node at (0,0.25) {NO_2};
 \node at (0,-0.25) {NO_2};
 \node at (1,0.25) {CONH_2};
 \node at (1,-0.25) {CN};
 \end{tikzpicture}
\end{center}

\textit{Fig 2-31:} \textit{S. cerevisiae} catalysed reduction of 3,6-dinitro-phthalonitrile 245.

The reduction of one of the nitro groups and conversion of one of the cyano groups would be very difficult to achieve under chemical conditions, since it would be difficult to distinguish between the two nitro and cyano groups. This may be possible to achieve under biological conditions since \textit{S. cerevisiae} is known to reduce one of the nitro groups in 1,4-dinitrobenzene and regioselectively convert the cyano group substituted \textit{ortho} to the nitro group on the ring in dicyanonitroarene substrates.

However, numerous attempts at the synthesis of the symmetrical substrate 245 failed (Section 2.2), so it was not possible to determine what the reduced product(s), if any, of this biotransformation would have been. The synthesis followed was analogous to the synthesis of dicyanonitroarenes (Fig 2-1) but a problem arose, instead of the desired diamide 244, 4-amino-7-nitro-isoindole-1,3-dione 242 was obtained from the reaction of 3,6-dinitro-phthaloyl dichloride 241 with aqueous ammonia solution. It
Results & Discussion: Biotransformation of Substrates.

appeared that a nitro group was displaced from the diacid chloride 241 to afford 242. Alternative reagents were sought to prevent this exchange to form the diamide 244 but only one acid chloride group was converted to the amide and the other remained intact.

If the synthesis and biotransformation was possible then this would have been a good example of using whole-cell systems over chemical methodology by going from a symmetrical structure to a product where all 4 functional groups were different.

2.12 Reduction of nitroarene-sulfinyls.

The aim of this part of the project was to investigate whether *S. cerevisiae* could catalyse the enantioselective reduction of nitroarene-sulfinyls 249 to afford optically active 298, 299 (Fig 2-32).

\[
\begin{align*}
&\text{S. cerevisiae} \\
&\text{H}_2\text{O}, 30 ^\circ\text{C} \\
&\text{249} \\
\rightarrow \\
&\text{298} + \text{299}
\end{align*}
\]

Fig 2-32: S. cerevisiae catalysed enantioselective reduction of nitroarene-sulfinyls 249.

Previous work carried out on the reduction of nitroarene-sulfinyls 300 resulted in product(s) formation which rapidly decomposed, making it difficult to determine any enantioselectivity in the process (Fig 2-33).

\[
\begin{align*}
&\text{Bu}_2\text{S}^+\text{O}^- \\
&\text{H}_2\text{O}, 30 ^\circ\text{C} \\
&\text{300} \\
\rightarrow \\
&\text{Unsoluble product}
\end{align*}
\]

Fig 2-33: S. cerevisiae catalysed reduction of butyl-4-nitro-phenylsulfinyl 300.
We reasoned that by making the substituent attached to the sulfur atom larger and bulkier and by positioning the nitro group ortho instead of para to the sulfur on the ring, the chances of obtaining enantioselective reduction might be increased.

A series of nitroarene-sulfinyl substrates were incubated with *S. cerevisiae* and the progress of the reduction was monitored by chiral HPLC to determine the enantioselectivity of the reaction. Both enantiomers of the racemic sulfinyls 249 underwent reduction to the corresponding racemic amino-sulfinyl product(s) 301 with no evidence of enantioselectivity (Fig 2-34).

![Chemical structure of sulfinyl and amino-sulfinyl compounds](image)

Fig 2-34: *S. cerevisiae* catalysed reduction of nitroarene-sulfinyls 249.

The substrates underwent reduction in short reaction times (with the exception of 1-(benzenesulfinyl)-2-nitrobenzene 264) with moderate yields of the reduced products obtained which decomposed over a period of time (Table 2-9).

<table>
<thead>
<tr>
<th>Sulfinyl (249)</th>
<th>Reaction time</th>
<th>Yield : Amino-sulfinyl (301)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td>RS(O)C₆H₄NH₂</td>
</tr>
<tr>
<td>261 Et</td>
<td>6 h</td>
<td>62 % 302</td>
</tr>
<tr>
<td>262 i-Pr</td>
<td>6 h</td>
<td>45 % 303</td>
</tr>
<tr>
<td>263 t-Bu</td>
<td>5 h</td>
<td>49 % 304</td>
</tr>
<tr>
<td>264 Ph</td>
<td>3 d</td>
<td>45 % 305</td>
</tr>
<tr>
<td>265 n-Bu</td>
<td>7 h</td>
<td>55 % 306</td>
</tr>
<tr>
<td>266 CH₂(Ph)₂</td>
<td>24 h</td>
<td>56 % 307</td>
</tr>
</tbody>
</table>

Table 2-9: Yields and reaction times of racemic amino-sulfinyl products.
The biotransformations were monitored at regular time intervals by chiral HPLC using ethanol/hexane as the mobile phase. The progress of reduction of benzenesulfinyl-2-nitrobenzene \(264\) is shown (Fig 2-35i-iv).

\[
\begin{align*}
\text{PhSO}_2^+O^- & \quad \text{S. cerevisiae} \\
\text{PhNO}_2 & \quad \text{H}_2\text{O, }30\,^\circ\text{C} \\
\text{264} & \quad \rightarrow \\
\text{PhSO}_2^+O^- & \quad \text{NH}_2 \quad \text{305}
\end{align*}
\]

Fig 2-35 : *S. cerevisiae* catalysed reduction of benzenesulfinyl-2-nitrobenzene \(264\).

![Graph showing the progress of reduction](image)

Fig 2-35i : Standard: benzenesulfinyl-2-nitrobenzene \(264\).

![Graph showing standard](image)

Fig 2-35ii : Reaction time = 1 h.
Results & Discussion: Biotransformation of Substrates.

Thus it appears that reduction of both enantiomers of the racemic sulfinyl 264 occurred to form the racemic amino-sulfinyl 305.

2.13 Reduction of dinitroarene-sulfinyls.

Investigations into possible enantioselective reduction of nitroarene-sulfinyls was extended one step further by using dinitroarene-sulfinyls as substrates. In the reduction of dinitroarene-sulfinyls 268, four isomers can be produced, i.e. 2 regioisomers 308, 309, each of which exists as a pair of enantiomers (Fig 2-36). A range of 2,4-dinitroarene-sulfinyl substrates 268 were incubated with *S. cerevisiae* with the progress of reduction monitored by chiral HPLC.
Results & Discussion: Biotransformation of Substrates.

\[
\begin{array}{c}
\begin{array}{c}
\text{R-S}^+\text{O}^- \\
\text{NO}_2 \\
\text{NO}_2
\end{array} \\
\text{S. cerevisiae} \\
\text{H}_2\text{O, 30 °C}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{R-S}^+\text{O}^- \\
\text{NH}_2 \\
\text{NO}_2 \\
\text{NH}_2
\end{array} \\
\text{R = Et, i-Pr, n-Bu, Ph, CH}_2\text{(Ph)}_2
\end{array}
\]

Fig 2-36: \textit{S. cerevisiae} catalysed regioselective reduction of dinitroarene-sulfinyls 268.

Both enantiomers of the racemic sulfinyls 268 underwent reduction at both nitro groups relatively in the same proportion to each other, thus displaying no regioselectivity (Table 2-10). The amino-nitroarene-sulfinyl products 308, 309 were produced in short reaction times but decomposed over a period of time.

<table>
<thead>
<tr>
<th>Sulfinyl (268)</th>
<th>Reaction time</th>
<th>Yield : Amino-nitro-sulfinyl</th>
<th>Ortho (308)</th>
<th>Para (309)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td>RS(O)C\textsubscript{6}H\textsubscript{3}(NH\textsubscript{2})(NO\textsubscript{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275 Et</td>
<td>4 h</td>
<td>33 % 310 30 % 311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276 i-pr</td>
<td>3 h</td>
<td>30 % 312 29 % 313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277 Ph</td>
<td>2 h</td>
<td>36 % 314 32 % 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278 n-Bu</td>
<td>4 h</td>
<td>37 % 316 31 % 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281 CH\textsubscript{2}(Ph\textsubscript{2})</td>
<td>3 h</td>
<td>33 % 318 31 % 319</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-10: Yields and reaction times of amino-nitroarene-sulfinyls 308, 309.

The individual regioisomers were characterised spectroscopically by 1H NMR nOe studies, as shown for ethanesulfinyl-2,4-dinitrobenzene 310, 311 (Fig 2-37). The irradiation of the proton of the amino group signal in the 1H NMR spectrum of 310 caused an enhancement of H1. Subsequent irradiation of the amino group of 311 caused enhancement of both H1 and H2. The other reduced amino-nitroarene-sulfinyl products obtained were similarly characterised.
2.14 Conclusion.

S. cerevisiae did not display any enantio- or regio-selectivity towards (di)nitroarene-sulfinyls. However, the reduction of the nitro group was observed to afford the corresponding amino-sulfinyl products which decomposed over a period of time. These findings suggested that these aromatic sulfinyls were excellent substrates for reduction catalysed by *S. cerevisiae* even though no stereoselectivity was displayed.
3. Results & Discussion: Nitro-Reductase Studies.

This chapter describes work directed towards the reduction of simple nitro aromatic compounds using nitro-reductases which have been isolated from *S. cerevisiae*. Other enzymes present in *S. cerevisiae* have also been investigated for their reducing activity.

3.1 Isolated enzymes from *S. cerevisiae*.

S. cerevisiae catalysed reduction was investigated in a range of nitroarene substrates, so it was important to identify and characterise the reductase enzymes present in *S. cerevisiae* that were specific for this nitro group reduction in simple nitro aromatic compounds.

In our laboratories, Marina Alexeeva has isolated and purified three enzymes from *S. cerevisiae* which were shown to have the activity to reduce the nitro group to the corresponding amino moiety in simple nitroarenes. A SDS-PAGE gel shows the relative purified bands of proteins with their corresponding molecular weights against a marker with known molecular weight (Fig 3-1).

![SDS-PAGE gel showing purified bands](image)

Lane 1: Nrase II
Lane 2: NIRase I
Lane 3: NRase III

Fig 3-1: Bands of the purified proteins against a marker.
The three purified proteins were identified as:

- Thioredoxin reductase (NRase I)
- NAD(P)H dehydrogenase, Old Yellow Enzyme II (OYE II) (NRase II)
- Lipoamide dehydrogenase (NRase III)

Studies were carried out using the 3 purified nitro-reductases and also some other isolated enzymes:

- Glutathione reductase which is present in *S. cerevisiae*.
- L-Lactate dehydrogenase which is present in *S. cerevisiae*.
- P-450 Cytochrome reductase which is present in *S. cerevisiae*, but this specific strain of enzyme used was obtained from *Pascillus bacterium*.

Reaction conditions were optimised so that the enzymes reduced the maximum amount of substrate with the minimum concentration required. Isolated enzyme systems require co-factors, NADPH or NADH, which work as electron donors in the reduction process were used to determine the maximum efficiency of each enzyme.

Generally, the substrate was incubated with each enzyme over a period of 1 h or 2 h. The progress of the reduction of the substrate was monitored by GCMS with samples withdrawn at fixed time intervals of 1 h and/or 2 h from the reaction mixture. The results obtained are summarised as graphs of reaction time versus percentage conversion to product, with respect to the disappearance of the starting material.

The graphs represented in this chapter are indications of what % of product is present after an x amount of time and no errors or whatsoever have been taken into account or calculated.

3.2 Reduction of dinitrobenzene 320.

The reduction of 1,4-dinitrobenzene 320 by *S. cerevisiae* proceeded with selective reduction of one nitro group to afford 4-nitro-aniline 321 in 45 % yield (Fig 3-2). The same product 321 was obtained when 1,4-dinitrobenzene 320 was incubated
Results & Discussion: Nitro-Reductase Studies.

with the isolated enzymes, with each enzyme displaying different activity towards the nitro group.

Fig 3-2: Reduction of 1,4-dinitrobenzene 320.

3.2.1 Reduction of dinitrobenzene 320 using NADPH.

The substrate 320 was dissolved in the minimum amount of DMSO and added to a solution of the enzyme(s) and NADPH in tris buffer. The reduction of the substrate was monitored by GCMS with a sample withdrawn at 1 h from the reaction mixture. The results obtained are plotted in the form of Graph 3-1.

Graph 3-1: Reduction of dinitrobenzene 320 using isolated enzymes.
Results & Discussion: Nitro-Reductase Studies.

P-450 cytochrome reductase, NRase I, II and III were the most effective in terms of percentage conversion to 4-nitro-aniline 321 over a period of time. Glutathione reductase failed to display any reducing activity towards the nitro group.

3.2.2 Reduction of dinitrobenzene 320 using NADH.

The substrate 320 was dissolved in the minimum amount of DMSO and added to a solution of the enzyme(s) and NADH in tris buffer. The reduction of the substrate was monitored by GCMS with samples withdrawn at regular time intervals (1 h, 2h) from the reaction mixture. The results obtained are plotted in the form of Graph 3-2.

Graph 3-2: Reduction of dinitrobenzene 320 using isolated enzymes.

NRase I, II and III showed the maximum reducing activity when NADH was used over 2 h. Glutathione reductase displayed no reducing activity towards the nitro group.

It is well documented that the reduction of the nitro group in simple nitroarene compounds 320 to the corresponding amino derivative 321 by S. cerevisiae may proceed through nitroso 322 and hydroxy 323 derivatives (Fig 3-3).69
Fig 3-3: Proposed mechanism for *S. cerevisiae* catalysed reduction of dinitrobenzene 320.

An intermediate peak was recorded at 1 h reaction time in those biotransformations with isolated enzymes which afforded 4-nitro-aniline 321 as the product. The peak was scanned by the EI mass detector and displayed a molecular ion with a molecular weight of 154 Da. The proposed intermediate, nitro-phenyl hydroxylamine 323 has a molecular weight of 154 which suggests that hydroxylamine type of derivatives may be intermediates in the reduction pathway. Details of the intermediate(s) involved in the reduction process will be discussed more fully in Chapter 4.

3.3 Reduction of 2-nitro-benzonitrile 282.

The reduction of 2-nitro-benzonitrile 282 by *S. cerevisiae* afforded 2-amino-benzamide 284 (major) and 2-amino-benzonitrile 283 (minor) (Fig 3-4). The incubation of 2-nitro-benzonitrile 282 with the isolated enzyme(s) recorded the presence of only 2-amino-benzamide 284.
Results & Discussion: Nitro-Reductase Studies.

Figure 3-4: Reduction of 2-nitro-benzonitrile 282.

3.3.1 Reduction of 2-nitro-benzonitrile 282 using NADPH.

The substrate 282 was dissolved in the minimum amount of DMSO and added to a solution of the enzyme(s) and NADPH in tris buffer. The reduction of the substrate was monitored by GCMS with samples withdrawn at regular time intervals (1 h, 2h) from the reaction mixture. The results obtained are plotted in the form of Graph 3-3.

Graph 3-3: Reduction of 2-nitro-benzonitrile 282 using isolated enzymes.

All 3 reductases (Nrases I, II and III) isolated from S. cerevisiae and L-lactate dehydrogenase reduced the nitro group over 2 h with a high percentage of 2-amino-benzamide 284 recorded. The maximum conversion to 284 levelled off for P-450.
cytochrome reductase after 1 h and glutathione reductase displayed no reducing activity towards the nitro group.

3.3.2 Reduction of 2-nitro-benzonitrile 282 using NADH.

The substrate 282 was dissolved in the minimum amount of DMSO and added to a solution of the enzyme(s) and NADH in tris buffer. The reduction of the substrate was monitored by GCMS with samples withdrawn at regular time intervals (1 h, 2h) from the reaction mixture. The results obtained are plotted in the form of Graph 3-4.

![Graph 3-4: Reduction of 2-nitro-benzonitrile 282 using isolated enzymes.](image)

A low percentage (less than 8 %) of the reduced product 283 was detected in all cases, with the exception of L-lactate dehydrogenase which recorded a high percentage of product 284 when NADH was used as a co-factor.

3.4 Conclusion.

All three purified reductases from S. cerevisiae were effective at reducing the nitro group in dinitrobenzene 320. NADH or NADPH could be used as a co-factor, with
the latter case, the percentage of 4-nitro-aniline produced increased over the course of the reaction. L-lactate dehydrogenase and P-450 cytochrome reductase displayed the ability to reduce the nitro group but were not as effective compared to the purified proteins, whereas glutathione reductase displayed no reducing activity.

All three purified enzymes reduced the nitro group with maximum efficiency in 2-nitro-benzonitrile to afford 2-amino-benzamide when NADPH was used. L-lactate dehydrogenase was the most effective at reduction when NADH was used and glutathione reductase failed to reduce the nitro group with either NADPH or NADH.

This may suggest that the three purified nitro-reductases from *S. cerevisiae* are the main enzymes responsible for the catalytic reduction of the nitro group in simple nitro aromatic compounds. Also, the individual enzymes may have different preferences for which cofactor is involved in the reduction process (NADH or NADPH). The other enzymes investigated are present in *S. cerevisiae* but act as background reductases which have some reducing activity but contribute almost nothing to the overall reduction process.

3.5 Nitro-reductases present in other microorganisms.

To our knowledge, OYE II (NRase II) present in *S. cerevisiae* has not been previously reported as a nitro-reductase. The nitro reduction activity of OYE II was proven by over-expression of the gene encoded for OYE II and recombinant OYE II purification. The gene encoded for Lipoamide dehydrogenase (NRase I) from *S. cerevisiae* was also over-expressed, recombinant NRase I purified and shown as a nitro-reductase. NRase I and Thioredoxin reductase (NRase III) present in other microorganisms have been reported to display nitro reduction activity. However, OYE II (NRase II) isolated from other microorganisms has not been reported to have nitro group reducing ability.
A lipoamide dehydrogenase from pig heart displayed nitro reductase activity in which the nitro group of 4-nitro-pyridine 324 and 4-nitro-pyridine N-oxide was reduced in the presence of NADH. The major product from the enzymatic reduction of 4-nitro-pyridine 324 was characterised as NN-bis(pyridinyl)hydroxylamine 326, which was formed presumably through a hydroxyaminopyridine intermediate 325 (Fig 3-5).

Fig 3-5: Proposed mechanism for the reduction of 4-nitro-pyridine 324.

A recent paper reported on the reducing ability of a thioredoxin reductase from *Mycobacterium tuberculosis*, which was expressed in *Escherichia coli* on dinitrobenzene substrates. The reduction of 2,4-dinitro-chloro-benzene 327a by thioredoxin reductase yielded 4-chloro-3-nitro-aniline 328a (major) in which the *para* nitro group was reduced and 2-chloro-5-nitro-aniline 329a (minor). In contrast, the reduction of 2,4-dinitro-toluene 327b afforded only 4-amino-2-nitro-toluene 328b in which the *para* nitro group was reduced (Fig 3-6).

Fig 3-6: Thioredoxin reductase reduction in dinitrobenzene substrates.
The reduction of one nitro group in 1,3-dinitrobenzene \(327c\) afforded the expected 3-nitro-aniline product \(328c\), but mono-nitrobenzenes were not reduced by the thioredoxin reductase.

3.6 Regioselective reduction.

The approach of using purified nitro-reductases on simple nitro aromatic compounds was extended further to determine whether any selectivity was observed with potential substrates while using these reductases. One possible substrate was 2,4-dinitro-anisole \(330\) which was reduced by \textit{S. cerevisiae} to afford \(331\) and \(332\) in yields of 80\% and 15\% respectively, therefore representing a regioselective reduction in favour of the \textit{ortho}-amino product \(331\) (Fig 3-7).

![Fig 3-7: \textit{S. cerevisiae} catalysed reduction of 2,4-dinitro-anisole 330.](image)

The progress of the reduction of 2,4-dinitro-anisole \(330\) was monitored by GCMS with samples withdrawn at day 2 from the reaction mixture. Three peaks were recorded by the GCMS which corresponded to the starting material \(330\) and the two reduced regioisomeric products \(331, 332\) (Fig 3-8).
Fig 3-8: *S. cerevisiae* catalysed reduction of 2,4-dinitro-anisole 330 after 2d. It was proposed that the nitro-reductases from *S. cerevisiae* might produce a different ratio of both regioisomers. A promising result was obtained when the substrate 330 was incubated with NRase II and the progress of the reduction was monitored by GCMS. Only the peaks corresponding to the *ortho*-amino product 331 and the starting material 330 were recorded after 2 d (Fig 3-9).

Fig 3-9: NRase II catalysed reduction of 2,4-dinitro-anisole 330 after 2d.
Results & Discussion: Nitro-Reductase Studies.

This suggested that perhaps the individual nitro-reductases or NRase II was more selective than the whole-cell system itself. These are preliminary studies and further studies have to be carried out on simple nitro aromatic compounds with these purified nitro-reductases in order to determine the selectivities of these isolated systems.
4. Results & Discussion: Biotransformation Mechanism.

This chapter describes work carried out to elucidate the mechanism of nitro reduction mediated by *S. cerevisiae*. A thorough investigation into the reduction of 3-nitrophthalonitrile has been conducted. Further insights into the mechanism and the intermediate(s) involved have been achieved by GCMS, HPLC, LCMS and isotopic labelling studies. The possibility of tautomerisation of the proposed benzoisoxazolidine intermediate has also been discussed.

4.1 Mechanistic studies involving 2-nitrobenzonitrile 282.

Initial studies were carried out on the reduction of 2-nitro-benzonitrile 282 by *S. cerevisiae* with 2-amino-benzamide 284 obtained as the major product, where the nitro group in 282 was reduced and the cyano group was converted into the amide functionality (Fig 4-1).

![Fig 4-1: *S. cerevisiae* catalysed reduction of 2-nitro-benzonitrile 282.](image)

Previous work carried out by Davey *et al.* led to a proposed mechanism for the reduction process (Fig 4-2).² It was believed that the initial step involved the reduction of the nitro group in 282 to afford the hydroxylamine 333, which underwent intramolecular attack by the hydroxy group to yield the isoxazolidine derivative 334. A further 2-electron reduction of the benzo-isoxazolidine 334 resulted in the cleavage of the N-O bond to afford 2-amino-benzamide 284.
Results & Discussion: Biotransformation Mechanism.

Fig 4-2: Proposed mechanism for the reduction of 2-nitro-benzonitrile 282.

The progress of the reduction of the substrate 282 was monitored by GCMS with samples withdrawn at fixed time intervals from the reaction mixture. A peak was detected which appeared and then disappeared suggesting that an intermediate was involved in the process. A molecular ion with a molecular weight of 134 Da was obtained when the peak was scanned by the mass spectrometer. The intermediates 333 and 334 both have a molecular weight of 134 (Fig 4-3), providing supporting evidence for the proposed mechanism outlined in Fig 4-2.

Fig 4-3: Proposed intermediates in the reduction of 2-nitro-benzonitrile 282.

Ortho-dicyanobenzene 335 was then incubated with *S. cerevisiae* to determine whether cyano groups on the substrate might be converted to the amide without the presence of a nitro group. A successful conversion of this compound would suggest that the transformation of the CN group to the amide might be carried out by enzymes present in *S. cerevisiae* that are different to those that are specific for nitro...
Results & Discussion: Biotransformation Mechanism.

Reduction. The biotransformation was monitored by GCMS with the starting material recovered in quantitative yield over a few days (Fig 4-4).

\[
\begin{align*}
\text{CN} & \quad \text{S. cerevisiae} & \quad \text{starting material} \\
& \quad \text{H}_2\text{O}, 30 ^\circ\text{C} & \quad \text{recovered}
\end{align*}
\]

Fig 4-4: Incubation of ortho-dicyanobenzene with \textit{S. cerevisiae}.

Therefore, it was found that the relative positions of the nitro and cyano groups were important. This was confirmed by the incubation of 3- and 4-nitro-benzonitrile 285, 287 with \textit{S. cerevisiae} which afforded only the corresponding amino-benzonitriles 286, 288 with the \textit{meta-} and \textit{para-} substituted cyano groups remaining intact (Fig 4-5). Hence, a nitro group substituted \textit{ortho} to the cyano group on the aromatic ring is required for the conversion of this cyano group to take place.

\[
\begin{align*}
\text{NO}_2 & \quad \text{S. cerevisiae} & \quad \text{NH}_2 \\
\text{CN} & \quad \text{H}_2\text{O}, 30 ^\circ\text{C} & \quad \\
\text{3-CN} & \quad 285 & \quad \text{286} \\
\text{4-CN} & \quad 287 & \quad 288
\end{align*}
\]

Fig 4-5: \textit{S. cerevisiae} catalysed reduction of 3- and 4-nitro-benzonitrile.

In view of the fact that the level of intermediate obtained during the reduction of 2-nitro-benzonitrile 282 was not sufficiently high to carry out further mechanistic studies, it was decided to examine the related substrate 3-nitro-phthalonitrile 238 in more depth.
4.2 Mechanistic studies involving 3-nitro-phthalonitrile 238.

S. cerevisiae catalysed reduction of 3-nitro-phthalonitrile 238 afforded two products, 2-amino-6-cyano-benzamide 289 (major) and 2-amino-6-cyano-benzoic acid 290 (minor) in yields of 50 % and 10 % respectively (Fig 4-6).

![Chemical Structures]

Fig 4-6: *S. cerevisiae* catalysed reduction of 3-nitro-phthalonitrile 238.

A similar mechanism (Fig 4-2) has been proposed for this reduction process\(^6\), in which the first step is the initial reduction of the nitro group in 238 to afford 336 followed by intramolecular attack to yield the benzo-isoxazolidine derivative 337. A further 2-electron reduction resulted in the cleavage of the N-O bond to afford 2-amino-6-cyano-benzamide 289 (Fig 4-7). The formation of the acid 290 via the hydrolysis of the amide 289 during the incubation with *S. cerevisiae* has been discussed in Chapter 2B.

![Proposed Mechanism]

Fig 4-7: Proposed mechanism for the reduction of 3-nitro-phthalonitrile 238.
3-Nitro-phthalonitrile 238 was then incubated with *S. cerevisiae* which was suspended in labelled 18O-water, to determine whether the oxygen incorporated in the amide product 289 was obtained either from the medium (water) or from the nitro group of the starting material 238 (Fig 4-8). The small scale biotransformation was monitored by GCMS with a sample removed at day 2 from the reaction mixture.

![Chemical structure](image)

Fig 4-8: *S. cerevisiae* catalysed reduction of 3-nitro-phthalonitrile 238.

A peak corresponding to the amide product 289 was detected, which recorded a mass ion of 161 Da, therefore the labelled 18O from water (medium) was not incorporated into the amide 289, since if this was the case, a mass ion of 163 Da for the amide product 289 would be recorded. This suggested that bicyclic type of intermediate(s) are involved in the reduction process in order for the oxygen of the nitro group in the starting material 238 to be incorporated into the amide functionality of the final product 289.

This proposed mechanism is supported by Navarro-Ocaña who reported on the formation of substituted isoxazoles 122 from (Z)-aryl- and (Z)-alkyl-2-phenyl-3-nitro-propenonitriles 121 (Fig 4-9).\(^6\)
The initial step was believed to be the reduction of the nitro group in 121 to afford the hydroxylamine derivative 338 followed by intramolecular attack to yield the heterocyclic structure 339 followed by proton transfer to form the isoxazole derivative(s) 122. The relative stability of the ring systems of the substituted amino-isoxazoles 122 which were formed is believed to account for the fact that further N-O bond cleavage did not occur. The substrates studied in this chapter apparently do not form such a stable intermediate and hence, N-O bond cleavage of 337 occurs to afford the amino-amide product 289.

4.2.1 GCMS studies.

The progress of the reduction of 3-nitro-phthalonitrile 238 was monitored by GCMS with samples withdrawn at fixed time intervals from the reaction mixture. A peak at 13.4 min was observed to appear and disappear during the course of the biotransformation, suggesting that this might correspond to intermediate(s) involved in the reduction pathway (Fig 4-10 i-v).
Results & Discussion: Biotransformation Mechanism.

Fig 4-10i: Reaction time = 5 min.

Fig 4-10ii: Reaction time = 12 min.

Fig 4-10iii: Reaction time = 20 min.
Fig 4-10iv: Reaction time = 30 min.

Mass spectral analysis of the peak corresponding to a retention time of 13.4 min indicated a molecular ion with a molecular weight of 161 Da. The mass spectrum for the intermediate had a similar fragmentation pattern to that of the amide product 289 (Fig 4-11 i-ii).
Results & Discussion: Biotransformation Mechanism.

Intermediate
Retention time: 13.4 min

Fig 4-11i: Mass spectrum of the intermediate peak (13.4 min).

Fig 4-11ii: Mass spectrum of the amide peak (23.2 min).

It was evident from the mass spectrum obtained for the intermediate that a molecular ion of 161 Da was present even though both intermediates 336 and 337 in the proposed mechanism have a molecular weight of 159 (Fig 4-12).

![Proposed intermediates in the reduction of 3-nitro-phthalonitrile 238.](image)

Fig 4-12: Proposed intermediates in the reduction of 3-nitro-phthalonitrile 238.
The reason for the differences in molecular weights may be explained by the procedure in which the samples withdrawn from the reaction mixture were analysed. A high oven temperature was required to detect the intermediate in the reduction of 3-nitro-phthalonitrile 238. Due to the high temperature, the intermediate may be converting to the amide 289 as it enters the mass spectrometer whose mass spectrum (mass ion of 161 Da) is recorded corresponding to the retention time (13.4 min) of the peak for the intermediate.

The peak corresponding to a retention time of 13.4 min was not the only intermediate peak recorded, other peak(s) which were low in concentration were also detected.

4.2.2 Further studies into the intermediate including attempts to isolate.

The major intermediate in the reduction of 3-nitro-phthalonitrile 238 proved very difficult to isolate. Purification methods such as flash-column and reverse-phase chromatography with different eluting conditions were attempted but failed to yield the pure material. The biotransformation was stopped at 30 min, when the intermediate concentration was at a maximum, although various work-ups were attempted all methods failed to confirm the structure of the intermediate.

4.2.3 HPLC studies.

Studies using an analytical HPLC system were carried out and with the intention of optimisation of conditions followed by preparative HPLC to isolate the intermediate. Close monitoring of the biotransformation by analytical HPLC using optimised conditions (40 % MeCN, 60 % H2O, (0.1 % TFA), 254 nm, 1 mL/min) clearly showed the presence of an intermediate peak. The progress of the reduction of 3-nitro-phthalonitrile 238 as monitored by HPLC is shown below (Fig 4-13 i-v).
Results & Discussion: Biotransformation Mechanism.

Fig 4-13i: Reaction time = 2 min.

Fig 4-13ii: Reaction time = 12 min.

Fig 4-13iii: Reaction time = 25 min.
A range of mobile phase conditions was employed to give the best separation between the intermediate and the other peaks present for preparative work (10 % MeCN, 90 % H2O, 254 nm, 4.7 mL/min). Fractions corresponding to the intermediate were collected and after evaporation of the solvent, were analysed by GCMS, which showed either mixtures of both the intermediate and the amide product 289 or no intermediate at all.
4.2.3 LCMS studies.

In contrast to GCMS, electrospray LCMS is a milder technique and was carried out in an attempt to obtain molecular weight characterisation of the intermediate in the reduction of 3-nitro-phthalonitrile 238. The progress of the reduction was monitored by LCMS with samples withdrawn at fixed time intervals from the reaction mixture using the optimised conditions (Fig 4-14).

\[
\begin{align*}
\text{NO}_2 \quad &\text{CN} \\
&\text{S. cerevisiae} \\
\text{H}_2\text{O, 30 °C} &\rightarrow \\
\text{15 min} &\rightarrow \\
\text{MW} = 173 &\rightarrow \\
\text{238} &\rightarrow \\
\end{align*}
\]

\[
\begin{align*}
\text{NH}_2\text{OH} \quad &\text{HNO} \\
&\text{I} \\
\text{5I} \quad &\text{NH} \\
&\text{H} \\
\text{CN S. cerevisiae} &\rightarrow \\
\text{H}_2\text{O, 3000 °C} &\rightarrow \\
\text{30 min} &\rightarrow \\
\text{(M+H) = 160} &\rightarrow \\
\text{336} &\rightarrow \\
\text{(M+H) = 162} &\rightarrow \\
\text{337} &\rightarrow \\
\text{289} &\rightarrow \\
\text{hydrolysis} &\rightarrow \\
\text{NH}_2\text{COOH} &\rightarrow \\
\text{290} &\rightarrow \\
\end{align*}
\]

Fig 4-14: *S. cerevisiae* catalysed reduction of 3-nitro-phthalonitrile 238 monitored by LCMS.

A peak corresponding to a retention time of 6.10 min was observed to appear and then disappear suggesting that this may be the intermediate that was also recorded by GCMS and HPLC. The progress of the reduction of 3-nitro-phthalonitrile 238 as monitored by LCMS is shown in Fig 4-15 i-v.
Results & Discussion : Biotransformation Mechanism.

Fig 4-15i : Reaction time = 50 min.

Fig 4-15ii : Reaction time = 15 min.

Fig 4-15iii : Reaction time = 25 min.
Results & Discussion: Biotransformation Mechanism.

Fig 4-15iv: Reaction time = 40 min.

Fig 4-15v: Reaction time = 55 min.

The peaks corresponding to the amide 289 and acid 290 products afforded the expected molecular ion (M+H) with molecular weights of 162 Da and 163 Da respectively. The mass spectrum of the peak corresponding to the intermediate indicated a molecular ion (M+H) of 160, which further reinforced the proposal that the intermediate(s) are likely to be the hydroxylamine 336 or the benzo-isoxazolidine 337 derivative in this reduction process (Fig 4-16). Both these intermediates have a molecular weight of 159 Da and when subjected to LCMS conditions would expect to give rise to two peaks with different retention times having the same mass ion of 160 Da.
Results & Discussion: Biotransformation Mechanism.

4.3 Dicyanoneitroarene studies.

Further insight into the mechanism in terms of what intermediate(s) were involved was gained by investigating the reduction of other dicyanoneitroarene substrates. As discussed in Chapter 2B, the six possible isomers in which two cyano groups are substituted on the aromatic ring along with the nitro group were incubated with *S. cerevisiae*. Those substrates in which a cyano group was substituted *ortho* to the nitro group on the aromatic ring underwent selective conversion to the corresponding amide moiety. The reduction of the dicyanoneitroarene substrates 221, 225, 230, 233, 294 were monitored by GCMS, HPLC and LCMS. An intermediate peak was recorded in substrates 225, 230, 233 all of which have a cyano group substituted *ortho* to the nitro group on the aromatic ring (Fig 4-17).

The mass spectrum (GCMS) of the peak corresponding to the intermediate(s) had the same fragmentation pattern as that of their corresponding amide product(s). Whereas,
LCMS studies clearly indicated the presence of an intermediate(s) peak with a molecular ion (M+H) of 160 Da.

No intermediate was detected by HPLC, GCMS or LCMS in substrates 221, 294 all of which have no cyano group substituted ortho to the nitro group on the aromatic ring (Fig 4-18).

![Diagram showing no intermediate peak detected](image)

Fig 4-18: No intermediate recorded in these dicyanonitroarene substrates.

Therefore, the intermediate detected in the reduction of dicyanonitroarenes was similar in structure to the benzo-isoxazolidine derivative 337 and not to the hydroxylamine compound 336. Since, an intermediate was only detected in those substrates which have a cyano group substituted ortho to the nitro group on the aromatic ring implying that both the nitro group and ortho cyano group play a significant part in the reduction process and may be transformed into the benzo-isoxazolidine derivative 337 (Fig 4-18) which was the likely intermediate (Fig 4-19).

![Diagram showing likely intermediate](image)

Fig 4-19: Likely intermediate in the reduction of dicyanonitroarenes.
4.4 Isotopic labelling studies.

13Carbon isotopic labelling studies of substrates 342, 343 were carried out to gain further evidence that the benzo-isoxazolidine structure 340 was the likely intermediate which was detected by GCMS, HPLC and LCMS in the reduction of (di)cyanonitroarene substrates catalysed by S. cerevisiae.

4.4.1 13C-2-nitro-benzonitrile 342 studies.

Initial studies were carried out on labelled 13C-2-nitro-benzonitrile 342 which was synthesised by a nucleophilic displacement type of reaction. Displacement of chloride from ortho-chloro-nitrobenzene 341 by 13C-labelled copper cyanide afforded the labelled substrate 342 in a moderate yield of 55% (Fig 4-20).

![Reaction Scheme]

Fig 4-20: Synthesis of labelled 13C-2-nitro-benzonitrile 342.

The conditions for the biotransformation were optimised using 2-nitro-benzonitrile 282 as the substrate for the S. cerevisiae catalysed reduction to achieve the maximum concentration of the intermediate. The biotransformation was repeated using the labelled substrate 342 with the optimised conditions and the reaction was stopped at different time intervals. Subsequent work-up was carried out to afford the crude product which was analysed by GCMS and 13C NMR. Unfortunately, the intermediate was barely detectable by GCMS, which made it very difficult for the labelled carbon to be detected by 13C NMR, which requires a high concentration of the intermediate.
4.4.2 2-13C-3-nitro-phthalonitrile 343 studies.

The progress of the reduction of 3-nitro-phthalonitrile 238 was monitored by GCMS, HPLC and LCMS which indicated a very high concentration of the intermediate present at 30 min reaction time. Therefore, the synthesis of labelled 2-13C-3-nitrophthalonitrile 343 and subsequent reduction of 343 by \textit{S. cerevisiae} was carried out. The progress of the reduction of 343 would be followed by 13C NMR by stopping the reaction at fixed time intervals followed by work-up and analysis of the crude mixture by NMR (Fig 4-21).

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig4-21.png}
\caption{\textit{S. cerevisiae} catalysed reduction of 2-13C-3-nitro-phthalonitrile 343.}
\end{figure}

The ppm value obtained in the 13C NMR would give some indication as to what the nature and surrounding environment of the labelled carbon on the intermediate. The labelled carbon of the hydroxylamine intermediate 344 would be similar in value to the starting material 343, in the region of about 115 ppm. Whereas the labelled carbon of the bicyclic intermediate 345 would be similar to the amide product 346, a high value in the region of about 160 ppm.

The synthesis of labelled 3-nitro-phthalonitrile 343 involved a 4-step process which was similar to the synthesis of dicyanonitroarenes as described in Chapter 2A (Fig 2-1). 2-Bromo- or 2-chloro-3-nitro-benzoic acid 348 was converted to the corresponding acid chloride 349 by thionyl chloride, which was then converted to the amide 350 using concentrated aqueous ammonia solution. Further dehydration
resulted in the formation of the corresponding nitrile(s) 351 in moderate yields (Fig 4-22).

\[
\begin{align*}
\text{348} & \xrightarrow{\text{SOCl}_2, \text{reflux}} \text{349} & \xrightarrow{\text{NH}_3 \text{(aq)}} \text{350} \\
\text{X} = \text{Br} & \quad \text{Cl} & \quad \text{CONH}_2 \\
\end{align*}
\]

Fig 4-22: Synthesis of 2-bromo or chloro-3-nitro-benzonitrile 351.

The final step involved the displacement of the halogen in 351 with \(^{13}\text{C}\)-copper cyanide in dimethylacetamide under a dry nitrogen atmosphere to afford the labelled substrate 343 (Fig 4-23).

\[
\begin{align*}
\text{351} & \xrightarrow{\text{Cu}^{13}\text{CN}, \text{N}_2, 90^\circ\text{C}} \text{343} \\
\text{X} = \text{Br} & \quad \text{Cl} & \quad \text{CN} \\
\end{align*}
\]

Fig 4-23: Synthesis of 2-\(^{13}\text{C}\)-nitro-phthalonitrile 343.

The conditions for the biotransformation were optimised using 3-nitro-phthalonitrile 238 as the substrate for *S. cerevisiae* catalysed reduction to achieve the maximum concentration of the intermediate. The biotransformation was then repeated using the labelled substrate 343 and stopped at fixed time intervals. The crude product(s) obtained was analysed using \(^{13}\text{C}\) NMR to determine the ppm value of the labelled carbon. Close monitoring by \(^{13}\text{C}\) NMR clearly showed the presence of the labelled carbon of the starting material 343, intermediate, amide 346 and acid 347 compounds (Fig 4-24 i-iii).
Fig 4-24i: Reaction time = 15 min.

Fig 4-24ii: Reaction time = 35 min.
The 13C ppm values obtained from the reactions involving the labelled substrate 343 are tabulated below along with the literature values (Table 4-1).

<table>
<thead>
<tr>
<th>δ^{13}C</th>
<th>Starting material</th>
<th>Amide</th>
<th>Acid</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>113.4 ppm</td>
<td>162.1 ppm</td>
<td>171.2 ppm</td>
<td>167.9 ppm</td>
</tr>
<tr>
<td></td>
<td>113.1 ppm</td>
<td>167.8 ppm</td>
<td>--------</td>
<td>--------</td>
</tr>
</tbody>
</table>

Table 4-1: 13C NMR chemical shifts of compounds in the reduction of 3-nitrophthalonitrile 343.

The 13C NMR results clearly showed that the labelled carbon corresponding to the intermediate had a value of 167.9 ppm which was similar to the value of the amide product 346. Therefore, the proposed bicyclic compound 345 might be the likely intermediate which was detected in the reduction process mediated by *S. cerevisiae* (Fig 4-25).
Results & Discussion: Biotransformation Mechanism.

The 13C shift was observed for the carbon of interest in compounds similar to the benzo-isoxazolidine derivative 345. 3-Amino-isoindol-1-one 352 was reported to have a value of 164.5 ppm for the carbon of interest (Fig 4-26).148

As mentioned previously, Navarro-Ocaña reported on the formation of substituted isoxazoles 122, which were similar in structure to the proposed intermediate (Fig 4-27).6 Spectroscopic data was given for 122 (R = Ph), where the carbon of interest had a value of 166.4 ppm.

Both the compounds 122, 352 have values corresponding to the carbon of interest in the range of about 165 ppm, which was similar to that of the intermediate 345 (167.9 ppm).
4.5 Conclusion.

Further insight into the mechanism employed by *S. cerevisiae* in the nitro group reduction of (di)cyanonitroarenes has been gained. The intermediate (major) detected proved very difficult to isolate but studies have shown and further confirmed what intermediate(s) are likely to be involved in the mechanism. It was evident from the GCMS and HPLC data obtained that an intermediate peak was only detected in the biotransformations of substrates that bear a cyano group substituted ortho to the nitro group on the aromatic ring. Therefore, it is postulated that this cyano group plays a significant role in the reduction pathway employed by *S. cerevisiae*.

The introduction of isotopically 13C-labelled 3-nitro-phthalonitrile studies showed that the labelled carbon of the intermediate had a value of 167.9 ppm. This value was similar to the amide product and similar compounds that have been reported in the literature. Hence, the intermediate detected in the catalysed reduction of dicyanonitroarenes is likely to be the benzo-isoxazolidine compound 353 (Fig 4-28).

![Fig 4-28: Likely intermediate in the catalysed reduction of (di)cyanonitroarenes.](image)

It would be interesting to see what the end results would be when the labelled substrates 342 and 343 are incubated with nitro-reductses which have been isolated from *S. cerevisiae* with the progress of reduction monitored by GCMS.
4.6 Tautomerisation.

The proposed cyclic intermediate 353 in the reduction of (di)cyanonitroarenes could exist in two forms 353 and 354 which are tautomers of each other (Fig 4-29). The next stage attempted to elucidate which tautomer was the one that was present during the biotransformations of the dicyanonitroarenes.

![Fig 4-29: Tautomers of the benzo-isoxazolidine intermediate.](image)

A review on anthranils has discussed the catalytic reduction of 2-nitro-benzonitrile 282 where 3-amino-anthranil 355 was detected as an intermediate en route to 2-amino-benzamide 284 (Fig 4-30). The original authors have reported on the reduction of 2-nitro-benzonitrile 282 over a platinum catalyst in which 3-amino-anthranil 355 was detected as an intermediate to 284.

![Fig 4-30: Chemical reduction of 2-nitro-benzonitrile 282.](image)

The authors have discussed the possibility of tautomerisation (Fig 4-31) and have compared the N-H stretching frequencies obtained for the intermediate, with those of
heterocyclic amines which were similar in structure reported by Bellamy and Williams. The comparison provided support that the amino tautomer 355 was the structure of the intermediate in the catalytic reduction of 2-nitro-benzonitrile 282.

![Tautomers of 3-amino-anthranil.](image)

The amino-anthranil 355 had a maximum UV absorption at 354 nm and was bright yellow in colour. The synthetic route to 3-amino-anthranil 355 was based on the procedure described by Musso et al. 2-Nitro-benzonitrile 282 was stirred with zinc and ammonium chloride in ethanol and subsequent work-up carried out. Purification was achieved by flash-column chromatography using activated alumina to afford the 2-amino-benzamide product 284 and not 3-amino-anthranil 355 which was reported by Musso (Fig 4-32). Different purification techniques were attempted but the reported method for formation of the anthranil intermediate 355 was not reproducible, instead 2-amino-benzamide 284 was isolated each time.

![Chemical reduction of 2-nitro-benzonitrile 282.](image)

The reported method was extended to 3-nitro-phthalonitrile 238 to determine whether the intermediate could be isolated. The procedure in the paper was followed but 2-amino-6-cyano-benzamide 289 was isolated and not the proposed cyclic intermediate (Fig 4-33).
Another paper has reported on the formation of 3-amino-anthranil 355 by the electrochemical reduction of 2-nitro-benzonitrile 282. The possibility of tautomerisation of the amino-anthranil was discussed which led to a mechanism proposed by the authors (Fig 4-34).152

The initial step was believed to be the reduction of the nitro group in 2-nitro-benzonitrile 282 to afford the hydroxylamine intermediate 333, which underwent intramolecular attack to form the imine compound 334. A series of proton transfers resulted in the formation of the amino-anthranil tautomer 355. The authors proposed that the amino form 355 was the most probable one produced in the reduction of 2-nitro-benzonitrile 282 because the imino tautomer 334 would probably be hydrolysed to 355 under the basic conditions that were employed.

It was evident from both papers150, 152 that the tautomeric state of the isolated anthranil intermediate/product 355 could not be determined by NMR or mass spectrometry. Instead structures were proposed by comparison of N-H stretch frequencies or the stability of the individual tautomer leading to the amino-anthranil 355 structure.

Boduszek et al. have described the synthesis of benzo-isoxazole derivatives 355 from the cleavage of amino-nitrobenzyl-phosphonates 359 in basic medium.153, 154 The
Results & Discussion: Biotransformation Mechanism.

Treatment of 2-nitro-benzaldehyde 356 and diphenylmethylamine 357 in toluene afforded benzhydryl-(1-(2-nitro-phenyl)-methylene)-amine 358 in 98% yield. Subsequent addition of diethyl phosphite in toluene to 358 yielded the corresponding ester as white crystals in 84% yield (Fig 4-35). The cleavage of the diethyl phosphite ester 359 was attempted with NaOH, followed by neutralisation of the solution with HCl. However, this resulted in precipitation of the starting material 359 and not the reported 3-amino-anthranil product 355.

\[
\begin{align*}
\text{NO}_2\text{CHO} & \quad \text{Ph} \\
\text{H}_2\text{NPh} & \quad \text{NO}_2 \quad \text{Ph} \\
\text{toluene} & \quad \text{K}_2\text{CO}_3 \\
\text{Ph} & \quad \text{K}_2\text{CO}_3 \\
\text{N} & \quad \text{O} \\
\text{NH}_2 & \quad \text{H}_3\text{PO}_4 \\
\end{align*}
\]

Fig 4-35: Synthesis of 2-amino-anthranil 355.

The structure of the tautomer 355 was further confirmed by comparison with data reported on the N-H stretching frequencies and melting points of 355 by Musso and Schröder. Interestingly, none of the papers reported on the 13C NMR data of 355 which could have been compared with the NMR data obtained from the label studies of 2-13C-nitro-phthalonitrile 343.

Boduszek et al. also assigned the structures of substituted anthranils ($R = \text{Bu, Bz}$) to be the amino form 360 and not the imino tautomer 361 by comparison with the unsubstituted 3-amino-anthranil 355 based on the IR spectra and mass spectra obtained (Fig 4-36).
A recent paper by Chen et al. has contradicted what Boduszek et al. had reported on the tautomeric structures of the substituted anthranils 360. The structure of 3-(N-benzylamino)anthranil (R = Bn) was more likely to be the imino form 361 and not the amino tautomer 360 which was reported earlier. Since the maximum UV absorption of 3-amino-anthranil 355 was reported by Musso et al. to be 367 nm, by comparison 3-(N-benzylamino)-anthranil had a maximum at 312 nm. Therefore, benzylamino-anthranil lacked the 3-amino-anthranil 355 chromophore, so the structure of 3-(N-benzylamino)-anthranil was likely to be the imino tautomer 361.

The maximum UV absorption of the proposed bicyclic intermediate in the reduction of 3-nitro-phthalonitrile 238 mediated by S. cerevisiae was investigated for comparison with the reported UV absorption of 3-amino-anthranil 355. The reduction of 3-nitro-phthalonitrile 238 was repeated with samples removed at fixed time intervals from the reaction mixture and subjected to LCMS analysis which was attached to a diode array detector to measure UV absorption. The bicyclic intermediate had a maximum UV absorption of 386 nm and lacked the anthranil 355 chromophore of 367 nm. Therefore, the imino tautomer 337 was the likely structure of the bicyclic intermediate (Fig 4-37).
Results & Discussion: Biotransformation Mechanism.

Fig 4-37: Maximum UV absorption of the proposed benzo-isoxazole intermediate 337.

4.7 Conclusion.

The intermediate detected in the reduction of dicyanonitroarenes was more likely to be the bicyclic intermediate and not the hydroxylamine compound which was evident from LCMS, GCMS, HPLC and labelling studies discussed in this chapter.

The proposed bicyclic intermediate could exist in two tautomers, the amino 354 and imino 353 form. Extensive study of the literature revealed a few papers that discussed the issue of tautomerisation in the anthranil structure. Mossu et al. reported on the synthesis of 3-amino-anthranil 355 which was attempted but failed. Maximum UV absorption was reported to be 367 nm and comparison of N-H stretching frequencies led to the amino tautomer 355 as the likely structure in the reduction of 2-nitro-benzonitrile 282. The findings in this paper were compared with the work carried out by Boduszek et al. which was further corrected by Chen et al. by comparison of maximum UV absorptions.

Comparison of the maximum UV absorption reported in the literature for 3-amino-anthranil 355 was 367 nm and the bicyclic intermediate showed maximum absorption at 386 nm. Therefore, the most likely structure of the intermediate in the catalysed reduction of (di)cyanonitroarenes was the imino tautomer 353, since it lacked the anthranil chromophore (Fig 4-38).
Fig 4-38: Probable imino tautomer of benzo-isoxazole intermediate 353.
5. Results & Discussion: Combined Hydrolysis & Reduction.

This chapter examines the activity of *Rhodococcus* sp. ZYL 101 towards (di)cyanonitroarene substrates. The combination of nitro-reductases (*S. cerevisiae*) and nitrilases (*Rhodococcus* sp.) has also been investigated.

5.1 General.

The idea was to combine the hydrolysis of the cyano group mediated by *Rhodococcus* sp. with the reduction of the nitro group carried out by *S. cerevisiae* on (di)cyanonitroarene substrates. The aim was to exploit the regio- and chemo-selectivity of two enzymes to provide access to functionalised aromatic compounds (Fig 5-1).

![Fig 5-1](image)

Fig 5-1: Enzyme catalysed hydrolysis and reduction of (di)cyanonitroarenes.

The hydrolysis of nitriles was carried out using *Rhodococcus* sp. ZYL 101 (freeze-dried cells) that contained a nitrilase enzyme capable of converting nitriles to the corresponding carboxylic acids with no accumulation of the amide intermediate (Fig 5-2).

![Fig 5-2](image)

Fig 5-2: *Rhodococcus* sp. catalysed hydrolysis of nitriles.
5.2 Hydrolysis of cyanonitroarenes.

Conditions of the biotransformation were optimised using 4-chloro-2-fluorobenzonitrile 362 which hydrolysed to the corresponding acid 363 in 78 % yield over 2 h when incubated with *Rhodococcus* sp. (Fig 5-3).

![Diagram of hydrolysis](image)

Fig 5-3: Rhodococcus sp. catalysed hydrolysis of 4-chloro-2-fluorobenzonitrile 362.

Thereafter, a range of simple cyanonitroarenes were investigated in which the cyano group was substituted either ortho 282, meta 285 or para 287 to the nitro group on the aromatic ring. In each case, the cyano group was hydrolysed to afford the corresponding nitro-benzoic acids 364, 365, 366 in moderate yields when incubated with *Rhodococcus* sp. (Fig 5-4, Table 5-1).

![Diagram of hydrolysis](image)

Fig 5-4: Rhodococcus sp. catalysed hydrolysis of cyanonitroarenes.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>282 2-CN</td>
<td>24 h</td>
<td>33 %</td>
</tr>
<tr>
<td>285 3-CN</td>
<td>12 h</td>
<td>47 %</td>
</tr>
<tr>
<td>287 4-CN</td>
<td>15 h</td>
<td>45 %</td>
</tr>
</tbody>
</table>

Table 5-1: Reaction times and yields of nitro-benzoic acids.
The progress of hydrolysis of the substrates 282, 285, 287 was monitored by GCMS with samples withdrawn at fixed time intervals from the reaction mixture. The substrates in which the cyano group was substituted *meta* 285 or *para* 287 to the nitro group on the aromatic ring reacted faster with moderate yields of the hydrolysed products 365, 366 obtained in short reaction times when compared to the *ortho* cyano substrate 282.

5.3 Reduction of nitro-benzoic acids.

The products 364, 365, 366 obtained from the hydrolysis of cyanonitroarenes 282, 285, 287 respectively were incubated with *S. cerevisiae*. In each case, the nitro group was reduced to the corresponding amine to afford amino acids 367, 368, 369 in moderate yields (Fig 5-5, Table 5-2).

![Fig 5-5: *S. cerevisiae* catalysed reduction of nitro-benzoic acids.](image)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-COOH 364</td>
<td>24 h</td>
<td>55 % 367</td>
</tr>
<tr>
<td>3-COOH 365</td>
<td>24 h</td>
<td>51 % 368</td>
</tr>
<tr>
<td>4-COOH 366</td>
<td>24 h</td>
<td>55 % 369</td>
</tr>
</tbody>
</table>

Table 5-2: Reaction times and yields of amino benzoic acids

The amino acid products 367, 368, 369 were too polar to be detected by GCMS, so the progress of reduction of the substrates 364, 365, 366 was monitored by HPLC with samples withdrawn at fixed time intervals from the reaction mixture.
Purification was achieved by preparative HPLC (acetonitrile and water as the mobile phase) using optimised conditions for each substrate.

5.4 **Hydrolysis of amino-benzonitriles.**

The products 283, 286, 288 obtained from the reduction of nitro-benzonitriles 282, 285, 287 respectively were incubated with *Rhodococcus* sp. over 24 h. In each case, the cyano group was hydrolysed to the corresponding carboxylic acid to afford amino acids 367, 368, 369. The hydrolysis of meta 286 and para 288 cyano groups proceeded in higher yields when compared to the ortho cyano substrate 283 (Fig 5-6, Table 5-3).

![Fig 5-6: *Rhodococcus* sp. catalysed hydrolysis of amino-benzonitriles.](image)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>283 2-CN</td>
<td>24 h</td>
<td>35 % 367</td>
</tr>
<tr>
<td>286 3-CN</td>
<td>24 h</td>
<td>72 % 368</td>
</tr>
<tr>
<td>288 4-CN</td>
<td>24 h</td>
<td>55 % 369</td>
</tr>
</tbody>
</table>

Table 5-3: Reaction times and yields of amino-benzoic acids.

The progress of hydrolysis of the substrates 283, 286, 288 was monitored by HPLC with samples withdrawn at fixed time intervals from the reaction mixture. Purification was achieved by preparative HPLC (acetonitrile and water as the mobile phase) using optimised conditions for each substrate.
2-Amino-benzamide 284 was incubated with *Rhodococcus* sp. to determine if any amide hydrolysis occurred although the *Rhodococcus* sp. contained no amidase enzyme specific for this transformation (Fig 5-7). The starting material 284 was recovered in quantitative yield after several days and it was deduced that the hydrolysis of cyanonitroarenes does not proceed through the corresponding amide, instead direct conversion of the cyano group to the carboxylic acid takes place.

![Chemical structure](image)

Fig 5-7: *Rhodococcus* sp. catalysed hydrolysis of 2-amino-benzamide 284.

5.5 Conclusion.

The combination of both hydrolysis and reduction on simple cyanonitroarenes was investigated to conclude whether one pathway was superior to the other. Hence, hydrolysis was carried out first followed by reduction and vice versa to deduce whether there were any significant advantages in carrying out the combined process by a specific route (Fig 5-8).

![Chemical structures](image)

Fig 5-8: Combined hydrolysis and reduction of cyanonitroarenes.
The same product (amino-benzoic acids) 367, 368, 369 was obtained in modest yields from both pathways with simple work-up procedures. It appears that there is no advantage in carrying out hydrolysis or reduction in a specific order.

5.6 Hydrolysis of dicyanoarenes.

Crosby et al. reported on the regioselective hydrolysis of substituted aromatic dicyanoarenes using *Rhodococcus* sp. that contained both a nitrilase hydratase and an amidase.\(^{156}\) Fluorinated dicyanoarenes 370 were regioselectively hydrolysed to one regioisomer 371 in low yields (15-52\%). The cyano group that was substituted ortho to the amino moiety on the aromatic ring 370 was selectively hydrolysed to the amide functionality (Fig 5-9). By comparison, non-fluorinated dicyanoarenes 372 afforded mixtures of cyano acids 373, 374 in poor regioselectivity with moderate yields (53-86\%) (Fig 5-10).

![Diagram](image)

Fig 5-9: Regioselective hydrolysis of fluorinated dicyanoarenes 335.

![Diagram](image)

Fig 5-10: Hydrolysis of substituted aromatic dicyanoarenes.

It was assumed that the fluorine substituents attached to the aromatic ring 370 suppressed the amidase enzyme activity present in the *Rhodococcus* sp., since the
cyano amides 371 were isolated as the final products. Whereas, both nitrilase hydratase and amidase enzymes were active in the hydrolysis of the cyano group to the corresponding mono-acids 373 and diacids 374 in non-fluorinated substrates 372.

5.7 Regioselective hydrolysis of dicyanonitroarenes.

The methodology of Crosby et al. and the combined process of reduction and hydrolysis on simple cyanonitroarenes was extended to dicyanonitroarene substrates to exploit the regioselectivity of these processes in order to obtain functionalised substituted arenes.

The incubation of ortho-dicyanobenzene 335 with Rhodococcus sp. afforded both the diacid 375 and 2-cyano-benzoic acid 376 after 2 d in yields of 27 % and 49 % respectively (Fig 5-11).

![Fig 5-11: Rhodococcus sp. catalysed hydrolysis of ortho-dicyanobenzene.](image)

The hydrolysis of dicyanonitroarenes was investigated in those substrates 225, 233, 238 which had one cyano group substituted ortho to the nitro group and the other at either 3, 4 or 5 position to the nitro group on the aromatic ring (Fig 5-12).

![Fig 5-12: Rhodococcus sp. catalysed hydrolysis of dicyanonitroarenes.](image)
Selective hydrolysis of one cyano group substituted on the aromatic ring to the corresponding carboxylic acid occurred whereas the other remained intact to afford the mono-acids 377, 378, 379 with the diacid products 234, 232, 222 also produced. A summary of the results of the Rhodococcus sp. catalysed hydrolysis of dicyanonitroarenes 225, 233, 238 is given in Table 5-4.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield Mono-acid</th>
<th>Yield Diacid</th>
</tr>
</thead>
<tbody>
<tr>
<td>238 3-CN</td>
<td>3 d</td>
<td>22 % 377</td>
<td>11 % 234</td>
</tr>
<tr>
<td>233 4-CN</td>
<td>24 h</td>
<td>67 % 378</td>
<td>15 % 232</td>
</tr>
<tr>
<td>225 5-CN</td>
<td>10 h</td>
<td>70 % 379</td>
<td>15 % 222</td>
</tr>
</tbody>
</table>

Table 5-4: Reaction times and yields of cyano-nitro-benzoic acids.

A problem arose in determining which of the two cyano functionalities had been selectively hydrolysed to obtain the mono-acids. Therefore, \(^1\)H nOe experiments were carried out on the mono-acids to determine the selectivities of the Rhodococcus sp. 4-Nitro-isophthalonitrile 233 was used an example to determine which regioisomer 378 or 380 was produced in the hydrolysis of this substrate 233 (Fig 5-13).

\[\text{Rhodococcus sp. catalysed hydrolysis of 4-nitro-isophthalonitrile 233.} \]

\(^1\)H nOe experiments provided evidence for the structural assignment of 378, with the irradiation of the proton of the carboxyl group signal in the \(^1\)H NMR spectrum of 378 causing an enhancement of both H\(^1\) and H\(^2\). Subsequent irradiation of the carboxyl group of 380 would enhance H\(^1\) only. It was deduced that the structure of the mono-
acid obtained from the *Rhodococcus* sp. catalysed hydrolysis of 4-nitroisophthalonitrile 233 was 3-cyano-4-nitro-benzoic acid 378 (Fig 5-14).

![Diagram of chemical structures](image)

Fig 5-14: 1H nOe enhancements caused by irradiation of the carboxyl resonance.

Further evidence for the assignment of 3-cyano-4-nitro-benzoic acid 378 was provided by comparison of the observed and theoretically calculated frequency positions of the carbon atoms of one regioisomer in the δ_C NMR spectrum with the alternative regioisomeric structure (Fig 5-15). 140

![Diagram of chemical structures](image)

Fig 5-15: Observed (theoretical) chemical shifts of 3-cyano-4-nitro-benzoic acid 378.

Theoretical chemical shift calculation for the alternative structure 380 (Fig 5-16).
Results & Discussion: Combined Hydrolysis & Reduction.

Fig 5-16: Theoretical chemical shifts of 5-cyano-2-nitro-benzoic acid 380.

By comparison with the calculated and observed chemical shift values, it was only possible to confidently assign C-1, C-3 and C-6 because the theoretical values of structure 378 were very similar to those observed, whereas in regioisomer 380 the theoretical chemical shifts were very different for these carbons. The theoretical chemical shifts for C-2, C-4 and C-5 were too similar in both regioisomers 378 and 380 to be useful in assigning the structure observed. Therefore, the structure of the regioisomer could be assigned on the strength of the similarity between the theoretical and observed carbon values which determined that the structure was 3-cyano-4-nitro-benzoic acid 378.

Both 1H nOe experiments and comparison of the theoretical and observed carbon chemical shifts were applied to determine the structure of the mono-carboxylic acids obtained from the hydrolysis of 3-nitro-phthalonitrile 238, which afforded 3-nitro-2-cyano-benzoic acid 377 and 3-nitro-terephthalonitrile 225, which afforded 3-nitro-4-cyano-benzoic acid 379 (Fig 5-17).

Fig 5-17: Structures of products from the hydrolysis of 3-nitro-(terephthalonitrile.
Another possibility for determining the regioisomeric structures obtained from the hydrolysis of the dicyanonitroarenes substrates 225, 233, 238 respectively was the incubation of the hydrolysed mono-acid regioisomers 377, 378, 379 with *S. cerevisiae* (Fig 5-18).

Fig 5-18: *S. cerevisiae* catalysed reduction of cyano-nitro-benzoic acids.

S. cerevisiae is known to reduce the nitro group to the amino moiety in nitroarenes and also converts a cyano group substituted ortho to the nitro group on the aromatic ring to the amide functionality. The reduced products, 381, 382, 383 obtained could be characterised by IR spectroscopy which would show no CN stretch whereas the starting material (mono-acid) 377, 378, 379 would show the presence of a CN stretch. When the reduced products 381, 382, 383 were characterised, the presence of an amide functionality was prominent and no CN stretch was observed.

Alternatively, if the regioisomer 384 had no cyano group substituted ortho to the nitro group on the aromatic ring, then the nitro group would undergo reduction to afford the expected amino compound 385 (Fig 5-19). The reduced product(s) 385 could be characterised by IR spectrometry which would show the presence of the CN stretch.

Fig 5-19: *S. cerevisiae* catalysed reduction of cyano-nitro-benzoic acids 384.
Results & Discussion: Combined Hydrolysis & Reduction.

Thus, it was observed that positioning of the cyano group at either 3, 4 or 5 position of 225, 233, 238 resulted in hydrolysis to the corresponding acid 377, 378, 379, whereas the cyano group that was substituted ortho to the nitro group remained intact.

Only one cyano group was hydrolysed in 2-nitro-isophthalonitrile 230 which had both cyano groups substituted ortho to the nitro group on the aromatic ring to afford 386 over a long reaction time of 6 d in 72 % yield with no diacid produced (Fig 5-20).

![Chemical structure of 2-nitro-isophthalonitrile (230) and its hydrolysis product (386) catalysed by Rhodococcus sp. ZYL101.](image)

Fig 5-20: *Rhodococcus* sp. catalysed hydrolysis of 2-nitro-isophthalonitrile 230.

The slow rate of this reaction can be explained by the fact that cyano groups substituted ortho to the nitro group on the aromatic ring undergo hydrolysis very slowly. This was observed in the hydrolysis of simple cyanonitroarenes, in which ortho-nitro-benzonitrile 281 afforded ortho-nitro-benzoic acid 364 over a long reaction time (48 h), whereas those substrates which had the cyano group substituted meta 285 or para 287 to the nitro group were hydrolysed in shorter reaction times (12 h and 15 h respectively).

In the other 2 substrates, the cyano group substituted meta to the nitro group 221, 294 on the aromatic ring was selectively hydrolysed to the corresponding mono-acid 387, 389 whereas the other cyano group remained intact. However, the diacid 218, 388 was produced as a minor impurity (Fig 5-21).
Results & Discussion: Combined Hydrolysis & Reduction.

![Chemical structure diagram](image)

Fig 5-21: Rhodococcus sp. catalysed hydrolysis of dicyanonitroarenes.

A summary of the results of the *Rhodococcus* sp. catalysed hydrolysis of substituted dicyanonitroarenes is given in Table 5-5.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield Mono-acid</th>
<th>Yield Diacid</th>
</tr>
</thead>
<tbody>
<tr>
<td>294 4-CN</td>
<td>12 h</td>
<td>59% 387</td>
<td>8% 388</td>
</tr>
<tr>
<td>221 5-CN</td>
<td>12 h</td>
<td>69% 389</td>
<td>15% 218</td>
</tr>
</tbody>
</table>

Table 5-5: Reaction times and yields of cyano-nitro-benzoic acids.

The structure of the regioisomeric compound isolated from the hydrolysis of 4-nitrophthalonitrile 294 was determined by 1H nOe experiments and comparison of theoretical and observed carbon chemical shift values which assigned the structure to be 3-nitro-6-cyano-benzoic acid 387 and not 390 (Fig 5-22).

![Chemical structure diagram](image)

Fig 5-22: Rhodococcus sp. catalysed hydrolysis of 4-nitro-phthalonitrile 294.
5.8 Conclusion.

Selective hydrolysis of the cyano group occurred with the following order of reactivity in dicyanonirotroarene substrates:

meta cyano group > *para* cyano group >> *ortho* cyano group.

Selective hydrolysis of the cyano group substituted *meta* to the nitro group in 4-nitrophthalonitrile 294 was observed whereas the *para* cyano group remained intact to afford one regioisomer 387 only. The diacid was also produced in most cases. Only one cyano group was hydrolysed in 2-nitro-isophthalonitrile 230 with a long reaction time affording the corresponding mono-acid product 386.

5.9 Reduction of cyano-nitro-benzoic acids.

The mono-acid products (not the diacids) obtained from the hydrolysis of dicyanonirotroarenes 221, 225, 230, 233, 238, 294 respectively were incubated with *S. cerevisiae*. The progress of reduction of all these substrates was monitored by HPLC with samples withdrawn at fixed time intervals from the reaction mixture. Purification was achieved by preparative HPLC (acetonitrile and water as the mobile phase) using optimised conditions for each substrate.

The reduction of cyano-nitro-benzoic acids was investigated in those substrates 377, 378, 379, 386 which had a cyano group substituted *ortho* to the nitro group and the carboxyl functionality at either 3, 4, 5 or 6 position to the nitro group on the aromatic ring (Fig 5-23).

Fig 5-23: *S. cerevisiae* catalysed reduction of cyano-nitro-benzoic acids.
The nitro group was reduced to the expected amino moiety with *S. cerevisiae* and the ortho cyano group was converted to the amide functionality to afford the corresponding amino acids 381, 382, 383, 391. A summary of the results of the *S. cerevisiae* catalysed reduction of substituted cyano-nitro-benzoic acids is given in Table 5-6.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>377 3-COOH</td>
<td>4 d</td>
<td>22 % 381</td>
</tr>
<tr>
<td>378 4-COOH</td>
<td>4 h</td>
<td>75 % 382</td>
</tr>
<tr>
<td>379 5-COOH</td>
<td>3.5 h</td>
<td>73 % 383</td>
</tr>
<tr>
<td>386 6-COOH</td>
<td>2 h</td>
<td>80 % 391</td>
</tr>
</tbody>
</table>

Table 5-6: Reaction times and yields of amino-phthalamic acids.

The conversion of the cyano group to the amide was also observed in the reduction of those (di)cyanonitroarene substrates 225, 230, 233, 238 which had a cyano group substituted ortho to the nitro group on the aromatic ring (Fig 5-24).

![Fig 5-24: S. cerevisiae catalysed reduction of dicyanonitroarene substrates.](image)

The reduction of cyano mono-acids 377, 378, 379, 386 proceeded in relatively moderate yields with short reaction times with one exception. The reduction of 2-cyano-3-nitro-benzoic acid 377 afforded 3-amino-phthalamic acid 381 in a low yield of 22 % with the reduction not gone to completion (Fig 5-25).
Results & Discussion: Combined Hydrolysis & Reduction.

Fig 5-25: S. cerevisiae catalysed reduction of 2-cyano-3-nitro-benzoic acid 377.

No amide functionality was observed in those products 392, 393 obtained from the reduction of cyano-nitro-benzoic acid substrates 387, 389 which had no cyano group substituted ortho to the nitro group on the aromatic ring (Fig 5-26).

Fig 5-26: S. cerevisiae catalysed reduction of cyano-nitro-benzoic acids.

The expected reduced products 392, 393 were obtained by preparative HPLC in moderate yields but longer reaction times were required for complete substrate consumption compared to the ortho-cyano substrates 377, 378, 379, 386 (Table 5-7).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>387 4-CN</td>
<td>8 h</td>
<td>61 %</td>
</tr>
<tr>
<td>389 5-CN</td>
<td>6 h</td>
<td>60 %</td>
</tr>
</tbody>
</table>

Table 5-7: Reaction times and yields of amino-cyano-benzoic acids.

5.10 Conclusion.

Complete substrate consumption occurred in short reaction times to afford amino-phthalamic acids 381, 382, 383, 391 from cyano-nitro-benzoic acids 377, 378, 379, 386 that had a cyano group substituted ortho to the nitro group. Whereas, the expected amino-cyano-benzoic acids 392, 393 were produced in longer reaction...
times in the dicyano substrates 387, 389 which had no cyano group substituted ortho to the nitro group on the aromatic ring.

5.11 Hydrolysis of amino-cyano-benzamides.

The products obtained from the S. cerevisiae catalysed reduction of dicyanonitroarenes 221, 225, 230, 233, 238 294 respectively were incubated with Rhodococcus sp. to determine whether any hydrolysis occurred. In each case, the cyano group was hydrolysed to the carboxyl group in the isomeric substrates 289, 291, 292, 293 which had an amide moiety substituted ortho to nitro group and the cyano group present at either 3, 4, 5 or 6 position to the nitro group on the aromatic ring to afford amino-phthalamic acids (Fig 5-27).

![Chemical structure](image)

Fig 5-27: Rhodococcus sp. catalysed hydrolysis of amino-cyano-benzamides.

The progress of hydrolysis of the substrates 289, 291, 292, 293 was monitored by HPLC with samples withdrawn at fixed time intervals from the reaction mixture. Purification was achieved by preparative HPLC (acetonitrile and water as the mobile phase) using optimised conditions for each substrate. A summary of the results of the Rhodococcus sp. catalysed reduction of substituted amino-cyano-benzamides is given in Table 5-8.
Results & Discussion: Combined Hydrolysis & Reduction.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>289 3-CN</td>
<td>48 h</td>
<td>12%</td>
</tr>
<tr>
<td>291 4-CN</td>
<td>24 h</td>
<td>67%</td>
</tr>
<tr>
<td>292 5-CN</td>
<td>24 h</td>
<td>70%</td>
</tr>
<tr>
<td>293 6-CN</td>
<td>3 d</td>
<td>89%</td>
</tr>
</tbody>
</table>

Table 5-8: Reaction times and yields of amino-phthalamic acids.

The amide group of 2-amino-6-cyano-benzamide 289 was hydrolysed to the corresponding acid 290 when incubated in the buffer/enzyme suspension which resulted in a very low yield of the expected hydrolysed 3-amino-phthalamic acid product 381 (12%) (Fig 5-28).

![Fig 5-28: Rhodococcus sp. catalysed hydrolysis of 2-amino-6-cyano-benzamide 289.](image)

The hydrolysis of the amide group was also observed in the reduction of 3-nitro-phthalonitrile 238, in which the reduced product 2-amino-6-cyano-benzamide 289 was hydrolysed to 2-amino-6-cyano-benzoic acid 290 under S. cerevisiae conditions (Fig 5-29).

![Fig 5-29: S. cerevisiae catalysed reduction of 3-nitro-phthalonitrile 238.](image)
The cyano group substituted meta to the amino group 295, 296 on the aromatic ring was selectively hydrolysed to the corresponding mono-acid 392, 393 whereas the other cyano group remained intact. However, the diacid 394, 395 was produced as a minor impurity (Fig 5-30).

![Diagram of Rhodococcus sp. catalysed hydrolysis of dicyanoaminoarenes.]

The products (mono-acids) 392, 393 were obtained in moderate yields along with the diacids 394, 395 in longer reaction times compared to those amino-cyano-benzamide substrates 289, 291, 292, 293 which had an amide group substituted ortho to the nitro group on the aromatic ring. A summary of the results of the Rhodococcus sp. catalysed hydrolysis of substituted dicyanoaminoarenes 295, 296 is given in Table 5-9.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction Time</th>
<th>Yield Mono-acid</th>
<th>Yield Diacid</th>
</tr>
</thead>
<tbody>
<tr>
<td>295 4-CN</td>
<td>48 h</td>
<td>53 % 392</td>
<td>14 % 394</td>
</tr>
<tr>
<td>296 5-CN</td>
<td>3 d</td>
<td>49 % 393</td>
<td>16 % 395</td>
</tr>
</tbody>
</table>

Table 5-9: Reaction times and yields of amino-cyano-benzoic acids.

The structure of the product 392 isolated from the hydrolysis of 4-amino-phthalonitrile 295 was determined by ^{1}H nOe experiments and comparison of theoretical and observed carbon chemical shift values which assigned the structure to be 3-amino-6-cyano-benzoic acid 392 and not 396 (Fig 5-31).
Results & Discussion: Combined Hydrolysis & Reduction.

Fig 5-31: *Rhodococcus* sp. catalysed hydrolysis of 4-amino-phthalonitrile 295.

5.12 Conclusion.

The amino-phthalamic acids 381, 382, 383, 391 were obtained in moderate yields with short reaction times in those amino-cyano-benzamide substrates 289, 291, 292, 293 which had an amide group substituted ortho to the nitro group on the aromatic ring. Conversely, the mono-acid products (amino-cyano-benzoic acids) 392, 393 as well as the diacids were obtained in longer reaction times from the hydrolysis of dicyanoaminoarenes 295, 296.

5.13 Enzyme catalysed reduction and hydrolysis of aromatic arenes.

The aim was to exploit the selectivity of both whole-cell systems (*S. cerevisiae* and *Rhodococcus* sp.) to obtain products of interest which would be very difficult to achieve using traditional chemical methodology.

5.13.1 Reduction and hydrolysis of 3-nitro-phthalonitrile 238.

The reduction of 3-nitro-phthalonitrile 238 afforded the corresponding 2-amino-6-cyano-benzamide product 289 (50 %) which was further hydrolysed to afford 3-amino-phthalamic acid 381 in a low yield of 12 % in 48 h and 290 (impurity) (Fig 5-32). If the hydrolysis step was carried out first, selective hydrolysis of the meta cyano group occurred to afford 3-nitro-6-cyano-benzoic acid 377 (22 %) along with the diacid product 234. Purification by preparative HPLC was carried out to isolate...
Results & Discussion: Combined Hydrolysis & Reduction.

The mono-acid which was then reduced to afford 3-amino-phthalamic acid 381 in a yield of 22.0% in 4 d which was the same product as that obtained if the order of reactions was reversed.

\[
\begin{align*}
\text{NO}_2^+ + \text{COOH} & \rightarrow \text{CONH}_2 \text{CONH}_2 \\
\text{CONH}_2 \text{CONH}_2 & \rightarrow \text{CONH}_2 \text{COOH}
\end{align*}
\]

Fig 5-32: Combined hydrolysis and reduction of 3-nitro-phthalonitrile 238.

Therefore, not a significant difference in both pathways, since the same product was obtained in low yields. Purification by preparative HPLC was required for both routes, if the hydrolysis was carried out first, the mono-acid and diacid had to be purified to carry out the next step. If reduction was the first step followed by the hydrolysis step, the phthalamic acid and the minor impurity had to be purified otherwise both routes are feasible with low yields obtained at the end.

5.13.2 Reduction and hydrolysis of 3-nitro-terephthalonitrile 233, 225.

This class of substrates have one cyano group substituted at either 4 or 5 position to the nitro group and the other one substituted ortho to the nitro group on the aromatic ring. With both substrates, 4-nitro-isophthalonitrile 233 and 3-nitro-terephthalonitrile 225, very similar moderate yields and reaction times were obtained for each product and therefore for each reaction step (Fig 5-33).
Results & Discussion: Combined Hydrolysis & Reduction.

<table>
<thead>
<tr>
<th>NO</th>
<th>NO</th>
<th>NH2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Rhodococcus sp. ZYL 101</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000H</td>
<td>000H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>222</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generally, if the reduction was carried out first, the nitro and the ortho cyano group underwent reduction and conversion to afford amino-cyano-benzamide derivatives 292, 292 and then subsequent hydrolysis afforded the corresponding amino-phthalamic acids 382, 383 (67 %, 70 % yields respectively) which were purified by preparative HPLC. Whereas, the hydrolysis of the dicyanotroarene substrates 233, 225 afforded a mixture of products, the mono-acid 378, 379 and the diacid 232, 222 which were purified by preparative HPLC. Then further reduction yielded the amino-phthalamic acids 382 and 383 (75 %, 73 % yields respectively) which were obtained by preparative HPLC.

In this reaction scheme, although both reaction pathways afforded moderate yields of the same product(s), reduction followed by hydrolysis would be more favoured since it involves a simple work-up procedure. Reduction of the substrate yields one product which was purified by flash-column chromatography followed by hydrolysis to yield another product which was purified by preparative HPLC. In contrast, the hydrolysis of the substrate afforded a mixture of products which needed to be isolated by preparative HPLC in order to carry out the next reduction step. In this

Fig 5-33: Combined hydrolysis and reduction of dicyanotroarenes 233, 225.
Results & Discussion: Combined Hydrolysis & Reduction.

5.13.3 Reduction and hydrolysis of 2-nitro-isophthalonitrile 230.

The reduction of 2-nitro-isophthalonitrile 230 yielded the expected 2-amino-3-cyano-benzamide product 293 (74%) which was further hydrolysed to afford 2-amino-isophthalamic acid 391 in a low yield of 22% and a long reaction time of 4 d (Fig 5-34). In contrast carrying out the hydrolysis first resulted in the hydrolysis of one cyano group to afford 3-cyano-2-nitro-benzoic acid 386 in a high yield of 72% after 5 h and then subsequent reduction afforded the same product 391 in 89% yield.

![Diagram showing the reaction of 2-nitro-isophthalonitrile to 2-amino-isophthalamic acid]

Hydrolysis of the dicyanonitroarene followed by reduction would be a more favourable route because the reaction time is short with the yield of the end product obtained much higher (89%) compared to the yield of the same product (22%) obtained if the order of reactions was reversed.
Results & Discussion: Combined Hydrolysis & Reduction.

5.13.4 Reduction and hydrolysis of 5-nitro- and 4-nitro-isophthalonitrile 221, 294.

This class of substrates have one cyano group substituted at either 4 or 5 position to the nitro group and the other one substituted meta to the nitro group on the aromatic ring. With both substrates, 4-nitro-phthalonitrile 294 and 5-nitro-isophthalonitrile 221, very similar moderate yields and reaction times were obtained for each product and therefore for each reaction step (Fig 5-35).

Reduction of the dicyanonitroarenes 294 and 221 afforded the expected amino-(iso)phthalonitrile products 295 and 296 followed by hydrolysis to yield a mixture of products which were isolated by preparative HPLC affording the corresponding amino-cyano-benzoic acids 392, 393 in moderate yields (53 %, 49 % respectively). If hydrolysis was the first step, two hydrolysed products were obtained, with the mono-acids 387, 389 isolated from the diacids 388, 218 by preparative HPLC. Subsequent reduction afforded the same amino-cyano-benzoic acids 392, 393 by preparative HPLC in moderate yields (60 %, 61 % respectively).

Fig 5-35: Combined hydrolysis and reduction of dicyanonitroarenes.
Results & Discussion: Combined Hydrolysis & Reduction.

There is no significant difference in both pathways, since the same product was obtained in moderate yields and similar reaction times. An extra work-up step involving purification by preparative HPLC was required if the hydrolysis was carried out first, since the mono-acid and diacid had to be purified, otherwise both routes are feasible with the same product(s) obtained.

5.14 Conclusion.

Starting with a dicyano-nitro aromatic compound and producing a tri-substituted aromatic ring where all three functional groups are different has been achieved under biological conditions. Under chemical conditions, it would be difficult to distinguish one cyano group from another. We have shown that by combining the processes of two whole-cell systems it was possible to selectively distinguish one cyano group from another.

In some substrates, the product was an aromatic amino acid which may have applications in pharmaceutical research. Regioselectivity of certain reaction steps during drug synthesis is an important issue and we have shown one method of overcoming this problem by using whole-cell systems.

It would be interesting to know which whole-cell system is superior or will dominate its effect when both \(S.\) \textit{cerevisiae} and \textit{Rhodococcus} sp. is added to simple nitro aromatic compounds simultaneously.

6.1 General experimental.

(a) Instrumentation.

1H and 13C NMR spectra were recorded on Bruker AC250, WH360 or Varian Gemini 200 instruments. Both 1H and 13C spectra were referenced using residual protic solvents either (CD$_3$)$_2$SO [$\delta_{^1}H$ 2.5, q; $\delta_{^{13}}C$ 39.7, m] or CDCl$_3$ [$\delta_{^1}H$ 7.26, s; $\delta_{^{13}}C$ 77.0, t] or (CD$_3$)$_2$CO [[$\delta_{^1}H$ 2.05, q; $\delta_{^{13}}C$ 29.8, m]. Chemical shifts ($\delta_{^1}H$, $\delta_{^{13}}C$) are recorded in parts per million (ppm) and coupling constants (J) are measured in Hertz (Hz) and quoted to the nearest 0.5 Hz.

Infrared spectroscopy was recorded on a Perkin Elmer Paragon 1000 FT-IR spectrophotometer with the frequencies (ν) measured in wavenumbers (cm$^{-1}$). Infrared spectra were recorded either as thin films on sodium chloride plates or as KBr disks and are denoted by (film) or (KBr) respectively.

Melting points were obtained on a Gallenkamp melting point apparatus and are quoted in degrees Celsius (°C) and uncorrected.

Elemental analysis (CHN) was performed using a Perkin Elmer 2400 CHN Elemental Analyser.

UV/Visible Spectroscopy was performed on either a Hewlett Packard 8453 or Unicom UV2-100 UV/Visible Spectrometer.

Fast atom bombardment (FAB) was performed using a Kratos MS50TC instrument, Electrospray (ES) and Atmospheric Pressure Chemical Ionisation (CI) mass spectra were recorded on a Micromass Platform II and Electron Impact (EI) ionisation was carried out on a Finnegan 4500 instrument. All are quoted as Daltons.
Experimental: Synthesis.

Analytical thin layer chromatography (TLC) was carried out on Merck aluminium backed plates coated with silica gel 60 F_{254} (0.25 mmol). The components were visualised using ultra-violet light (245 nm), potassium permanganate and ammonium molybdate dips.

Flash-column chromatography was carried out using the appropriate sized parallel-sided column filled with silica gel 60 (Merck, particle size 0.04-0.063 mm) unless stated otherwise. Eluent compositions are quoted as v/v ratios.

Neutral alumina (50-200 micron, 100-200 mesh, activity III) was purchased from Acros and deactivated to Brockmann grade III with addition of water.

(c) Solvents and Reagents.

All solvents and reagents were standard laboratory grade and used as supplied unless otherwise stated. Tetrahydrofuran was pre-dried over sodium wire and distilled from sodium benzophenone ketal while dichloromethane was distilled from calcium hydride and other solvents were purchased as anhydrous grade. Petroleum ether is referred to as petrol, Bp 45-60 °C.

Resin (AG 50W x 2, 100-200 mesh H^+) was purchased from Bio-Rad and was washed several times with dilute HCl (2M), filtered and washed with deionised water prior to use.

(d) Gas Chromatography Mass Spectroscopy (GCMS).

GCMS chromatographs were recorded on a Hewlett Packard (HP) 6890 series Gas Chromatograph instrument and HP 597 Mass Selective Detector using a HP-5 capillary column (crosslinked 5 % phenyl methyl siloxane, 30 m by 0.32 mmol by
0.25 µL film thickness). The HP ChemStation (Version B.02.05) software package was used to analyse the results.

Conditions: Inlet Heater 250 °C, Pressure psi 13.3, Total flow 1.00 mL/min
Oven variable.

(e) High Performance Liquid Chromatography (HPLC).

HPLC analysis was carried out using a Waters 486 Tunable Absorbance Detector and a Waters 600 Pump and Controller. The results were analysed with the Waters Millennium Chromatography Manager software package.

Chiral HPLC analysis was achieved using a Chiracel OD column as the stationary phase eluting with either hexane:iso-propanol or hexane:ethanol with a flow rate of 0.60 mL/min unless otherwise.

Analytical HPLC was achieved using a Phenomenex Sphereclone ODS 2 column (5µm particle size; dimensions: 25 cm by 4.60 mm) eluting with acetonitrile:water (0.1 % TFA) with a flow rate of 1 mL/min.

Preparative HPLC was achieved using a Phenomenex Sphereclone ODS 2 column (5µ particle size; dimensions: 250 by 10.00 mm) eluting with acetonitrile:water 0.1 % TFA) with a flow rate of 4.7 mL/min.

(f) Liquid Chromatography Mass Spectroscopy (LCMS).

LCMS studies were carried out on a Micromass Platform using a Waters 486 UV detector and a Waters Alliance 2690 Pump and controller. Masslynx (Version 2.3) software package was used to analyse the results.
Photodiode array studies were carried out on a Micromass ZMD 4000 spectrometer using a Waters 966 Photodiode Array Detector and Waters 600 Pump with Masslynx software (Version 3.3).

Sample preparation: 1 mL of the reaction mixture was removed and microcentrifuged. A sample of the aqueous layer (200 μL) was removed, filtered and diluted with water:acetonitrile (800 μL; 0.1 % TFA; 1:1).

6.2 Synthesis of dicyanonitroarenes.

5-Nitro-isophthaloyl dichloride 219.158

Under an inert atmosphere, 5-nitro-isophthalic acid 218 (15.00 g, 71.0 mmol, pre-dried at 100 °C for 1 h) was heated under reflux with thionyl chloride (200.00 g, 122.7 mL) for ca. 48 h or until all the acid had dissolved. Excess thionyl chloride was removed in vacuo to yield an oil which afforded on cooling white needle-like crystals of 5-nitro-isophthaloyl dichloride 219 (17.10 g, 97.1 %).

Mp 66.0-67.5 °C, Lit.159 67.5-68.0 °C; \(v_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3088 (CH), 1756 (C=O), 1615 (Ph), 1535, 1349 (NO₂); \(\delta_{\text{H}} \) (CDCl₃, 200 MHz) 9.21 (2H, d, J 1.8, PhH), 9.10 (1H, t, J 1.8, PhH); \(\delta_{\text{C}} \) (CDCl₃, 63 MHz) 165.5, 137.2 (C), 135.9 (CH), 134.2 (C), 130.7 (CH); m/z (EI) 248 (M⁺), 221 (M-HCN), 202 (M-NO₂).
Experimental: Synthesis.

5-Nitro-isophthalamide 220.\(^{160}\)

![Image of 5-Nitro-isophthalamide 220](image)

5-Nitro-isophthaloyl dichloride 219 (15.00 g, 60.0 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (30 mL) and the resulting heterogeneous mixture stirred at 25 °C for 30 min. The diamide was collected by gravity filtration, dried in vacuo and the resulting solid purified by recrystallisation (water) to afford 5-nitro-isophthalamide 220 as white crystals (10.80 g, 85.6 %).

Mp 310.0-311.3 °C, Lit.\(^{161}\) 312.0-314.0 °C; \(\nu_{\text{max}}\) (KBr)/cm\(^{-1}\) 3345, 3207 (NH\(_2\)), 1715 (C=O), 1682 (NH), 1613 (Ph), 1520, 1535 (NO\(_2\)); \(\delta_{\text{H}}\) ((CD\(_3\))\(_2\)SO, 200 MHz) 8.91 (1H, t, 1.5, PhH), 8.80 (2H, d, J 1.5, PhH), 8.52 (4H, br s, CONH\(_2\)); \(\delta_{\text{C}}\) ((CD\(_3\))\(_2\)SO, 63 MHz) 165.5, 148.1, 136.2 (C), 132.8, 124.8 (CH); \(m/z\) (Cl\(^{+}\)) 210 (MH\(^+\)), 179 (M-NO).

5-Nitro-isophthalonitrile 221.\(^{162}\)

![Image of 5-Nitro-isophthalonitrile 221](image)

5-Nitro-isophthalamide 220 (7.06 g, 33.8 mmol, pre-dried at 110 °C for 2 h) was heated under reflux with excess phosphorus oxychloride (ca. 23 mL) for 4 h. The resulting yellow solution was concentrated under reduced pressure to yield a light brown solid. Recrystallisation (benzonitrile) afforded 5-nitro-isophthalonitrile 221 as light brown crystals (2.80 g, 49.9 %).

R\(_{f}\) (EtOAc:Petrol, 1:1) 0.56; Mp 205.0-208.5 °C, Lit.\(^{162}\) 205.0 °C; \(\nu_{\text{max}}\) (KBr)/cm\(^{-1}\) 3079 (CH), 2240 (CN), 1608 (Ph), 1544, 1355 (NO\(_2\)); \(\delta_{\text{H}}\) ((CD\(_3\))\(_2\)SO, 200 MHz) 9.06 (2H, d, J 1.5, PhH), 8.09 (1H, t, J 1.5, PhH); \(\delta_{\text{C}}\) ((CD\(_3\))\(_2\)SO, 63 MHz) 148.2 (C), 142.2, 131.9 (CH), 115.8, 144.2 (C); \(m/z\) (El) 173 (M\(^+\)), 143 (M-NO), 127 (M-NO\(_2\)), 100 (M-NO\(_2\)-HCN); GC: R, 6.5 min, oven temp 150 °C.
Experimental: Synthesis.

2-Nitro-terephthaloyl dichloride 223.163

![2-Nitro-terephthaloyl dichloride 223](image)

Nitro-terephthalic acid 222 (21.10 g, 0.1 mmol, pre-dried using phosphorus pentoxide for 1 h) was stirred vigorously with phosphorus pentachloride (50.00 g, 0.2 mmol). The liquid was heated at 90 °C for 1 h, cooled and the product extracted with hexane (3 x 25 mL). The combined organic extracts were concentrated \textit{in vacuo} to afford the \textit{acid dichloride} 223 as light yellow oil (20.37 g, 82.1 %).

Bp 139.0 °C, Lit.164 140.0-142.0 °C; \(\nu_{\text{max}} (\text{film})/\text{cm}^{-1} \) 3096 (CH), 1773 (C=O), 1619 (Ph), 1543, 1349 (NO\textsubscript{2}); \(\delta_H \) ((CD\textsubscript{3})\textsubscript{2}CO, 200 MHz) 8.85 (1H, d, \(J=1.8 \), Ph\textsubscript{H}), 8.72 (1H, dd, \(J=8.1 \) and 1.8, Ph\textsubscript{H}), 8.13 (1H, d, \(J=8.1 \), Ph\textsubscript{H}); \(\delta_C \) ((CD\textsubscript{3})\textsubscript{2}CO, 63 MHz) 204.8, 200.6 (C), 134.4 (CH), 134.2, 132.8, 129.6 (C), 128.2, 124.7 (CH); \textit{m/z} (Cl+) 249 (MH+), 218 (M-NO), 202 (M-NO\textsubscript{2}).

2-Nitro-terephthalamide 224.165

![2-Nitro-terephthalamide 224](image)

2-Nitro-terephthaloyl dichloride 223 (20.00 g, 80.6 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (40 mL) and the resulting heterogeneous mixture stirred at 25 °C for 24 h. The diamide was collected by gravity filtration, dried \textit{in vacuo} and the resulting solid purified by recrystallisation (water) to afford \textit{2-nitro-terephthalamide} 224 as yellow needle-like crystals (15.88 g, 94.2 %).

Mp 273.0-275.4 °C, Lit.165 275.0-276.0 °C; \(\nu_{\text{max}} (\text{KBr})/\text{cm}^{-1} \) 3359, 3197 (NH\textsubscript{2}), 1663 (C=O, NH), 1680 (Ph), 1533, 1350 (NO\textsubscript{2}); \(\delta_H \) ((CD\textsubscript{3})\textsubscript{2}SO, 200 MHz) 8.45 (1H, d, \(J=1.7 \), Ph\textsubscript{H}), 8.35 (1H, br s, CONH\textsubscript{2}), 8.25 (1H, br s, CONH\textsubscript{2}), 8.22 (1H, dd, \(J=7.9 \) and 1.7, Ph\textsubscript{H}), 7.81 (1H, br s, CONH\textsubscript{2}), 7.78 (1H, br s, CONH\textsubscript{2}), 7.72 (1H, d, \(J=7.9 \), Ph\textsubscript{H});
Experimental: Synthesis.

δC (CD$_3$$_2$SO, 63 MHz) 166.9, 165.4, 147.1, 136.2, 135.0 (C), 132.3, 129.3, 123.1 (CH); m/z (ES$^+$) 210 (MH$^+$), 192 (M-NH$_3$), 179 (M-NO).

2-Nitro-terephthalonitrile 225.166

![Diagram](https://via.placeholder.com/150)

2-Nitro-terephthalonitrile 225 (7.65 g, 36.6 mmol, pre-dried at 110 °C for 2 h) was heated under reflux with excess phosphorus oxychloride (ca. 25 mL) for 4 h. The resulting yellow solution was concentrated under reduced pressure to yield a light brown solid. Recrystallisation (water) afforded 2-nitro-terephthalonitrile 225 as beige crystals (2.40 g, 37.1 %). R$_f$ (EtOAc) 0.24; Mp 125.7-127.2 °C, Lit.166 124.0-126.0 °C; ν$_{max}$(KBr)/cm$^{-1}$ 3088 (CH), 2242 (CN), 1543, 1356 (NO$_2$); δH (CD$_3$$_2$SO, 200 MHz) 8.95 (1H, d, J 1.5, PhH), 8.47 (lH, dd, J 8.1 and 1.5, PhH), 8.39 (1H, d, J 8.1, PhH); δC (CD$_3$$_2$SO, 63 MHz) 148.7 (C), 138.3, 136.7, 129.6 (CH), 116.7, 116.2, 114.8, 111.2 (C); m/z (EI) 173 (M$^+$), 143 (M-NO), 127 (M-NO$_2$), 100 (M-NO$_2$-HCN); GC: R$_f$ 9.7 min, oven temp 150 °C.

2-Nitro-isophthalic acid 227.167

![Diagram](https://via.placeholder.com/150)

1,3-Dimethyl-2-nitrobenzene 226 (20.00 g, 0.13 mmol, 18 mL), distilled water (400 mL) and potassium permanganate (40.20 g, 2.5 eq.) were placed in a 3-necked flask fitted with a thermometer, a magnetic stirrer and a reflux condenser. The resulting mixture was stirred vigorously for 5 min, then heated to 85 °C after which the internal temperature was maintained at 80 °C using an ice bath to control the initial exothermic reaction. Upon completion the solution was heated under reflux for 2 h at 90 °C, cooled to 75 °C and filtered though a bed of Celite™. The yellow
filtrate obtained was acidified to pH 3 by the addition of concentrated HCl aq. and the precipitated solid was collected by filtration and dried *in vacuo* to afford *2-nitro-isophthalic acid* 227 as a white solid (6.96 g, 25.0 %).

Mp 316.0-317.6 °C, Lit.\(^{167}\) 314.0-315.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1}\) 3000-2500 (br, O-H), 1720 (C=O), 1605 (Ph), 1568, 1379 (NO\(_2\)); \(\delta_{\text{H}} ((\text{CD})_3\text{CO})\), 200 MHz) 8.32 (2H, d, J 7.7, PhH), 7.72 (1H, t, J 7.7, PhH); \(\delta_{\text{C}} ((\text{CD})_3\text{CO})\), 63 MHz) 162.5 (C), 134.1, 129.9 (CH), 129.4, 123.7 (C); \(m/z\) (ES\(^{-}\)) 210 (M-H).\(^{-}\)

2-Nitro-isophthaloyl dichloride 228.\(^{168}\)

![2-Nitro-isophthaloyl dichloride](image)

Phosphorus pentachloride (28.00 g, 0.1 mmol), phosphorus oxychloride (18.42 g, 11.2 mL) and 2-nitro-isophthalic acid 227 (5.63 g, 26.7 mmol) were heated under reflux for 10 h whereafter the liquid was slowly poured into a stirred ice mixture to hydrolyse any unreacted phosphorus pentachloride. The yellow solid was collected by filtration, washed several times with water, dried *in vacuo* and recrystallised (hexane) to afford *2-nitro-isophthaloyl dichloride* 228 as orange crystals (6.34 g, 95.8 %).

Mp 128.5-131.0 °C, Lit.\(^{168}\) 129.0-131.5 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1}\) 3095 (CH), 1770 (C=O), 1590 (Ph), 1556, 1362 (NO\(_2\)); \(\delta_{\text{H}} ((\text{CD})_3\text{CO})\), 200 MHz) 8.33 (2H, d, J 7.9, PhH), 8.06 (1H, t, J 7.9, PhH); \(\delta_{\text{C}} ((\text{CD})_3\text{CO})\), 63 MHz) 204.6, 137.2, 136.5 (C), 135.8, 130.9 (CH); \(m/z\) (Cl\(^{-}\)) 249 (MH\(^{-}\)), 218 (M-NO), 202 (M-NO\(_2\)).

2-Nitro-isophthalamid 229.\(^{165}\)

![2-Nitro-isophthalamid](image)

2-Nitro-isophthaloyl dichloride 228 (15.00 g, 60.0 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (30 mL) and the resulting
heterogeneous mixture stirred at 25 °C for 30 min. The diamide was collected by
gavity filtration, dried in vacuo and the resulting solid purified by recrystallisation
(water) to afford 2-nitro-isophthalamide 229 as cream needle-like crystals (3.18 g,
66.6 %).

Mp 292.2-293.6 °C, Lit. 169 288.0-290.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} 3406, 3249 (\text{NH}_2), 1664
(\text{C}=\text{O}, \text{NH}), 1613 (\text{Ph}), 1531, 1360 (\text{NO}_2); \delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 8.29 (4\text{H, br s},
\text{CONH}_2), 7.73 (2\text{H, d, } J 9.5, \text{PhH}), 7.66 (1\text{H, t, } J 9.5, \text{PhH}); \delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz})
166.3, 147.1 (\text{C}), 131.2 (\text{CH}), 131.1 (\text{C}), 130.1 (\text{CH}); m/z (\text{Cl}^+) 210 (\text{MH}^+), 192 (\text{M}-
\text{NH}_3).

2-Nitro-isophthalonitrile 230. 170

![2-Nitro-isophthalonitrile 230](image)

A mixture of 2-nitro-isophthalamide 229 (3.00 g, 14.4 mmol) and phosphorus
pentoxide (58.60 g, 412.7 mmol) was heated in vacuo at 160 °C for 1.5 h. Soxhlet
extraction of the powdered reaction mixture followed by concentration of the extract
to ca. 20 mL and addition of petrol afforded a precipitate. The solid was removed by
filtration and dried in vacuo to yield 2-nitro-isophthalonitrile 230 as yellow crystals
(0.91 g, 36.7 %).

Mp 151.0-152.3 °C, Lit. 170 152.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} 3098 (\text{CH}), 2243 (\text{CN}), 1612
(\text{Ph}), 1541, 1345 (\text{NO}_2); \delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 8.48 (2\text{H, d, } J 7.6, \text{PhH}), 8.11
(1\text{H, t, } J 7.6, \text{PhH}); \delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 150.1 (\text{C}), 139.6, 134.8 (\text{CH}), 114.5,
109.2 (\text{C}); m/z (\text{EI}) 173 (M^+), 143 (\text{M-NO}), 127 (\text{M-NO}_2), 100 (\text{M-NO}_2-\text{HCN}); \text{GC:}
R_t 4.4 \text{ min, oven temp } 150 \text{ °C}.

158
Experimental: Synthesis.

3-Methyl-4-nitro-benzoic acid 231 (20.00 g, 10.1 mmol), distilled water (400 mL) and potassium permanganate (40.20 g, 2.5 eq.) were placed in a 3-necked flask fitted with a thermometer, a magnetic stirrer and a reflux condenser. The resulting mixture was stirred vigorously for 5 min, then heated to 85 °C after which the internal temperature was maintained at 80 °C using an ice bath to control the initial exothermic reaction. Upon completion the solution was heated under reflux for 2 h at 90 °C, cooled to 75 °C and filtered though a bed of Celite™. The yellow filtrate obtained was acidified to pH 3 by the addition of concentrated HCl aq. and filtered to remove unreacted starting material. Concentration of the filtrate under reduced pressure afforded a solid which contained a mixture of both the starting material and the product. Purification by flash-column chromatography (ethyl acetate:chlororoform, 1:1) afforded 4-nitro-isophthalic acid 232 as a cream solid (2.53 g, 10.5 %).

Rf (EtOAc:CHCl3, 1:1) 0.14; Mp 243.5-244.8 °C, Lit.172 245.0-246.0 °C; νmax(KBr)/cm⁻¹ 3150 (br, O-H), 1699 (C=O), 1609 (Ph), 1539, 1380 (NO2); δH ((CD3)2SO, 200 MHz) 12.2 (2H, br, COOH), 8.29 (1H, d, J 1.8, PhH), 8.08 (1H, dd, J 8.3 and 1.8, PhH), 7.84 (1H, d, J 8.3, PhH); δc ((CD3)2SO, 63 MHz) 166.0, 165.6, 151.3, 134.8, 131.8 (C), 131.4, 131.0, 123.3 (CH); m/z (ES⁻) 210 (M-H)⁻, 181 (M-NO), 165 (M-NO2).
A mixture of 4-nitro-isophthalic acid 232 (2.03 g, 9.6 mmol), *para*-toluenesulphonamide (3.50 g, 20.7 mmol) and phosphorus pentachloride (8.60 g, 14.3 mmol) was heated at 200 °C for 30 min with stirring. Upon cooling, chloroform (20 mL) was added and the resulting solution was heated under reflux for 30 min, after which time 10 % NaHCO₃ (w/v) was added until a stable pH was obtained and the effervescence had stopped. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure to afford a brown oil. Purification by flash-column chromatography (ethyl acetate:chloroform, 1:1) afforded 4-nitro-isophthalonitrile 233 as a light brown solid (0.36 g, 21.6 %).

Rf (EtOAc:CHCl₃, 1:1) 0.65; Mp 122.0-123.5 °C, Lit. 124.0-125.0 °C; νmax (KBr)/cm⁻¹ 3102 (CH), 2249 (CN), 1580 (Ph), 1539, 1353 (NO₂); δH (CDCl₃, 200 MHz) 8.47 (1H, d, J 18.6, PhH), 8.22 (IH, d, J 0.5, PhH), 8.16 (IH, dd, J 8.6 and 0.5, PhH); δC (CDCl₃, 63 MHz) 138.6, 137.0, 126.4 (CH), 188.7, 144.7, 112.8, 110.2, 1091.6 (C); m/z (El) 173 (M⁺), 143 (M-NO), 127 (M-NO₂), 100 (M-NO₂-HCN); GC: Rf 9.5 min, oven temp 150 °C.
6.3 Synthesis of dicyano(di)nitroarenes.

3-Nitro-phthaloyl dichloride 235.

![3-Nitro-phthaloyl dichloride 235](image)

Under an inert atmosphere, 3-nitro phthalic acid 234 (2.00 g, 9.5 mmol, pre-dried at 100 °C for 1 h) was heated under reflux with thionyl chloride (2.5 eq.) for ca. 24 h. Excess thionyl chloride was removed in vacuo to yield an oil which afforded on cooling pale yellow needle-like crystals of 3-nitro-phthaloyl dichloride 235 (1.84 g, 78.0 %).

Mp 137.1-137.9 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3021 (CH), 1773 (C=O), 1615 (Ph), 1524, 1339 (NO\(_2\)); \(\delta_\text{H} \) ((CD\(_3\))\(_2\)SO, 200 MHz) 7.78 (2H, m, PhH), 7.47 (1H, dd, \(J \) 8.1 and 8.0, PhH); \(\delta_\text{C} \) ((CD\(_3\))\(_2\)SO, 63 MHz) 173.3, 168.6, 148.1, 135.4 (C), 132.9 (CH), 130.2 (C), 128.8, 122.3 (CH); \(m/z \) (El) 248 (M\(^+\)), 218 (M-NO).

4-Nitro-isindole-1,3-dione 236.

![4-Nitro-isindole-1,3-dione 236](image)

3-Nitro-phthaloyl dichloride 235 (1.00 g, 4.0 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (5 mL) and the resulting heterogeneous mixture stirred at room temperature for 24 h. The ammonia solution was concentrated and dried in vacuo to afford 4-nitro-isindole-1,3-dione 236 as a pale yellow solid (564.0 mg, 73.4 %).

Mp 214.2-215.9 °C, Lit.\(^1\) 215.0-216.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3082 (CH), 1780, 1730 (C=O), 1620 (Ph), 1542, 1362 (NO\(_2\)); \(\delta_\text{H} \) ((CD\(_3\))\(_2\)SO, 200 MHz) 11.4 (1H, br s, OCNHCO), 8.24 (1H, dd, \(J \) 7.7 and 0.9, PhH), 8.05 (2H, m, PhH); \(\delta_\text{C} \) ((CD\(_3\))\(_2\)SO,
Experimental: Synthesis.

63 MHz) 167.4, 164.8, 144.5 (C), 136.2 (CH), 134.8 (C), 128.3, 126.9 (CH), 124.0 (C); m/z (EI) 192 (M⁺), 146 (M-NO₂).

3-Nitro-phthalimide 237.¹⁷⁵

\[
\begin{align*}
\text{NO}_2 & \quad \text{CONH}_2 \\
\text{CONH}_2 & \quad \text{CONH}_2
\end{align*}
\]

Concentrated ammonia solution (2 mL) was added to pulverised 4-nitro-isoindole-1,3-dione 236 (500.0 mg, 2.6 mmol) to form a pale brown suspension. The stirred reaction mixture was heated at 45 °C for 5 h, after which time the solid was removed by filtration, washed with cold water and dried to a constant weight affording 3-nitro-phthalimide 237 as a light yellow solid (337.5 mg, 62.1 %). Mp 198.2-199.8 °C, Lit. ²⁰⁰ 200.0-201.0 °C; ν max(KBr)/cm⁻¹ 3341, 3125 (NH₂), 3011 (CH), 1669 (C=O), 1621 (NH), 1537, 1352 (NO₂); δH ((CD₃)₂SO, 200 MHz) 8.45 (2H, br s, CONH₂), 8.19 (1H, d, J 7.7, PhH), 8.13 (1H, br s, CONH₂), 7.95 (1H, d, J 7.7, PhH), 7.58 (1H, br s, CONH₂), 6.68 (1H, dd, J 8.0, PhH); δC ((CD₃)₂SO, 63 MHz) 167.5, 164.1, 146.2, 136.5 (C), 131.7, 130.6 (CH), 128.3 (C), 123.4 (CH); m/z (ES⁺) 210 (MH⁺), 164 (M-NO₂), 120 (M-NO₂-CONH₂).

3-Nitro-phthalonitrile 238.¹⁷⁵

\[
\begin{align*}
\text{NO}_2 & \quad \text{CN} \\
\text{CN} & \quad \text{CN}
\end{align*}
\]

DMF (1.8 mL) was cooled to 5 °C under a nitrogen atmosphere and thionyl chloride (4.79 g, 7.8 mL) was added drop-wise. The solution was stirred for 3 h, after which time 3-nitro-phthalimide 237 (300.0 mg, 1.7 mmol) was added at such a rate as to keep the temperature below 10 °C. The reaction was stirred for 6 h at 0-5 °C then brought to room temperature and stirred overnight. The solution was poured onto ice and the crystallised product collected by vacuum filtration and washed several times.
with cold water. The product was dried in vacuo to afford 3-nitro-phthalonitrile 238 as a pale yellow solid (210.3 mg, 71.5 %).

Mp 159.3-161.8 °C, Lit.175 160.0-162.0 °C; ν_{max}(KBr)/cm-1 3074 (CH), 2249 (CN), 1594 (Ph), 1540, 1360 (NO\textsubscript{2}); δ_{H} ((CD\textsubscript{3})\textsubscript{2}SO, 200 MHz) 8.72 (1H, dd, J 8.5, PhH), 8.62 (1H, dd, J 8.5, PhH), 8.25 (1H, dd, J 8.5, PhH); δ_{C} ((CD\textsubscript{3})\textsubscript{2}SO, 63 MHz) 147.1 (C), 137.2, 134.9, 128.7 (CH), 116.3, 112.8, 113.2, 110.1 (C); m/z (EI) 173 (M+), 143 (M-NO), 127 (M-NO\textsubscript{2}), 73 (M-NO\textsubscript{2}-2HCN).

3,6-Dinitro-phthalic acid 240.

To a solution of 3,6-dinitro-phthalic acid mono-pyridinium salt 239 (100.0 mg, 0.3 mmol) in the minimum amount of deionised water was added acidic resin (1.25 g, 6.0 mmol) and the mixture stirred for 2 h. The solution was pH tested to confirm the formation of acid. The resin was removed by filtration and further washed with deionised water. The filtrate and washings obtained were concentrated, dried in vacuo to afford 3,6-dinitro-phthalic acid 240 as a pale yellow solid (82.3 mg, 91.5 %).

Mp 199.9-201.5 °C, Lit.177 201.0-202.0 °C; ν_{max}(KBr)/cm-1 3284 (br, O-H), 1722 (C=O), 1622 (Ph), 1552, 1346 (NO\textsubscript{2}); δ_{H} ((CD\textsubscript{3})\textsubscript{2}SO, 200 MHz) 8.37 (2H, s, PhH); δ_{C} ((CD\textsubscript{3})\textsubscript{2}SO, 63 MHz) 165.4, 151.5, 132.4 (C), 129.5 (CH); m/z (ES-) 254 (M-2H2+), 210 (M-NO\textsubscript{2}), 165 (M-NO\textsubscript{2}).
3,6-Dinitro-phthaloyl dichloride 241.

Under an inert atmosphere, 3,6-dinitro-phthalic acid 240 (75.0 mg, 0.3 mmol, pre-dried at 100 °C for 1 h) was heated under reflux with thionyl chloride (2.5 eq.) for ca. 24 h. Excess thionyl chloride was removed *in vacuo* to yield an oil which afforded on cooling 3,6-dinitro-phthaloyl dichloride 241 as a pale brown solid (66.3 mg, 75.4 %).

Mp > 300.0 °C; \(\nu_{\text{max}} (\text{KBr})/\text{cm}^{-1} 2923 (\text{CH}), 1785 (\text{C}=\text{O}), 1595 (\text{Ph}), 1535, 1356 (\text{NO}_2) \); \(\delta_\text{H} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 8.91 (2\text{H}, \text{s, PhH}); \delta_\text{C} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 163.2, 150.1, 132.9 (\text{C}), 129.6 (\text{CH}); m/z (\text{El}) 293 (M^+), 247 (M-\text{NO}_2), \text{Found (M^+)} 291.9183, \text{C}_8\text{H}_2\text{N}_2\text{O}_6\text{Cl}_2 \text{requires 291.9290}.

4-Amino-7-nitro-isoindole-1,3-dione 242.

3,6-Dinitro-phthaloyl dichloride 241 (60.0 mg, 0.2 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (2 mL) and the resulting heterogeneous mixture stirred at 25 °C for 24 h. The diamide was collected by gravity filtration, dried *in vacuo* to afford 4-amino-7-nitro-isoindole-1,3-dione 242 as a pale brown solid (30.1 mg, 72.7 %).

Mp 206.0-208.3 °C; \(\nu_{\text{max}} (\text{KBr})/\text{cm}^{-1} 3487, 3215 (\text{NH}_2), 2954 (\text{CH}), 1726, 1718 (\text{C}=\text{O}), 1622 (\text{Ph}), 1549, 1367 (\text{NO}_2); \delta_\text{H} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 12.0 (1\text{H}, \text{br s, OCNHCO}), 8.23 (1\text{H}, \text{d, J 8.6, PhH}), 7.30 (1\text{H}, \text{d, J 8.6, PhH}); \delta_\text{C} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 165.2, 163.5, 148.2, 142.6, 131.2 (\text{C}), 130.1 (\text{CH}), 121.9 (\text{C}), 120.1 (\text{CH}); m/z (\text{El}) 207 (M^+), 161 (M-\text{NO}_2), 134 (M-\text{NO}_2-\text{NO}).
Under a nitrogen atmosphere, 3-nitro-phthaloyl dichloride 235 (500.0 mg, 2.0 mmol) in anhydrous dichloromethane (5 mL) was added to an ice-cold solution of hexamethyldisilazide (976.0 mg, 1.3 mL) in anhydrous dichloromethane (15 mL) and left to stir overnight at room temperature. Methanol (2 mL) was added and the solution washed with 5% aqueous sulfuric acid (2 x 20 mL) and a saturated solution of ammonium acetate (2 x 20 mL). The organic extract was dried (MgSO₄), filtered and concentrated under reduced pressure to afford 2-carbamoyl-3-nitro-benzoyl chloride 246 as a white solid (304.1 mg, 66.4%).

Mp 200.5-202.0 °C; \(\nu_{\text{max}} \) (KBr)/cm\(^{-1}\) 6005 (CH), 1650, 1635 (C=O, NH), 1612 (Ph), 1552, 1329 (NO₂); \(\delta \) \((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 8.61 (1H, dd, J 7.8 and 1.2, PhH), 8.52 (1H, dd, J 8.0 and 1.2, PhH), 7.99 (1H, dd, J 8.0 and 7.8, PhH), 7.21 (2H, br s, NH₂); \(\delta \) \((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 166.6, 166.1, 147.5 (C), 134.4 (CH), 133.1 (C), 132.9 (CH), 131.8 (C), 127.2 (CH); \(m/z \) (EI) 229 (M⁺), 183 (M-NO₂), 139 (M-NO₂-CONH₂), Found (M⁺) 227.9902, C₈H₅N₂O₄Cl requires 227.9938.
6.4 Synthesis of nitroarene-sulfinyls.

1-Ethylsulfanyl-2-nitrobenzene 251.\(^{178}\)

\[\text{NO}_2 \]

Under an inert atmosphere, ethanethiol (5.87 g, 7 mL) was added to ethanol (280 mL) and stirred for 5 min after which time a solution of NaOH (3.80 g, 95.0 mmol) in water (28 mL) was added. This solution was added to a stirred solution of ortho-chloro-2-nitrobenzene 250 (15.00 g, 94.9 mmol) in ethanol (95 mL), the mixture heated under reflux for 10 min and concentrated under reduced pressure to afford a red oil. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) to afford 1-ethylsulfanyl-2-nitrobenzene 251 as a yellow oil (15.82 g, 73.0 %).

R\text{f} \ (\text{EtOAc}) \ 0.70; \ Bp \ 147.2 \ ^\circ\text{C}, \ Lit.\(^{179}\) 149.0-150.0 \ ^\circ\text{C} \ \nu_{\text{max}}(\text{film})/\text{cm}^{-1} \ 2972 \ (\text{CH}), \ 1592 \ (\text{Ph}), \ 1512, \ 1337 \ (\text{NO}_2); \ \delta_{\text{H}} \ ((\text{CD}_3)_2\text{SO}, \ 200 \ \text{MHz}) \ 8.16 \ (1\text{H}, \ dd, \ J \ 8.4 \ and \ 1.5, \ \text{PhH}), \ 7.53 \ (1\text{H}, \ td, \ J \ 8.4, \ 7.0 \ and \ 1.5, \ \text{PhH}), \ 7.39 \ (1\text{H}, \ dd, \ J \ 7.0 \ and \ 1.5, \ \text{PhH}), \ 7.22 \ (1\text{H}, \ td, \ J \ 8.4, \ 7.0 \ and \ 1.5, \ \text{PhH}), \ 2.97 \ (2\text{H}, \ q, \ J \ 7.3, \ \text{CH}_2), \ 1.38 \ (3\text{H}, \ t, \ J \ 7.3, \ \text{CH}_3); \ \delta_{\text{C}} \ ((\text{CD}_3)_2\text{SO}, \ 63 \ \text{MHz}) \ 137.7 \ (\text{C}), \ 133.3 \ (\text{CH}), \ 131.7 \ (\text{C}), \ 126.3, \ 125.9, \ 124.1, \ 26.1 \ (\text{CH}_2), \ 12.6 \ (\text{CH}_3); \ m/z \ (\text{EI}) \ 183 \ (M^+), \ 154 \ (M-\text{C}_2\text{H}_5), \ 122(M-\text{SC}_2\text{H}_5), \ 92 \ (M-\text{SC}_2\text{H}_5-\text{NO}).

1-Ethanesulfinyl-2-nitrobenzene 261.\(^{141}\)

To a stirred solution of ethylsulfanyl-2-nitrobenzene 251 (4.00 g, 17.5 mmol) in chloroform (82 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (3.46 g, 20.0 mmol) in chloroform (40 mL). The reaction was stirred for 15 min then
left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate) afforded 1-ethanesulfanyl-2-nitrobenzene 261 as a yellow solid (3.45 g, 99.1 %).

R_f (EtOAc) 0.39; Mp 95.2 °C, Lit. 180 96.0-99.0 °C; \(\nu \) _max(KBr)/cm⁻¹ 3097 (CH), 1596 (Ph), 1521, 1346 (NO₂), 1067 (S=O); \(\delta \) _H ((CD₃)₂SO, 200 MHz) 8.27 (2H, m, PhH), 7.94 (1H, td, \(J \) 7.7, 7.3 and 1.1, PhH), 7.71 (1H, td, \(J \) 8.4, 7.7 and 1.5, PhH), 3.71 (1H, q, \(J \) 7.3, CH₃), 2.82 (1H, q, \(J \) 10.3, CH₂), 1.40 (1H, t, \(J \) 10.3 and 7.3, CH₃); \(\delta \) _C ((CD₃)₂SO, 63 MHz) 144.7, 142.8 (C), 135.0, 131.2, 127.1, 125.1 (CH), 49.5 (CH₂), 6.71 (CH₃); \(m/z \) (El) 199 (M⁺), 170 (M-C₂H₅), 122(M-SOC₂H₅); HPLC (hexane:EtOH, 90:10): R_f 17.3 and 19.8 min.

1-iso-Propylsulfanyl-2-nitrobenzene 252

To a stirred solution of propane-2-thiol (18.04 g, 22 mL) in iso-propanol (degassed, 250 mL) was added a solution of NaOH (8.50 g, 212.5 mmol) in water (65 mL). The alcoholic solution of sodium mercaptide was added to a solution of ortho-chloro-2-nitrobenzene 250 (4.00 g, 25.3 mmol) in iso-propanol (degassed, 20 mL) and the reaction stirred at 40 °C for 5 h. After complete substrate consumption (TLC), the reaction mixture was poured into dilute HCl (2 %, 300 mL) and extracted with ether (3 x 200 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-iso-propylsulfanyl-2-nitrobenzene 252 as an orange/red oil (4.21 g, 84.4 %).

R_f (EtOAc:Petrol, 1:1) 0.59; Bp 102.0-103.5 °C, Lit. 182 103.0-105.0 °C; \(\nu \) _max(film)/cm⁻¹ 3027 (CH), 1601 (Ph), 1565, 1354 (NO₂); \(\delta \) _H ((CD₃)₂SO, 200 MHz) 8.08 (1H, dd, \(J \) 8.2 and 1.4, PhH), 7.50 (2H, m, PhH), 7.22 (1H, td, \(J \) 8.2, 6.8 and 1.5,
1-Nitro-2-(propane-2-sulfinyl)-benzene 262.

To a stirred solution of sulfide 252 (4.00 g, 20.3 mmol) in chloroform (80 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (3.98 g, 23.0 mmol) in chloroform (50 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-nitro-2-(propane-2-sulfinyl)-benzene 262 as a yellow solid (1.40 g, 32.3 %).

Rₚ (EtOAc:Petrol, 1:1) 0.12; Mp 90.1-91.6 °C, Lit.¹⁸³ 89.0-91.0 °C; νₚₜₐₜ(KBr)/cm⁻¹ 2988 (CH), 1564 (Ph), 1530, 1321 (NO₂), 1048 (S=O); δₓ ((CD₃)₂SO, 200 MHz) 8.31 (1H, dd, J 8.1 and 1.2, PhH), 8.16 (1H, dd, J 7.9 and 1.4, PhH), 7.92 (1H, td, J 7.9, 7.3 and 1.2, PhH), 7.67 (1H, td, J 8.1, 7.3 and 1.4, PhH), 3.20 (1H, sept, J 7.0 and 6.9, CH), 1.55 (3H, d, J 7.0, CH₃), 0.95 (3H, d, J 6.9, CH₃); δₓ ((CD₃)₂SO, 63 MHz) 144.7, 142.1 (C), 134.5, 131.0, 127.6, 125.2, 52.7 (CH), 18.8, 11.8 (CH₃); m/z (El) 213 (M⁺), 138 (M-SC₃H₇), 108 (M-SC₃H₇-NO); HPLC (hexane:EtOH, 99:1): Rₚ 32.2 and 41.9 min.
To a stirred solution of 2-methyl-propane-2-thiol sodium salt (1.17 g, 10.4 mmol) in iso-propanol (degassed, 250 mL) was added a solution of ortho-chloro-2-nitrobenzene 250 (1.40 g, 6.9 mmol) in iso-propanol (10 mL) and the reaction stirred at 40 °C for 5 h. After complete substrate consumption (TLC), the reaction mixture was poured into dilute HCl (2 %, 300 mL) and extracted with ether (3 x 200 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ether:toluene, 8:2) afforded 1-tert-butylsulfanyl-2-nitrobenzene 253 as an oil (615.0 mg, 42.2 %).

Rf (ether:toluene, 8:2) 0.17; νmax(film)/cm⁻¹ 2911 (CH), 1601 (Ph), 1545, 1330 (NO₂); δH ((CD₃)₂SO, 200 MHz) 7.91 (1H, dd, J 7.9 and 1.3, PhH), 7.52 (2H, m, PhH), 7.44 (1H, td, J 7.9, 7.7 and 1.2, PhH), 1.30 (9H, s, C(CH₃)₃); δC ((CD₃)₂SO, 63 MHz) 152.9 (C), 136.2, 132.1, 127.5 (CH), 125.2 (C), 120.9 (CH), 45.1 (C), 35.8 (CH₃); m/z (El) 211 (M⁺), 154 (M-C(CH₃)₃), 122 (M-SC(CH₃)₃), 92 (M-SC(CH₃)₃-NO).

To a stirred solution of sulfide 253 (506.4 mg, 2.4 mmol) in chloroform (15 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (484.8 mg, 2.8 mmol) in chloroform (40 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column

1-tert-Butylsulfanyl-2-nitrobenzene 253.
chromatography (ethyl acetate:petrol, 1:1) afforded 1-(2-methyl-propane-2-sulfinyl)-2-nitrobenzene 263 as a yellow solid (276 mg, 50.7 %).

R_r (EtOAc:Petrol, 1:1) 0.24; Mp 79.2-80.9 °C, (Found C, 52.87; H, 5.91; N, 6.14; C₁₀H₁₃NSO₃ requires C, 52.85; H, 5.77; N, 6.17); ν_{max}(KBr)/cm⁻¹ 2985 (CH), 1590 (Ph), 1550, 1334 (NO₂), 1055 (S=O); δ_H ((CD₃)₂SO, 200 MHz) 8.34 (1H, dd, J 7.7 and 1.2, PhH), 8.13 (1H, dd, J 7.9 and 1.2, PhH), 8.01 (1H, td, J 7.9, 7.8 and 1.2, PhH), 7.82 (1H, td, J 7.8, 7.7 and 1.2, PhH), 1.40 (3H, s, CH₃), 1.29 (3H, s, CH₃), 1.29 (3H, s, CH₃); δ_c ((CD₃)₂SO, 63 MHz) 150.1, 145.2 (C), 135.6, 130.2, 128.6, 125.7 (CH), 55.1 (C), 27.4 (CH₃); m/z (EI) 227 (M⁺), 170 (M-C(CH₃)₃), 124 (M-C(CH₃)₃-NO₂), Found (M⁺) 227.1264, C₁₀H₁₃NSO₃ requires 227.0616; HPLC (hexane:EtOH, 99:1): R_t, 40.1 and 46.2 min.

1-Nitro-2-phenylsulfanyl-benzene 254¹⁸⁵

To a stirred solution of benzenethiol (11.05 g, 10.3 mL), NaHCO₃ (13.00 g, 156.6 mmol) in water (40 mL) was added a solution of ortho-chloro-2-nitrobenzene 250 (15.70 g, 99.4 mmol) in hot ethanol (33 mL) and the reaction heated at 65 °C. After 4 h, the solution was poured into water (175 mL) and stirred for 30 min at room temperature. The product was obtained by gravity filtration, washed several times with water and dried in vacuo. Recrystallisation (ethanol) afforded 1-nitro-2-phenylsulfanyl-benzene 254 as yellow crystals (2.51 g, 10.9 %).

R_r (EtOAc:Petrol, 3:2) 0.60; Mp 76.9-78.1 °C, Lit.¹⁸⁶ 78.0-81.0 °C; ν_{max}(KBr)/cm⁻¹ 3064 (CH), 1590 (Ph), 1502, 1334 (NO₂); δ_H ((CD₃)₂SO, 200 MHz) 8.21 (1H, dd, J 8.1 and 1.4, PhH), 7.58 (5H, m, Ph⁺H), 7.31 (2H, m, PhH), 6.84 (1H, dd, J 8.2 and 1.4, PhH); δ_c ((CD₃)₂SO, 63 MHz) 144.8, 139.4 (C), 135.8, 133.3 (CH), 130.8 (C), 130.0, 129.9, 128.1, 125.6, 124.8 (CH); m/z (EI) 231 (M⁺), 122 (M-SC₆H₅), 76 (M-SC₆H₅-NO₂).
Experimental: Synthesis.

1-Benzylsulfynyl-2-nitrobenzene 264.

\[
\text{Ph-S=O} \quad \text{NO}_2
\]

To a stirred solution of sulfide 254 (2.01 g, 8.7 mmol) in chloroform (40 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (1.56 g, 9.0 mmol) in chloroform (20 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 3:2) afforded 1-benzylsulfynyl-2-nitrobenzene 264 as a yellow solid (1.34 g, 62.7%).

Rₜ (EtOAc:Petrol, 3:2) 0.36; Mp 90.3-91.7 °C, Lit.¹⁸⁷ 92.0 °C; νmax(KBr)/cm⁻¹ 3083 (CH), 1592 (Ph), 1344 (NO₂), 1064 (S=O); δH ((CD₃)₂SO, 200 MHz) 8.58 (1H, dd, J 7.8 and 1.4, PhH), 8.25 (1H, dd, J 8.1 and 1.2, PhH), 8.02 (2H, m, Ph'H), 7.71 (2H, m, PhH), 7.34 (3H, m, Ph'H); δC ((CD₃)₂SO, 63 MHz) 145.0, 144.4, 143.7 (C), 135.3, 131.4, 131.3, 129.1, 126.6, 126.2 and 125.2 (CH); m/z (EI) 247 (M⁺), 170 (M-C₆H₅), 138 (M-SC₆H₅); HPLC (hexane:iso-propanol, 95:5): Rₜ 48.9 and 68.9 min.

Ortho-nitro-benzenethiol 256.¹⁸⁸,¹⁸⁹

Ortho-nitro-benzenesulfonyl chloride 255 (2.55 g, 11.5 mmol) was added with stirring to a mixture of crushed ice (10.00 g) and concentrated sulfuric acid (55 mL). Zinc dust (1.79 g, 27.6 mmol) was added in portions such that the temperature did not rise above 10 °C. The mixture was concentrated under reduced pressure and the residue was extracted with ether (2 x 40 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo. The crude product was purified.
Experimental: Synthesis.

by flash-column chromatography (ethyl acetate:petrol, 3:2) to afford ortho-nitro-benzenethiol 256 as a pale yellow solid (1.57 g, 88.2 %).

Rf (EtOAc:Petrol, 3:2) 0.30; Mp 55.1-56.3 °C, Lit.190 55.0-56.0 °C; νmax(KBr)/cm⁻¹ 3026 (OH), 1613 (Ph), 1526, 1341 (NO₂); δH ((CD₃)₂SO, 200 MHz) 8.09 (1H, dd, J 8.0 and 1.5, PhH), 7.52 (2H, m, PhH), 7.41 (1H, td, J 8.0, 7.8 and 1.4, PhH), 4.00 (1H, br s, SH); δC ((CD₃)₂SO, 63 MHz) 144.2 (C), 133.1, 131.9 (CH), 131.0 (C), 124.8, 124.2 (CH); m/z (EI) 155 (M⁺), 109 (M-NO₂).

1-Butylsulfanyl-2-nitrobenzene 257.191

A solution of ortho-nitro-benzenethiol 256 (1.55 g, 10.0 mmol) in ethanol (25 mL) was placed in a 3-necked flask equipped with a magnetic stirrer, an addition funnel, a reflux condenser and a nitrogen inlet. Potassium hydroxide (1.10 g, 20.0 mmol) was added to the mixture while heating to 60 °C. After 30 min, the solution was cooled to room temperature and a solution of bromo-butane (1.37 g, 1.1 mL) in ethanol (5 mL) was added drop-wise. Upon complete addition, the mixture was heated under reflux for 1 h, cooled, diluted with water (30 mL) and extracted with ether (3 x 40 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. The crude sulfide was purified by flash-column chromatography (ether:hexane, 1:1) to afford 1-butylsulfanyl-2-nitrobenzene 257 as an oil (980.0 mg, 46.4 %).

Rf (ether:hexane, 1:1) 0.48; Bp 136.0-137.5 °C, Lit.192 137.0-138.0 °C νmax(film)/cm⁻¹ 2972 (CH), 1603 (Ph), 1510, 1334 (NO₂); δH ((CD₃)₂SO, 200 MHz) 8.19 (1H, dd, J 8.2 and 1.3, PhH), 7.65 (1H, td, J 8.1, 1.3, PhH), 7.38 (1H, dd, J 8.1 and 1.3, PhH), 7.15 (1H, td, J 8.2, 8.1 and 1.3, PhH), 2.90 (2H, t, J 4.9, CH₂), 1.52 (4H, m, CH₂CH₂CH₃), 0.92 (3H, t, J 4.9 CH₃); δC ((CD₃)₂SO, 63 MHz) 144.1 (C), 131.2
Experimental: Synthesis.

(CH), 130.1 (C), 125.3, 124.9, 124.2 (CH), 36.2 (SCH₂), 34.1 (CH₂Et), 21.3 (CH₂),
13.1 (CH₃); m/z (EI) 211 (M⁺), 122 (M-SC₄H₉), 76 (M-SC₄H₉-NO₂).

1-(Butane-1-sulfinyl)-2-nitrobenzene 265.

To a stirred solution of sulfide 257 (760.0 mg, 3.6 mmol) in chloroform (20 mL) at
-10 °C was added a solution of meta-chloroperbenzoic acid (690.0 mg, 4.0 mmol) in
chloroform (10 mL). The reaction was stirred for 15 min then left to stand overnight
at room temperature, whereafter it was filtered and washed twice with a sat. aq.
NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered
and concentrated under reduced pressure. Purification by flash-column
chromatography (ethyl acetate:petrol, 1:1) afforded 1-(butane-1-sulfinyl)-2-
nitrobenzene 265 as a yellow solid (521.0 mg, 63.8 %).

Rf (EtOAc:Petrol, 1:1) 0.31; Mp 51.2 °C, Lit.¹⁹¹ 50.0-52.0 °C; νmax(KBr)/cm⁻¹ 3103
(CH), 1580 (Ph), 1525, 1342 (NO₂) 1031 (S=O); δH ((CD₃)₂SO, 200 MHz) 8.70 (1H,
dd, J 8.1 and 1.2, PhH), 8.28 (1H, dd, J 7.9 and 1.1, PhH), 7.79 (1H, td, J 8.1, 7.8
and 1.1, PhH), 7.32 (1H, td, J 7.9, 7.8 and 1.2, PhH), 3.11 (2H, m, S(O)CH₂), 1.80
(4H, m, CH₂CH₂CH₃), 0.96 (3H, t, J 5.8, CH₃); δC ((CD₃)₂SO, 63 MHz) 147.2, 145.1
(C), 138.4, 133.1, 132.4, 127.5 (CH), 55.7 (SCH₂), 48.1 (CH₂Et), 38.1 (CH₂),
10.3(CH₃); m/z (EI) 227 (M⁺), 170 (M-C₄H₉), 138 (M-SC₄H₉O); HPLC
(hexane:EtOH, 90:10); R₁ 23.4 and 27.6 min.

173
Experimental: Synthesis.

1-Benzhydrylsulfanyl-2-nitrobenzene 259

- **To a pre-cooled solution of diphenylmethane 258** (4.44 g, 4.4 mL) and **ortho-nitrobenzene-sulfenyl chloride 255** (5.00 g, 26.3 mmol) in anhydrous toluene (26 mL) under nitrogen was added drop-wise a solution of triethylamine (2.69 g, 3.7 mL) in anhydrous toluene (6 mL) and the reaction stirred for 6 h. The mixture was filtered and the filtrate concentrated under reduced pressure to yield an orange oil, which crystallised when treated with petrol. The crystals were collected under gravity filtration and recrystallised (toluene) to afford 1-benzhydrylsulfanyl-2-nitrobenzene 259 as pale orange crystals (874.0 mg, 10.3%).

- **R** \(\text{f}_{\text{(EtOAc:Petrol, 1:1)}} \) 0.58; \(\text{M} \) 157.9 °C, Lit. \(193\) 158.0-161.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3098 (CH), 1599 (Ph), 1528, 1353 (NO\(_2\)); \(\delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) \) 8.03 (1H, dd, \(J \) 8.2 and 1.4, Ph\(\text{H}\)), 7.80 (8H, m, Ph'\(\text{H}\)), 7.72 (2H, m, Ph\(\text{H}\)), 7.51 (2H, m, Ph'\(\text{H}\)), 7.47 (1H, td, \(J \) 8.2, 7.2 and 1.4, Ph\(\text{H}\)), 4.85 (1H, s, CH); \(\delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) \) 146.2, 145.2 (C), 132.7 (C), 130.9, 128.3, 127.0, 126.9, 125.3, 124.8, 48.2 (CH); \(m/z (\text{El}) \) 321 (\(\text{M}^+\)), 244 (M-CH\(_2\)\(\text{H}_3\)), 154 (M-CH(Cl\(_6\)\(\text{H}_5\)_2)), 122 (M-SCH(Cl\(_6\)\(\text{H}_5\)_2)).

1-(Diphenyl-methanesulfinyl)-2-nitrobenzene 266.

- **To a stirred solution of sulfide 259** (898.8 mg, 2.8 mmol) in chloroform (15 mL) at -10 °C was added a solution of **meta-chloroperbenzoic acid** (554.1 mg, 3.2 mmol) in chloroform (10 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO\(_3\) (50 mL) solution. The organic layer was separated, dried (MgSO\(_4\)), filtered...
Experimental Synthesis.

and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-(diphenyl-methanesulfinyl)-2-nitrobenzene 266 as a pale orange solid (229.0 mg, 31.2 %).

Rf (EtOAc:Petrol, 1:1) 0.32; Mp 159.9 °C, Lit.193 152.0-154.2 °C; νmax(KBr)/cm⁻¹ 3078 (CH), 1584 (Ph), 1544, 1371 (NO₂), 1087 (S=O); δH ((CD₃)₂SO, 200 MHz) 8.75 (1H, dd, J 8.5 and 1.1, PhH), 8.32 (1H, dd, J 8.25 and 1.3, Ph'H), 7.79 (8H, m, Ph'H), 7.62 (2H, m, Ph'H), 7.50 (2H, m, Ph'H), 5.42 (1H, s, CH); δC ((CD₃)₂SO, 63 MHz) 148.6, 145.2, 142.1 (C), 138.4, 135.7, 130.2, 128.5, 127.9, 126.7, 125.1, 70.2 (CH); m/z (El) 337 (M), 138 (M-SCH(C₆H₅)₂), 108 (M-SCH(C₆H₅)₂-NO); HPLC (hexane:EtOH, 60:40): Rₜ 29.1 and 36.4 min.

6.5 Synthesis of dinitroarenes-sulfinyls.

1-Ethylsulfanyl-2,4-dinitrobenzene 270.178

Under an inert atmosphere, ethanethiol (4.54 g, 5.4 mL) was added to ethanol (220 mL) and stirred for 5 min after which time a solution of NaOH (2.90 g, 72.5 mmol) in water (22 mL) was added. This solution was added to a stirred solution of ortho-chloro-2,4-dinitrobenzene 269 (15.00 g, 73.9 mmol) in ethanol (95 mL) and the reaction heated under reflux for 10 min and filtered quickly. The crystallised sulfide was collected by filtration and dried in vacuo, recrystallisation (ethanol) afforded 1-ethylsulfanyl-2,4-dinitrobenzene 270 as yellow needle-like crystals (3.17 g, 19.2 %).

Rf (EtOAc:Petrol, 1:1) 0.65; Mp 113.2-114.6 °C, Lit.194 114.0-115.0 °C; νmax(KBr)/cm⁻¹ 3005 (CH), 1618 (Ph), 1531, 1350 (NO₂); δH ((CD₃)₂SO, 200 MHz) 9.50 (1H, d, J 2.5, PhH), 8.35 (1H, dd, J 9.0 and 2.5, Ph'H), 7.56 (1H, d, J 9.0, Ph'H), 3.08 (2H, q, J 7.4, CH₃), 1.45 (3H, t, J 7.4, CH₃); δC ((CD₃)₂SO, 63 MHz) 148.6, 145.2, 142.1 (C), 138.4, 135.7, 130.2, 128.5, 127.9, 126.7, 125.1, 70.2 (CH); m/z (El) 337 (M⁺), 138 (M-SCH(C₆H₅)₂), 108 (M-SCH(C₆H₅)₂-NO); HPLC (hexane:EtOH, 60:40): Rₜ 29.1 and 36.4 min.
Experimental: Synthesis.

MHz) 147.2, 144.5, 143.5 (C), 126.9, 126.3, 121.6 (CH), 26.6 (CH₂), 12.3 (CH₃);
m/z (EI) 228 (M⁺), 167 (M-SC₂H₅), 137 (M-SC₂H₅-NO), 121 (M-SC₂H₅-NO₂);
HPLC (hexane:EtOH, 80:20): Rₜ 21.6 min.

1-Ethane-sulfinyl-2,4-dinitrobenzene 275.

To a stirred solution of sulfide 270 (2.01 g, 8.8 mmol) in chloroform (45 mL) at
-10 °C was added a solution of meta-chloroperbenzoic acid (1.59 g, 9.2 mmol) in
chloroform (25 mL). The reaction was stirred for 15 min then left to stand overnight
at room temperature, whereafter it was filtered and washed twice with a sat. aq.
NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered
and concentrated under reduced pressure. Purification by flash-column
chromatography (ethyl acetate:petrol, 1:1) afforded 1-ethane-sulfinyl-2,4-
dinitrobenzene 275 as yellow crystals (1.36 g, 63.4 %).

Rₜ (EtOAc:Petrol, 1:1) 0.45; Mp 111.5 °C, Lit.¹⁹⁵ 112.0-113.0 °C; νmax(KBr)/cm⁻¹
3082 (CH), 1602 (Ph), 1533, 1343 (NO₂), 1035 (S=O); δH ((CD₃)₂SO, 200 MHz)
9.11 (1H, d, J 2.1, PhH), 8.73 (1H, dd, J 8.6 and 2.2, PhH), 8.49 (1H, d, J 8.6, PhH),
3.35 (1H, q, J 7.5, CH₂), 2.89 (1H, q, J 7.5, CH₂), 1.34 (3H, t, J 7.5, CH₃); δC
((CD₃)₂SO, 63 MHz) 1501, 149.3, 144.9 (C), 129.2, 128.7, 120.4 (CH), 49.7 (CH₂),
11.3 (CH₃); m/z (EI) 244 (M⁺), 183 (M-SC₂H₅), 137 (M-SC₂H₅-NO₂); HPLC
(hexane:EtOH, 50:20): Rₜ 34.7 and 55.5 min.
1-iso-Propylsulfany-2,4-dinitrobenzene 271

Under an inert atmosphere, 2-propanethiol (6.56 g, 8 mL) was added to ethanol (220 mL) and stirred for 5 min after which time a solution of NaOH (2.96 g, 74.0 mmol) in water (22 mL) was added. This solution was added to a stirred solution of ortho-chloro-2,4-dinitrobenzene 269 (15.00 g, 73.9 mmol) in ethanol (74.1 mL) and the reaction heated under reflux for 10 min and filtered quickly. The crystallised sulfide was collected by filtration and dried *in vacuo*, recrystallisation (ethanol) afforded *1-iso-propylsulflnyl-2,4-dinitrobenzene 271* as yellow crystals (10.99 g, 61.5 %).

R_f (EtOAc:Petrol, 1:1) 0.64; Mp 92.9-93.5 °C, Lit. 93.0-94.0 °C; v_{max}(KBr)/cm$^{-1}$ 3097 (CH), 1584 (Ph), 1528, 1338 (NO$_2$); δ_H ((CD$_3$)$_2$SO, 200 MHz) 9.00 (1H, d, J 2.4, PhH), 8.35 (1H, dd, J 9.0 and 2.4, PhH), 7.60 (1H, d, J 9.0, PhH), 3.66 (1H, q, J 6.7, CH), 1.46 (6H, d, J 6.7, CH$_3$); δ_C ((CD$_3$)$_2$SO, 63 MHz) 146.4, 145.1, 143.5 (C), 127.4, 126.7, 121.7, 36.0 (CH), 22.0 (CH$_3$); m/z (EI) 242 (M$^+$), 199 (M-C$_3$H$_7$), 169 (M-C$_3$H$_7$-NO).

1-(Propane-2-sulfinyl)-2,4-dinitrobenzene 276.

To a stirred solution of sulfide 271 (2.01 g, 8.3 mmol) in chloroform (40 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (1.49 g, 8.6 mmol) in chloroform (25 mL). The reaction was stirred for 15 min then left to stand overnight...
Experimental: Synthesis.

at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-(propane-2-sulfinyl)-2,4-dinitrobenzene 276 as yellow crystals (450.0 mg, 21.1 %).

Rf (EtOAc:Petrol, 1:1) 0.48; Mp 100.0-102.2 °C, (Found C, 42.16; H, 4.06; N, 10.76; C₉H₁₀SN₂SO₅ requires C, 41.86; H, 3.91; N, 10.85; νmax(KBr)/cm⁻¹ 3125 (CH), 1622 (Ph), 1531, 1340 (NO₂), 1064 (S=O); δH ((CD₃)₂SO, 200 MHz) 9.11 (1H, d, J 2.2, PhH), 8.71 (1H, dd, J 8.6 and 2.2, PhH), 8.40 (1H, d, J 8.6, PhH), 3.29 (1H, q, J 7.0, CH), 1.60 (3H, d, J 7.0, CH₃), 0.98 (3H, d, J 7.0, CH₃); δC ((CD₃)₂SO, 63 MHz) 143.6, 143.3, 139.0 (C), 123.7, 122.4, 114.5, 47.8 (CH), 12.9, 6.1 (CH₃); m/z (EI) 226 (M⁺), 151 (M-SC₃H₇), 121 (M-C₅H₇-NO), Found (M⁺) 258.0210, C₉H₁₀SN₂SO₅ requires 258.0310; HPLC (hexane:EtOH, 60:40): Rf 19.6 and 24.3 min.

1-tert-Butylsulfanyl-2,4-dinitrobenzene 272.

To a stirred solution of 2-methyl-propane-2-thiol sodium salt (1.17 g, 10.4 mmol) in ethanol (30 mL) was added a solution of ortho-chloro-2,4-dinitrobenzene 269 (4.00 g, 19.8 mmol) in ethanol (20 mL) and the reaction stirred at 40 °C for 5 h. After complete substrate consumption (TLC), the reaction mixture was poured into dilute HCl (2 %, 300 mL) and extracted with ether (3 x 200 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. The crude product was purified by flash-column chromatography (ethyl acetate:hexane, 1:4) to afford 1-tert-butylsulfanyl-2-nitrobenzene 272 as a yellow solid (1.75 g, 34.5 %).

Rf (EtOAc:hexane, 4:1) 0.12; Mp 103.2-105.1 °C, Lit. 197 104.0-107.0 °C; νmax(KBr)/cm⁻¹ 3106 (CH), 1604 (Ph), 1546, 1353 (NO₂); δH ((CD₃)₂SO, 200 MHz)
8.91 (1H, d, J 2.6, PhH), 8.39 (1H, dd, J 8.8 and 2.6, PhH), 7.80 (1H, d, J 8.8, PhH), 1.47 (9H, s, CH$_3$); δc ((CD$_3$)$_2$SO, 63 MHz) 154.1, 146.2 (C), 134.8 (CH), 132.9 (C), 129.9, 123.2 (CH), 43.2 (C), 31.0 (CH$_3$); m/z (EI) 256 (M$^+$), 167 (M-SC(CH$_3$)$_3$), 121 (M-SC(CH$_3$)$_3$-NO$_2$); HPLC (hexane:EtOH, 60:40): R$_t$ 18.4 min.

1-(Phenylsulfanyl)-2,4-dinitrobenzene 273.198

![Chemical structure](image)

To a stirred solution of benzenethiol (8.51 g, 7.6 mL), NaHCO$_3$ (6.21 g, 73.9 mmol) in water (22 mL) was added a solution of ortho-chloro-2,4-dinitrobenzene 269 (15.00 g, 73.9 mmol) in hot ethanol (92 mL) and the reaction heated at 65 °C. After 4 h, the solution was poured into water (175 mL) and the reaction stirred for 30 min at room temperature. The product was obtained by gravity filtration, washed several times with water and dried in vacuo. Recrystallisation (ethanol) afforded 1-(phenylsulfanyl)-2,4-dinitrobenzene 273 as yellow needle-like crystals (6.99 g, 34.3 %).

R$_f$ (EtOAc:Petrol, 3:2) 0.58; Bp 121.3-122.9 °C, Lit.199 122.0-123.0 °C; ν$_{max}$(KBr)/cm$^{-1}$ 3101 (CH), 1591 (Ph), 1517, 1341(NO$_2$); δh ((CD$_3$)$_2$SO, 200 MHz) 9.07 (1H, d, J 2.5, PhH), 8.11 (1H, dd, J 9.1 and 2.5, PhH), 7.57 (5H, m, PhH), 6.98 (1H, d, J 9.1, PhH); δc ((CD$_3$)$_2$SO, 63 MHz) 148.3, 14.2, 143.7 (C), 135.8, 131.0, 130.6 (CH), 128.9 (C), 128.7, 126.8, 121.3, 107.6 (CH); m/z (EI) 276 (M$^+$), 199 (M-C$_6$H$_3$), 167 (M-SC$_6$H$_3$); HPLC (hexane:EtOH, 70:30): R$_t$ 20.1 min.
1-Benzene sulfinyl-2,4-dinitrobenzene 277.

To a stirred solution of sulfide 273 (990.0 mg, 3.6 mmol) in chloroform (20 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (690 mg, 4.0 mmol) in chloroform (12 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-benzenesulfinyl-2,4-dinitrobenzene 277 as yellow crystals (570.0 mg, 53.9 %).

Rf (EtOAc:Petrol, 3:2) 0.44; Mp 105.3-106.7 °C, Lit. 106.5-107.0 °C; νₓmax(KBr)/cm⁻¹ 3984 (CH), 1585 (Ph), 1537, 1349 (NO₂), 1066 (S=O); δH ((CD₃)₂SO, 200 MHz) 9.02 (1H, d, J 1.6, PhH), 8.80 (1H, dd, J 8.5 and 1.6, PhH), 8.01 (5H, m, Ph'H), 7.45 (1H, d, J 8.5, PhH); δC ((CD₃)₂SO, 63 MHz) 150.9, 149.3, 144.7, 143.7 (C), 132.2, 129.5, 129.1, 128.0, 126.7, 120.6 (CH); m/z (El) 382 (M⁺), 215 (M-C₆H₅), 183 (M-SC₆H₅); HPLC (hexane:EtOH, 60:40): Rₜ 44.6 and 101.6 min.

1-Butylsulfanyl-2,4-dinitrobenzene 274.

Under an inert atmosphere, butanethiol (6.67 g, 7.9 mL) was added to ethanol (220 mL) and stirred for 5 min after which time a solution of NaOH (2.90 g, 72.5 mmol) in water (22 mL) was added. This solution was added to a stirred solution of ortho-chloro-2,4-dinitrobenzene 269 (15.00 g, 73.9 mmol) in ethanol (95 mL) and the reaction heated under reflux for 10 min and filtered quickly. The
Experimental Synthesis.

crystallised sulfide was collected by filtration and dried in vacuo, recrystallisation (ethanol) afforded \textit{1-butylsulfanyl-2,4-dinitrobenzene} \textbf{274} as yellow needle-like crystals (6.05 g, 32.0 %).

\[R_f (\text{EtOAc:Petrol, 1:1}) = 0.43; \text{Mp} \text{ 70.1-71.3 °C, Lit.}^{203} \text{ 72.0 °C}; \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} = 3185 \text{ (CH)}, 1592 \text{ (Ph), 1541, 1342 (NO}_2 \text{); \delta_{\text{H}} ((\text{CD}_3)_2\text{SO, 200 MHz}) = 9.03 (1H, d, J 1.9, PhH), 8.43 (1H, dd, J 8.4 and 1.9, PhH), 7.11 (1H, d, J 8.4, PhH), 2.99 (2H, t, SCH}_2 \text{), 1.63 (4H, m, CH}_2\text{CH}_2\text{Me), 0.95 (3H, t, CH}_3 \text{); \delta_{\text{C}} ((\text{CD}_3)_2\text{SO, 63 MHz}) = 144.2, 142.9, 138.2 (C), 127.8, 126.8, 120.8 (CH), 28.2, 27.5, 22.4 (CH}_2 \text{), 14.2 (CH}_3 \text{); m/z (EI) = 256 (M^+), 199 (M-C}_4\text{H}_9 \text{), 167 (M-SC}_4\text{H}_9 \text{).} \]

\textbf{1-(Butane-1-sulfinyl)-2,4-dinitrobenzene} \textbf{278}.

\[
\begin{align*}
\text{S} & \text{O} \\
\text{NO}_2 & \text{NO}_2 \\
\end{align*}
\]

To a stirred solution of sulfide \textbf{274} (2.25 g, 8.8 mmol) in chloroform (40 mL) at -10 °C was added a solution of \textit{meta-}chloroperbenzoic acid (1.59 g, 9.2 mmol) in chloroform (25 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO\textsubscript{3} (50 mL) solution. The organic layer was separated, dried (MgSO\textsubscript{4}), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded \textit{1-(butane-1-sulfinyl)-2,4-dinitrobenzene} \textbf{278} as yellow crystals (1.62 g, 67.7 %).

\[R_f (\text{EtOAc:Petrol, 1:1}) = 0.28; \text{Mp} \text{ 89.3-91.7 °C, (Found C, 43.89; H, 4.19; N, 10.48; C}_{10}\text{H}_{12}\text{N}_2\text{O}_5\text{S requires C, 44.11; H, 4.45; N, 10.29); \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} = 3172 \text{ (CH)}, 1614 \text{ (Ph), 1555, 1347 (NO}_2 \text{), 1058 (S=O); \delta_{\text{H}} ((\text{CD}_3)_2\text{SO, 200 MHz}) = 9.18 (1H, d, J 2.0, PhH), 8.75 (1H, dd, J 8.3 and 2.0, PhH), 8.42 (1H, d, J 8.3, PhH), 3.01 (1H, t, SCH}_2 \text{), 2.98 (1H, t, SCH}_2 \text{), 1.78 (4H, m, CH}_2\text{CH}_2\text{Me), 1.20 (3H, t, CH}_3 \text{); \delta_{\text{C}} ((\text{CD}_3)_2\text{SO, 63 MHz}) = 148.2, 145.1, 142.5 (C), 130.2, 128.7, 121.8 (CH), 48.3, 32.1, 23.5 (CH}_2 \text{), 15.0 (CH}_3 \text{); m/z (EI) = 272 (M^+), 215 (M-C}_4\text{H}_9 \text{), 183 (M-SC}_4\text{H}_9 \text{), 153 (M-SC}_4\text{H}_9-\text{NO),} \]
Experimental: Synthesis.

Found (M⁺) 272.0458, C₁₀H₁₂N₂O₅S requires 272.0467; HPLC (hexane:EtOH, 75:25): R, 28.2 and 35.7 min.

1-Benzhydrylsulfanyl-2,4-dinitrobenzene 280.¹⁹³

To a pre-cooled solution of diphenylmethane 258 (4.44 g, 4.4 mL) and 2,4-Dinitrobenzenesulfinyl chloride 279 (6.17 g, 26.3 mmol) in anhydrous toluene (27 mL) under nitrogen was added drop-wise a solution of triethylamine (2.69 g, 3.7 mL) in anhydrous toluene (6 mL) and the reaction stirred for 6 h. The mixture was filtered and the filtrate concentrated under reduced pressure to yield an orange oil, which crystallised when treated with petrol. The crystals were collected under gravity filtration and recrystallised (ethanol) to afford 1-benzhydrylsulfanyl-2,4-dinitrobenzene 280 as pale orange crystals (4.03 g, 41.9 %).

Rf (EtOAc:Petrol, 1:1) 0.42; Mp 142.5 °C, Lit.²⁰⁴ 141.0-143.0 °C; ν max (KBr)/cm⁻¹ 3097 (CH), 1584 (Ph), 1528, 1338 (NO₂); δH ((CD₃)₂SO, 200 MHz) 8.91 (1H, d, J 1.9, PhH), 8.87 (1H, dd, J 8.8 and 1.9, PhH), 8.03 (1H, d, J 8.8, PhH), 7.76 (8H, m, Ph'H), 7.51 (2H, m, Ph'H), 4.84 (1H, s, CH); δC ((CD₃)₂SO, 63 MHz) 148.1, 145.2, 144.3, 140.9 (C), 133.6, 131.5, 128.9, 123.1, 52.2 (CH); m/z (EI) 366 (M⁺), 167 (M-SCH(C₆H₅)₂), 121 (M-SCH(C₆H₅)₂-NO₂).
1-(Diphenyl-methanesulfinyl)-2,4-dinitrobenzene 281.

[Chemical structure image]

To a stirred solution of sulfide 280 (1.32 g, 3.6 mmol) in chloroform (20 mL) at -10 °C was added a solution of meta-chloroperbenzoic acid (690.0 mg, 4.0 mmol) in chloroform (12 mL). The reaction was stirred for 15 min then left to stand overnight at room temperature, whereafter it was filtered and washed twice with a sat. aq. NaHCO₃ (50 mL) solution. The organic layer was separated, dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 1-diphenyl-methanesulfinyl-2,4-dinitrobenzene 281 as yellow crystals (0.57 g, 41.4 %).

Rf (EtOAc:Petrol, 1:1) 0.34; Mp 110.2-111.8 °C, Lit.²⁰⁵ 113.0 °C; νmax(KBr)/cm⁻¹ 3102 (CH), 1595 (Ph), 1541, 1341 (NO₂), 1052 (S=O); δH ((CD₃)₂SO, 200 MHz) 9.41 (1H, d, J 2.1, PhH), 9.23 (1H, dd, J 9.1 and 2.1, PhH), 8.76 (1H, d, J 9.1, PhH), 7.85 (8H, m, Ph'H), 7.22 (2H, m, Ph'H), 5.05 (1H, s, CH); δc ((CD₃)₂SO, 63 MHz) 152.1, 150.6, 147.2 (C), 134.8, 130.1, 128.5, 128.0, 122.2, 120.1, 62.2 (CH); m/z (EI) 382 (M⁺), 183 (M-SCH(C₆H₅)₂), 137 (M-SCH(C₆H₅)₂-NO₂); HPLC (hexane:EtOH, 50:50): Rₜ 22.7 and 29.1 min.
6.6 Synthesis of 13C-2-nitro-benzonitrile.206,207

2-Nitro-benzonitrile 281.

![2-Nitro-benzonitrile 281](image)

Under a stream of nitrogen, copper (I) cyanide (172.8 mg, 1.9 mmol) was added to DMF (2 mL) and the solution stirred for 10 min, after which time ortho-chloro-nitrobenzene 341 (252.8 mg, 1.6 mmol) was added. After 1 h, the reaction was heated to 45°C for ca. 3 h then left stirring overnight at room temperature. The dark mixture was diluted with ethyl acetate (15 mL) and filtered through a CeliteTM pad. The filtrate was washed with water (30 mL) and brine (30 mL), dried (MgSO\textsubscript{4}), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 2:3) afforded 2-nitro-benzonitrile 281 as a pale yellow solid (99.1 mg, 41.6 %).

R\textsubscript{f} (EtOAc:Petrol, 2:3) 0.33; Mp 110.1-110.9 °C, Lit.208 111.0 °C; v\textsubscript{max}(KBr)/cm-1 3081 (CH), 2252 (CN), 1625 (Ph), 1540, 1360 (NO\textsubscript{2}); δ\textsubscript{H} (CDCl\textsubscript{3}, 200 MHz) 8.84 (1H, dd, J 7.7 and 1.5, PhH), 7.95 (3H, m, PhH); δ\textsubscript{C} (CDCl\textsubscript{3}, 63 MHz) 147.9, 135.2, 133.6, 133.1, 124.9 (CH), 113.8, 107.5 (C); m/z (EI) 148 (M$^+$), 118 (M-NO), 102 (M-NO\textsubscript{2}), 75 (M-NO\textsubscript{2}-HCN); GC: R\textsubscript{t} 12.0 min, oven temp 120°C.

13C-2-Nitro-benzonitrile 342.

![13C-2-Nitro-benzonitrile 342](image)

The procedure outlined above with 13C-labelled copper (I) cyanide (247.2 mg, 2.7 mmol) in DMF (2 mL) and ortho-chloro-nitrobenzene 341 (2.3 mmol) was followed. Purification by flash-column chromatography (ethyl acetate:petrol, 2:3) afforded 13C-2-nitro-benzonitrile 342 as a pale yellow solid (188.7 mg, 55.1 %).
Rf (EtOAc:Petrol, 2:3) 0.33; δC (CDCl₃, 63 MHz) 113.6 (C), enhanced signal; m/z (EI) 149 (M⁺), 117 (M-NO), 101 (M-NO₂), 74 (M-NO₂-HCN); GC: R, 12.0 min, oven temp 120°C; Data as in 281.

6.7 Synthesis of 2-¹³C-3-nitro-phthalonitrile.

6.7.1 Method I.

2-Bromo-3-nitro-benzoyl chloride 349a.

Under an inert atmosphere, 2-bromo-3-nitro-benzoic acid 348a (1.00 g, 4.1 mmol, pre-dried at 100 °C for 1 h) was heated under reflux with thionyl chloride (17.44 g, 10.7 mL) for ca. 24 h. Excess thionyl chloride was removed in vacuo to yield an oil which afforded on cooling pale yellow needle-like crystals of 2-bromo-3-nitro-benzoyl chloride 349a as a pale yellow solid (895.8 mg, 82.6 %). Mp 66.1-66.5 °C, Lit. 209 66.0-66.5 °C; νmax(KBr)/cm⁻¹ 3076 (CH), 1770 (C=O), 1585 (Ph), 1534, 1355 (NO₂); δH (CDCl₃, 200 MHz) 8.11 (1H, dd, J 8.8 and 1.9, PhH), 8.07 (1H, dd, J 8.2 and 1.9, PhH), 7.94 (1H, dd, J 8.8 and 8.2, PhH); δC (CDCl₃, 63 MHz) 167.1, 151.3 (C), 142.2 (CH), 139.8 (C), 135.1, 130.9 (CH), 121.2 (C); m/z (EI) 264 (M⁺), 184 (M-Br), 138 (M-Br-NO₂).

2-Bromo-3-nitro-benzamide 350a.

2-Bromo-3-nitro-benzoyl chloride 349a (850.0 mg, 3.2 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (5 mL) and the
resulting heterogeneous mixture stirred at 25 °C for 24 h. The diamide was collected by gravity filtration, dried in vacuo and the resulting solid purified by recrystallisation (water) to afford 2-bromo-3-nitro-benzamide 350a as white crystals (573.1 mg, 73.1 %).

Mp 170.2-171.3 °C, Lit.210 170.0-171.0 °C; νmax(KBr)/cm⁻¹ 3384, 3187 (NH₂), 3071 (CH), 1657 (C=O, NH), 1533, 1374 (NO₂); δH (CDCl₃, 200 MHz) 8.34 (1H, dd, J 8.3 and 2.3, PhH), 8.13 (1H, br s, CONH₂), 8.01 (1H, dd, J 7.9 and 2.3, PhH), 7.83 (1H, br s, CONH₂), 7.67 (1H, dd, J 8.3 and 7.9, PhH); δc (CDCl₃, 63 MHz) 168.6, 151.8, 138.9 (C), 131.0, 130.0, 125.5 (CH), 112.6 (C); m/z (ES⁺) 246 (MH⁺), 165 (M-Br), 135 (M-Br-NO₂).

2-Bromo-3-nitro-benzonitrile 351a.

![2-Bromo-3-nitro-benzonitrile](image)

2-Bromo-3-nitro-benzamide 350a (550.0 mg, 2.2 mmol, pre-dried at 110 °C for 2 h) was heated under reflux with excess phosphorus oxychloride (ca. 5 mL) for 4 h. The resulting yellow solution was concentrated under reduced pressure to afford a light yellow solid. Recrystallisation (water) afforded 2-bromo-3-nitro-benzonitrile 351a as pale yellow crystals (357.6 mg, 71.6 %).

Mp 135.4-136.8 °C, Lit.211 136.0-137.0 °C; νmax(KBr)/cm⁻¹ 3072 (CH), 2235 (CN), 1590 (Ph), 1539, 1358 (NO₂); δH (CDCl₃, 200 MHz) 8.32 (1H, dd, J 8.1 and 1.5, PhH), 8.03 (1H, dd, J 7.8 and 1.5, PhH), 7.82 (1H, dd, J 8.1 and 7.8, PhH); δc (CDCl₃, 63 MHz) 150.7 (C), 138.3, 130.2, 129.7 (CH), 122.5, 117.3, 116.4 (C); m/z (EI) 227 (M⁺), 147 (M-Br), 101 (M-Br-NO₂), 74 (M-Br-NO₂-HCN).
3-Nitro-phthalonitrile 238.

Under a stream of nitrogen, copper (I) cyanide (252.0 mg, 2.8 mmol) was added to dimethylacetamide (2 mL) and the solution stirred for 10 min, after which time 2-bromo-3-nitro-benzonitrile 351a (522.1 mg, 2.3 mmol) was added. After 1 h, the reaction was heated to 45 °C for ca. 3 h then left stirring overnight at room temperature. The dark mixture was diluted with ethyl acetate (15 mL) and filtered though a Celite™ pad. The filtrate was washed with water (30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 3-nitro-phthalonitrile 238 as a pale yellow solid (188.7 mg, 55.1 %).

R_f (EtOAc:Petrol, 1:1) 0.52; Mp 160.2-161.8 °C; m/z (El) 173 (M⁺), 143 (M-NO), 127 (M-NO₂), 73 (M-NO₂-2HCN); Data as in 238.

2-¹³C-3-Nitro-phthalonitrile 343.

The procedure outlined above with ¹³C-labelled copper (I) cyanide (248.1 mg, 2.7 mmol) in dimethylacetamide (2mL) and 2-bromo-3-nitro-benzonitrile 351a (522.1 mg, 2.3 mmol) was followed. Purification by flash-column chromatography, (ethyl acetate:petrol, 1:1) afforded 2-¹³C-3-nitro-phthalonitrile 343 as a pale yellow solid (213.4 mg, 62.3 %).

R_f (EtOAc:Petrol, 1:1) 0.52; Mp 159.4-161.8 °C; δ_C ((CD₃)₂SO, 63 MHz) 113.4 (C), enhanced signal; m/z (El) 174 (M⁺), 144 (M-NO), 128 (M-NO₂); Data as in 238.
Experimental: Synthesis.

6.7.2 Method II.

2-Chloro-3-nitro-benzoyl chloride 349b.

Under an inert atmosphere, 2-chloro-3-nitro-benzoic acid 348b (1.00 g, 5.0 mmol, pre-dried at 100 °C for 1 h) was heated under reflux with thionyl chloride (17.44 g, 10.7 mL) for ca. 24 h. Excess thionyl chloride was removed in vacuo to yield an oil which afforded on cooling 2-chloro-3-nitro-benzoyl chloride 349b as a pale yellow solid (906.4 mg, 82.4 %).

Mp 56.8-57.2 °C, Lit.212 57.0-58.0 °C; ν max(KBr)/cm⁻¹ 3082 (CH), 1763 (C=O), 1590 (Ph), 1538, 1355 (NO₂); δ H (CDCl₃, 200 MHz) 8.34 (1H, dd, 17.5 and 1.6, PhH), 8.22 (1H, dd, J 7.9 and 1.6, PhH), 8.01 (1H, dd, J 7.9 and 7.5, PhH); δ C (CDCl₃, 63 MHz) 168.5, 149.7 (C), 140.7 (CH), 132.0, 128.6 (C), 127.1, 126.9 (CH); m/z (El) 220 (M⁺), 174 (M-NO₂), 139 (M-NO₂-Cl).

2-Chloro-3-nitro-benzamide 350b.

2-Chloro-3-nitro-benzoyl chloride 349b (880.0 mg, 4.0 mmol) was introduced slowly into a cooled (0 °C) beaker of concentrated ammonia solution (5 mL) and the resulting heterogeneous mixture stirred at 25 °C for 24 h. The diamide was collected by gravity filtration, dried in vacuo and the resulting solid purified by recrystallisation (water) to afford 2-chloro-3-nitro-benzamide 350b as pale yellow crystals (582.1 mg, 72.4 %).

Mp 146.0-148.2 °C, Lit.213 147.0-148.0 °C; ν max(KBr)/cm⁻¹ 3367, 3186 (NH₂), 1656 (C=O, NH), 1595 (Ph), 1530, 1355 (NO₂); δ H (CDCl₃, 200 MHz) 8.29 (1H, dd, J 7.7
Experimental: Synthesis.

and 1.8, PhH), 8.25 (1H, br s, CONH$_2$), 8.17 (1H, br s, CONH$_2$), 8.19 (1H, dd, J 7.7 and 1.8, PhH), 8.00 (1H, dd, J 7.9 and 7.7, PhH); δ (CDCl$_3$, 63 MHz) 169.5, 150.9, 135.2 (C), 134.5, 128.6 (CH), 127.7 (C), 126.5 (CH); m/z (ES$^+$) 221 (MH$^+$), 174 (M-NO_2), 139 (M-NO_2-Cl).

2-Chloro-3-nitro-benzonitrile 351b.

![2-Chloro-3-nitro-benzonitrile](image)

2-Chloro-3-nitro-benzamide 350b (550.0 mg, 2.7 mmol, pre-dried at 110 °C for 2 h) was heated under reflux with excess phosphorus oxychloride (ca. 5 mL) for 4 h. The resulting yellow solution was concentrated under reduced pressure to yield a light yellow solid. Recrystallisation (water) afforded 2-chloro-3-nitro-benzonitrile 351b as pale yellow crystals (396.3 mg, 80.2 %).

Mβ 101.4-102.8 °C, Lit.214 97.0-101.0 °C; ν_{max}(KBr)/cm$^{-1}$ 3094 (CH), 2246 (CN), 1602 (Ph), 1535, 1360 (NO$_2$); δ (CDCl$_3$, 200 MHz) 8.40 (1H, dd, J 8.2 and 1.5, PhH), 8.31 (1H, dd, J 7.8 and 1.5, PhH), 7.80 (1H, dd, J 8.2 and 7.8, PhH); δ (CDCl$_3$, 63 MHz) 148.2 (C), 138.4 (CH), 135.7 (C), 128.4, 126.2 (CH), 115.2, 114.9 (C); m/z (EI) 183 (M$^+$), 137 (M-NO_2), 102 (M-NO_2-Cl).

2-13C-3-Nitro-phthalonitrile 343.

![2-13C-3-Nitro-phthalonitrile](image)

Under a stream of nitrogen, 13C-labelled copper (I) cyanide (247.5 mg, 2.7 mmol) was added to dimethylacetamide (2 mL) and the solution stirred for 10 min, after which time 2-chloro-3-nitro-benzonitrile 351b (549.2 mg, 3.0 mmol) was added. After 1 h, the reaction was heated to 45 °C for ca. 3 h then left stirring overnight at room temperature. The dark mixture was diluted with ethyl acetate (15 mL) and filtered through a Celite$^{\text{TM}}$ pad. The filtrate was washed with water (30 mL) and brine (30 mL), dried (MgSO$_4$), filtered and concentrated under reduced pressure.
Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-\(^{13}\)C-3-nitro-phthalonitrile 343 as a pale yellow solid (354.0 mg, 68.2 %).

\(R_f\) (EtOAc:Petrol, 1:1) 0.50; Mp 159.9-160.8 °C; \(\delta_C\) (CD\(_3\)\(_2\)SO, 63 MHz) 113.4 (C), enhanced signal; \(m/z\) (El) 174 (M\(^+\)), 144 (M-NO), 128 (M-NO\(_2\)).

6.8 Intermediate synthesis.

2-Amino-benzamide 284.

![2-Amino-benzamide 284](image)

Zinc powder (1.50 g, 23.1 mmol) was added to a stirred suspension of 2-nitro-benzonitrile 282 (1.00 g, 6.8 mmol) and ammonium chloride (75.0 mg, 14.0 mmol) in 20 % ethanol (20 mL) over a period of 20 min and the resulting mixture stirred for a further 20 min. The precipitated solid was separated by filtration and washed with ethanol. The deep orange/yellow filtrate obtained was diluted with water and extracted with ethyl acetate:ether (1:1, 2 x 40 mL). The combined organic extracts were dried (MgSO\(_4\)), filtered and reduced in vacuo. Purification by flash-column chromatography (activated alumina: ethyl acetate:chloroform, 3:2) afforded a yellow coloured band eluting first followed by an orange/red coloured band, which was collected. The red coloured solution was reduced in vacuo and the resulting solid recrystallised twice (toluene) to afford 2-amino-benzamide 284 as white crystals (669.6 mg, 72.4 %).

\(R_f\) (EtOAc:CHCl\(_3\), 3:2) 0.23; Mp 111.8-112.8 °C, Lit.\(^{215}\) 113.0-114.0 °C; \(v_{\text{max}}\) (KBr)/cm\(^{-1}\) 3411, 3324 (NH\(_2\)), 3201 (CH), 1659 (C=O), 1628 (NH), 1609 (Ph); \(\delta_H\) (CDCl\(_3\), 200 MHz) 7.36 (1H, dd, \(J\) 8.1 and 1.5, PhH), 7.34 (1H, td, \(J\) 8.3, 7.8 and 1.5, PhH), 7.20 (2H, m, PhH), 5.91 (2H, br s, CONH\(_2\)), 4.02 (2H, br s, NH\(_2\)); \(\delta_C\) (CDCl\(_3\), 63 MHz) 171.6, 149.3 (C), 132.9, 127.9, 117.3, 116.3 (CH), 113.9 (C); \(m/z\) (El) 136 (M\(^+\)), 92 (M-CONH\(_2\)); GC: \(R_t\) 15.0 min, oven temp 125 °C.
Experimental: Synthesis.

2-Amino-6-cyano-benzamide 289.

Zinc powder (75.0 mg, 11.5 mmol) was added to a stirred suspension of 3-nitrophthalonitrile 238 (500.0 mg, 3.4 mmol) and ammonium chloride (37.5 mg, 14.0 mmol) in 20% ethanol (20 mL) over a period of 20 min and the resulting mixture stirred for a further 20 min. The precipitated solid was separated by filtration and washed with ethanol. The deep orange/yellow filtrate obtained was diluted with water and extracted with ethyl acetate:ether (1:1, 2 x 40 mL). The combined organic extracts were dried (MgSO₄), filtered and reduced in vacuo. Purification by flash-column chromatography (activated alumina: ethyl acetate:iso-propanol, 1:1) afforded a solid which recrystallised twice (toluene) to afford 2-amino-6-cyano-benzamide 289 as yellow crystals (270.4 mg, 49.4%).

Rf (EtOAc:iso-propanol, 3:2) 0.21; Mp >350.0 °C; Lit. 66 204.0 °C
νmax (KBr)/cm⁻¹ 3297, 3145 (NH₂), 2988 (CH), 2219 (CN), 1655 (C=O), 1633 (NH), 1601 (Ph);
δH ((CD₃)₂SO, 360 MHz) 9.92 (1H, br s, CONH), 9.47 (1H, br s, CONH), 7.32 (1H, dd, J 8.3 and 7.3, PhH), 7.12 (1H, dd, J 7.3 and 0.8, PhH), 6.80 (1H, dd, J 8.3 and 0.8, PhH), 6.13 (2H, br s, NH₂); δC ((CD₃)₂SO, 90 MHz) 164.7, 145.9, 134.5 (C), 133.6, 118.5, 111.80 (CH), 111.7 (C), 109.2 (CH); m/z (EI) 161 (M⁺), 144 (M-NH₃), 117 (M-CNH₂); GC: Rₜ 21.8 min, oven temp 150 °C.

Benzhydryl-(1-(2-nitro-phenyl)-methylene)-amine 358.

To a stirred solution of diphenylmethyamine 357 (3.43 g, 3.4 mL) and anhydrous KCO₃ in toluene (50 mL) was added a solution of ortho-nitro-benzaldehyde 356 (3.00 g, 19.8 mmol) in toluene (50 mL). The mixture was stirred at room temperature
for 1 h, filtered and concentrated under reduced pressure to afford a viscous oil which crystallised upon standing to afford benzhydryl-(1-(2-nitro-phenyl)-methylene)-amine 358 as a yellow solid (6.16 g, 98.3 %).

Mp 96.2-97.6 °C, (Found C, 75.79; H, 4.8; N, 8.58; C_{20}H_{16}N_{2}O_{2} requires C, 75.92; H, 5.1; N, 8.41); \(\nu_{\text{max}} \text{(KBr)/cm}^{-1} \) 1640 (C=N), 1631 (Ph), 1545, 1365 (NO\(_2\)); \(\delta_{\text{H}} ((\text{CD}_{3})_{2}\text{SO}, 200 \text{ MHz}) \) 8.89 (1H, s, CH=N), 8.22 (1H, dd, \(\text{J} \) 7.3 and 1.6, PhH), 8.01 (1H, dd, \(\text{J} \) 8.0 and 1.3, PhH), 7.67 (1H, td, \(\text{J} \) 7.4, 7.2 and 1.4, PhH), 7.55 (1H, td, \(\text{J} \) 8.1, 7.4 and 1.6, PhH), 7.33 (10H, m, PhH), 5.73 (1H, s, NCH); \(\delta_{\text{C}} ((\text{CD}_{3})_{2}\text{SO}, 63 \text{ MHz}) \) 156.7 (CH), 148.8, 142.9 (C), 133.3 (CH), 131.0 (C), 130.7, 130.0, 128.4, 127.5, 127.1, 124.2, 77.4 (CH); \(m/z \) (EI) 316 (M\(^+\)), 239 (M-C\(_6\)H\(_5\)), Found (M\(^+\)) 316.0911, C\(_{20}\)H\(_{16}\)N\(_2\)O\(_2\) requires 316.1218.

1-Amino-2-nitro-benzylphosphonic acid 359.

\[\text{NO}_2\text{H}_2\text{O} \]

\[\text{NH}_2\text{OH} \]

A stirred solution of benzhydryl-(1-(2-nitro-phenyl)-methylene)-amine 358 (6.16 g, 19.5 mmol) and diethyl phosphite (2.97 g, 21.5 mmol) in toluene (50 mL) was heated to 130-140 °C. After 30 min, excess concentrated hydrochloric acid was added and the solution heated under reflux for 3 h. Upon cooling, a solid crystallised out of solution which was collected by filtration and dried in vacuo to afford 1-amino-2-nitro-benzylphosphonic acid 359 as white crystals (3.80 g, 84.0 %). Mp 243.9-246.8 °C, Lit.\(^{154}\) 245.0-247.0; \(\nu_{\text{max}} \text{(KBr)/cm}^{-1} \) 3208 (br, OH), 1645 (Ph), 1559, 1372 (NO\(_2\)); \(\delta_{\text{H}} ((\text{CD}_{3})_{2}\text{SO}, 200 \text{ MHz}) \) 9.34 (2H, br s, POOH), 7.76 (1H, dd, \(\text{J} \) 8.4 and 1.6, PhH), 7.37 (3H, m, PhH), 5.61 (1H, s, CHP); \(\delta_{\text{C}} ((\text{CD}_{3})_{2}\text{SO}, 63 \text{ MHz}) \) 138.6 (C), 128.8 (CH), 128.3 (C), 127.5, 57.2 (CH); \(m/z \) (EI) 232 (M\(^+\)), 216 (M-NH\(_2\)).
1-Amino-2-nitro-benzylphosphonic acid 359 (3.70, 15.9 mmol) was dissolved in aqueous sodium hydroxide (5.10 g in 266 mL of H₂O) and heated under reflux for 2 h. Upon cooling, the solution was neutralised with aq. HCl (6M) and the precipitate removed by filtration and dried in vacuo to afford the starting material 359 as white crystals (3.55 g, 95.9 %).

Mp 244.0-246.8 °C; (EI) 232 (M⁺); Data as in 359.
7. Experimental: Biotransformations.

7.1 General Experimental.

Instrumentation, GCMS, HPLC and LCMS conditions are shown in Section 6.1.

Saccharomyces cerevisiae (Sigma Type II, YSC-2) described in this work was purchased from Sigma and was washed with pre-cooled acetone (-18 °C) prior to use.

The Rhodococcus species (freeze-dried whole cells) was given to the group by Zylepsis and used as received. The phosphate buffer used in these biotransformations was made up from the following: Na₂HPO₄ (6 g/L), KH₂PO₄ (3 g/L) and NaCl (0.5 g/L) in distilled water, pH ca. 7.0.

NAD(P)H dehydrogenase (Old Yellow Enzyme II, NRase II), Thioredoxin reductase (NRase III) and Lipoamide dehydrogenase (NRase I) were isolated and purified from S. cerevisiae within our research laboratories by Marina Alexeeva.

Glutathione reductase was purchased from Sigma as a suspension in (NH₄)₂SO₄ solution, pH 7.0.

L-Lactate dehydrogenase from S. cerevisiae and P-450 Cytochrome reductase from Pascillus bacterium were gifts from Prof. Chapman in the Chemistry Department.

Orbital Shaker.

A 625 Model incubator shaker was used for all incubations, which was set at a temperature of 30 °C.
7.2 Preparation of acetone-washed *S. cerevisiae*.\(^{69}\)

S. cerevisiae (125.00 g) was added to pre-cooled acetone (-18 °C) and the resulting suspension was stirred gently for 15 min. Once the *S. cerevisiae* had settled out, the acetone was decanted and the procedure was repeated. The cell mass was collected by filtration and dried under vacuum.

7.3 General Procedure I: *S. cerevisiae* catalysed reduction of nitroarenes.\(^{66, 69}\)

The ‘acetone-washed’ *S. cerevisiae* (25.00 g) was suspended in distilled water (100 mL) and incubated in an orbital shaker at 30 °C and 200 rpm for ca. 1 h. The substrate (250.0 mg) was dissolved in a minimum amount of DMSO or dioxane and added to the *S. cerevisiae* suspension. The reduction of the substrate was monitored by GCMS of 1 mL samples withdrawn at regular time intervals from the reaction mixture. Each sample was added to ethyl acetate (1 mL) in an eppendorf tube and the resulting biphasic solution was mixed using a rotameter and then microcentrifuged to separate the layers. The organic layer (800 µL) containing the product(s) was removed and further diluted with ethyl acetate (500 µL) and subjected to GCMS analysis.

Upon complete substrate consumption, the *S. cerevisiae* suspension was continuously extracted with chloroform overnight. The chloroform extract was dried (MgSO\(_4\)), filtered and concentrated *in vacuo* to yield the crude product. Further purification of the crude was achieved by flash-column chromatography or preparative HPLC.

Quantities of substrate used, as well as reaction times, purification methods and yields are given for each individual biotransformation.
7.3.1 Reduction of nitroarenes.

4-Nitro-aniline 321.

According to General Procedure I, 1,4-dinitrobenzene 320 (250.0 mg, 1.5 mmol),
S. cerevisiae (25.00 g) and water (100 mL) were incubated for 6.3 h. After work-up,
purification by flash-column chromatography (dichloromethane:petrol, 7:3) afforded
4-nitro-aniline 321 as an orange solid (91.0 mg, 44.8 %).

\[
\text{R}_{f} \quad (\text{DCM}:\text{Petrol,}
7:3) \quad 0.15; \quad \text{Mp} \quad 147.9-148.5 \, ^\circ\text{C}, \quad \text{Lit.}^{216} \quad 147.5-150.5 \, ^\circ\text{C}; \\
\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \quad 3392 \, (\text{NH}_2), \quad 1600 \, (\text{Ph}), \quad 1522, \quad 1348 \, (\text{NO}_2); \quad \delta_{\text{H}} \quad (\text{CD}_3)_2\text{SO,} \quad 200 \, \text{MHz} \quad 7.93 \, (2\text{H, d,} \ J \ 7.0, \ \text{PhH}), \quad 6.70 \, (2\text{H, br s,} \ \text{NH}_2), \quad 6.58 \, (2\text{H, d,} \ J \ 7.0, \ \text{PhH}); \\
\delta_{\text{C}} \quad (\text{CD}_3)_2\text{SO,} \quad 63 \, \text{MHz} \quad 155.8, \quad 135.7 \, (\text{C}), \quad 126.5, \quad 112.5 \, (\text{CH}); \quad m/z \quad (\text{EI}) \quad 138 \, (\text{M}^+), \quad 122 \, (\text{M-NH}_2), \quad 92 \, (\text{M-NH}_2-\text{NO}); \quad \text{GC:} \quad \text{Rt} \quad 26.4 \, \text{min, oven temp} \quad 150 \, ^\circ\text{C}.
\]

2-Amino-4-nitro-anisole 331 and 4-Amino-2-nitro-anisole 332.

According to General Procedure I, 2,4-dinitro-anisole 330 (250.0 mg, 3.0 mmol),
S. cerevisiae (25.00 g) and water (100 mL) were incubated for 7 d. After work-up,
purification by flash-column chromatography (dichloromethane:petrol, 7:3) afforded
2-amino-4-nitro-anisole 331 as an orange/yellow solid (105.0 mg, 49.8 %) and
4-amino-2-nitro-anisole 332 as an orange gum (20.0 mg, 10.0 %).

2-Amino-4-nitro-anisole: \(\text{R}_{f} \quad (\text{DCM}:\text{Petrol,}
7:3) \quad 0.35; \quad \text{Mp} \quad 116.8 \, ^\circ\text{C}, \quad \text{Lit.}^{66} \quad 118.0 \, ^\circ\text{C}; \\
\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \quad 3467, \quad 3370 \, (\text{NH}_2), \quad 2923 \, (\text{CH}), \quad 1624 \, (\text{Ph}), \quad 1513, \quad 1339 \, (\text{NO}_2); \\
\delta_{\text{H}} \quad (\text{CD}_3)_2\text{SO,} \quad 200 \, \text{MHz} \quad 7.64 \, (1\text{H, dd,} \ J \ 8.9 \text{ and } 2.7, \ \text{PhH}), \quad 7.53 \, (1\text{H, d,} \ J \ 2.7, \ \text{PhH}),
\]
Experimental: Biotransformations.

6.79 (1H, d, J 8.9, PhH), 4.0 (1H, br s, NH₂), 3.93 (3H, s, OCH₃); δC ((CD₃)₂SO, 63 MHz) 151.8, 141.7, 136.5 (C), 114.7, 108.8, 108.7 (CH), 55.9 (CH₃); m/z (EI) 168 (M⁺), 122 (M-NO₂), 122 (M-OCH₃-NH₃); GC: Rₜ 6.7 min, oven temp 150 °C.

4-Amino-2-nitro-anisole: Rₜ (DCM:Petrol, 7:3) 0.12; νmax(KBr)/cm⁻¹ 2995, 2907 (NH₂), 1605 (Ph), 1529, 1374 (NO₂); δH ((CD₃)₂SO, 200 MHz) 7.17 (1H, d, J 2.8, PhH), 6.91 (1H, d, J 8.8, PhH), 6.86 (2H, dd, J 8.8 and 2.8, PhH), 3.87 (3H, s, OCH₃), 3.63 (1H, br s, NH₂); δC ((CD₃)₂SO, 63 MHz) 145.9, 139.9 (C), 120.8, 115.5, 111.5 (CH), 70.5, 57.1 (C); m/z (EI) 168 (M⁺), 122 (M-NO₂), 122 (M-OCH₃-NH₃); GC: Rₜ 5.8 min, oven temp 150 °C.

7.3.2 Reduction of cyanonitroarene.

2-Amino-benzonitrile 283 and 2-Amino-benzamide 284.

According to General Procedure 1, 2-nitro-benzonitrile 282 (250.0 mg, 1.7 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for 2 h. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-amino-benzonitrile 283 as a cream solid (23.0 mg, 10.5 %) and 2-amino-benzamide 284 as a yellow solid (82.0 mg, 35.0 %).

2-Amino-benzonitrile: Rₜ (EtOAc:Petrol, 1:1) 0.40; Mp 46.8-47.9 °C, Lit.217 46.8-47.0-49.0 °C; νmax(KBr)/cm⁻¹ 3434, 3387 (NH₂), 2379 (CN), 1600 (Ph); δH (CDCl₃, 200 MHz) 7.30 (2H, m, PhH), 6.78 (1H, td, J 8.2, 8.0 and 1.4, PhH), 6.52 (1H, dd, J 8.0 and 1.4, PhH), 5.6 (2H, br s, NH₂); δC (CDCl₃, 63 MHz) 150.9 (C), 132.2, 131.5 (CH), 116.4 (C), 115.2, 113.9 (CH), 93.4 (C); m/z (EI) 118 (M⁺), 91 (M-2HCN); GC: Rₜ 4.3 min, oven temp 125 °C.

2-Amino-benzamide: Rₜ (EtOAc:Petrol, 1:1) 0.27; Mp 112.4-113.9 °C; m/z (EI) 136 (M⁺), 92 (M-CNH₂); GC: Rₜ 15.1 min, oven temp 125 °C; Data as in 284.
3-Amino-benzonitrile 286.

According to General Procedure I, 3-nitro-benzonitrile 285 (250.0 mg, 1.7 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 7 d. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 3-amino-benzonitrile 286 as a yellow solid (79.0 mg, 37.6%).

R_f (EtOAc:Petrol, 1:1) 0.45; Mp 51.0-52.0 °C, Lit.218 52.0-54.0 °C; \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} 3422, 3360 (NH\textsubscript{2}), 3059 (CH), 2250 (CN), 1600 (Ph); \delta_H (CDCl\textsubscript{3}, 200 MHz) 7.22 (1H, td, J 8.1, 7.9 and 1.5, PhH), 7.15 (1H, dd, J 1.5, PhH), 6.87 (2H, m, PhH), 3.92 (2H, br s, NH\textsubscript{2}); \delta_C (CDCl\textsubscript{3}, 63 MHz) 146.8, 135.6 (C), 129.8, 121.7, 119.0, 117.2 (CH), 112.6 (C); m/z (ES+) 119 (MH+), 91 (M-HCN); GC: R\textsubscript{t} 10.3 min, oven temp 150 °C.

4-Amino-benzonitrile 288.

According to General Procedure I, 4-nitro-benzonitrile 287 (250.0 mg, 1.7 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 24 h. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 4-amino-benzonitrile 288 as a cream solid (126.0 mg, 61.4%).

R_f (EtOAc:Petrol, 1:1) 0.46; Mp 86.3-88.0 °C, Lit.219 86.0-89.0 °C; \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} 3382, 3211 (NH\textsubscript{2}), 2919 (CH), 2219 (CN), 1605 (Ph), 832 (para-disubstituted Ph ring); \delta_H (CDCl\textsubscript{3}, 200 MHz) 7.38 (2H, d, J 8.7, PhH), 6.63 (2H, d, J 8.7, PhH), 4.15 (2H, br s, NH\textsubscript{2}); \delta_C (CDCl\textsubscript{3}, 63 MHz) 153.7 (C), 133.7 (CH), 120.1 (C), 114.3 (CH), 99.8 (C); m/z (Cl+) 141 (MNa+); GC: R\textsubscript{t} 3.1 min, oven temp 150 °C.
7.3.3 Reduction of dicyanonitroarenes.

2-Amino-6-cyano-benzoic acid 290 and 2-Amino-6-cyano-benzamide 289.

According to General Procedure I, 3-nitro-phthalonitrile 238 (250.0 mg, 1.5 mmol),
S. cerevisiae (25.00 g) and water (100 mL) were incubated for 3 h. After work-up,
purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-
amino-6-cyano-benzoic acid 290 as an orange solid (23.0 mg, 10.0 %) and 2-amino-
6-cyano-benzamide 289 as a yellow solid (116.0 mg, 49.7 %).

2-Amino-6-cyano-benzoic acid: Rf (EtOAc:Petrol, 1:1) 0.60; Mp 258.0-259.6 °C,
(Found C, 59.28; H, 3.70; N, 17.26; C₈H₆N₂O₂ requires C, 59.26; H, 3.73; N, 17.28);
νmax(KBr)/cm⁻¹ 3310, 3192 (NH₂), 1750 (C0), 1719 (NH), 1605 (Ph); δH ((CD₃)₂SO, 360 MHz), 10.8 (H, br s, COOH), 7.41 (1H, dd, J 7.6 and 7.1, PhH), 7.04
(1H, dd, J 7.1 and 0.7, PhH), 7.00 (1H, dd, J 7.6 and 0.7, PhH), 6.36 (2H, br s, NH₂);
δc ((CD₃)₂SO, 90 MHz) 171.1, 146.5 (C), 134.1 (CH), 133.5 (C), 121.1 (CH), 118.2
(C), 110.3 (CH); m/z (FAB) 163 (MH⁺), 135 (M-NCN), 117 (M-NCN-H₂O), Found
(MH⁺) 163.06574, C₈H₆N₂O₂ requires 163.0508; GC: Rₜ 14.4 min, oven temp
150 °C.

2-Amino-6-cyano-benzamide: Rf (EtOAc:Petrol, 1:1) 0.13; Mp >350.0 °C; m/z (EI)
161 (M), 144 (M-NH₃), 117 (M-CONH₂); GC: Rₜ 21.5 min, oven temp 150 °C;
Data as in 289.
2-Amino-5-cyano-benzamide 291.

According to General Procedure I, 4-nitro-isophthalonitrile 233 (250.0 mg, 1.5 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for 30 min. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-amino-5-cyano-benzamide 291 as a yellow solid (145.0 mg, 62.3 %).

\[\text{R}_f (\text{EtOAc}:\text{Petrol}, 1:1) \ 0.38; \ \text{Mp} \ 184.0-186.0 \ ^\circ\text{C}; \ (\text{Found} \ C, 59.31; \ H, 4.19; \ N, 25.77; \ C_8 H_7 N_3 O \ requires \ C, 59.61; \ H, 4.38; \ N, 26.08); \ \nu_{\max} (\text{KBr})/\text{cm}^{-1} \ 3409, 3346 (\text{NH}_2), 3205 (\text{CH}), 2218 (\text{CN}), 1682 (\text{C}=\text{O}, \text{NH}), 1616 (\text{Ph}); \ \delta_H ((\text{CD}_3)_2\text{CO}, 200 \text{ MHz}) 8.00 (1\text{H}, d, J 1.6, \text{PhH}), 7.93 (1\text{H}, \text{br s}, \text{CONH}_2), 7.45 (1\text{H}, \text{dd}, J 8.5 \text{ and } 1.6, \text{PhH}), 7.33 (1\text{H}, \text{br s}, \text{CONH}_2), 6.77 (1\text{H}, d, J 8.5, \text{PhH}), 3.17 (2\text{H}, \text{br s}, \text{NH}_2); \ \delta_C ((\text{CD}_3)_2\text{CO}, 63 \text{ MHz}) 169.7, 153.7 (\text{C}), 134.7, 134.2 (\text{CH}), 120.5 (\text{C}), 116.9 (\text{CH}), 113.3, 95.1 (\text{C}); \ m/z (\text{ES}^+) 162 (\text{MH}^+), 144 (\text{M-NH}_3), 117 (\text{M-NH}_3-\text{HCN}), \text{Found} (\text{MH}^+) 162.1707, \text{C}_8\text{H}_7\text{N}_3\text{O requires 162.0670}; \text{GC: R}, 14.2 \text{ min, oven temp 150} \ ^\circ\text{C}.

2-Amino-4-cyano-benzamide 292.

According to General Procedure I, 2-nitro-terephthalonitrile 222 (250.0 mg, 1.5 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for 45 min. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-amino-4-cyano-benzamide 292 as a yellow solid (116.0 mg, 50.0 %).

\[\text{R}_f (\text{EtOAc}) \ 0.54; \ \text{Mp} \ 201.0-202.5 \ ^\circ\text{C}; \ (\text{Lit.})^{220} 203.0-204.0 \ ^\circ\text{C}; \ \nu_{\max} (\text{KBr})/\text{cm}^{-1} 3358, 3166 (\text{NH}_2), 2109 (\text{CH}), 2232 (\text{CN}), 1674 (\text{C}=\text{O}), 1624 (\text{NH}), 1591 (\text{Ph}); \ \delta_H ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 8.00 (1\text{H}, \text{br s}, \text{CONH}_2), 7.66 (1\text{H}, d, J 8.1, \text{PhH}), 7.41 (1\text{H}, \text{br s}, \text{CONH}_2), 7.07 (1\text{H}, d, J 1.7, \text{PhH}), 6.86 (1\text{H}, \text{dd}, J 8.1 \text{ and } 1.7, \text{PhH}), 6.84 (2\text{H}, \text{br
2-Amino-3-cyano-benzamide 293.

According to General Procedure I, 2-nitro-isophthalonitrile 230 (250.0 mg, 1.5 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 30 min. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-amino-3-cyano-benzamide 293 as a yellow solid (173.0 mg, 74.2 %).

\[\text{R}_f \text{ (EtOAc:Petrol, 1:1) 0.46; } \text{Mp 222.0-223.7 °C, Lit.}^{221} \text{ 223.0-224.0 °C; } \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \text{ 3344, 3209 (NH}_2\text{), 2219 (CN), 1694 (C=O), 1650 (NH), 1604 (Ph); } \delta_{\text{H}} ((\text{CD}_3)_2\text{SO, 200 MHz}) \text{ 8.03 (1H, br s, CONH}_2\text{)), 7.84 (1H, dd, } J \text{ 7.9 and 1.5, PhH), 7.61 (1H, dd, } J \text{ 7.8 and 1.5, PhH), 7.46 (1H, br s, CONH}_2\text{)), 7.22 (2H, br s, NH}_2\text{), 6.64 (1H, dd, } J \text{ 7.9 and 7.8, PhH); } \delta_{\text{C}} ((\text{CD}_3)_2\text{SO, 63 MHz}) \text{ 170.1, 151.8 (C), 136.5, 134.1 (CH), 117.6, 115.4 (C), 115.0 (CH), 96.5 (C); m/z (El) 161 (M}^+\text{), 144 (M-NH}_3\text{), 117 (M-NH}_3\text{-HCN); } \text{GC: } R_t \text{ 13.0 min, oven temp 150 °C.} \]

4-Amino-phthalonitrile 295.

According to General Procedure I, 4-nitro-phthalonitrile 294 (250.0 mg, 1.5 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 2 h. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 4-amino-phthalonitrile 295 as an orange solid (96.0 mg, 46.2 %).
Experimental: Biotransformations.

5-Amino-isophthalonitrile 296.

According to General Procedure I, 5-nitro-isophthalonitrile 221 (250.0 mg, 1.5 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 7 h. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 5-amino-isophthalonitrile 296 as a yellow solid (159.0 mg, 76.1 %).

R_f (EtOAc:Petrol, 1:1) 0.54; Mp 189.5-191.8 °C, Lit.\(^{223}\) 192.0-193.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3333, 3192 (NH\(_2\)), 2922 (CH), 2231 (CN), 1626 (NH), 1598 (Ph); \(\delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) \) 7.38 (1H, t, J 1.4, PhH), 7.15 (2H, d, J 1.4, PhH), 6.14 (2H, br s, NH\(_2\)); \(\delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) \) 120.2, 119.1 (CH), 117.6, 113.2, 113.1 (C); \(m/z\) (EI) 143 (M\(^+\)), 116 (M-HCN); GC: R\(_t\) 11.7 min, oven temp 150 °C.

7.4 Biotransformation: controls.

2-Amino-6-cyano-benzoic acid 290.

According to General Procedure I, 2-amino-6-cyano-benzoic acid 289 (48.3 mg, 0.3 mmol), *S. cerevisiae* (5.00 g) and water (20 mL) were incubated for 2 d. After
work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded *2-amino-6-cyano-benzoic acid* 290 as an orange solid (15.6 mg, 31.2 %).

R_f (EtOAc:Petrol, 1:1) 0.58; Mp 257.1-258.9 °C; GC: R_i 14.5 min, oven temp 150 °C; Data as in 290.

2-Amino-6-cyano-benzoic acid 290.

![2-Amino-6-cyano-benzoic acid](image)

According to General Procedure 1, 2-amino-6-cyano-benzoic acid 290 (48.6 mg, 0.3 mmol), *S. cerevisiae* (5.00 g) and water (20 mL) were incubated for 2 d. After work-up, purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded the *starting material* 290 as an orange solid (41.3 mg, 82.6 %).

R_f (EtOAc:Petrol, 1:1) 0.59; Mp 258.0-259.6 °C; GC: R_i 14.5 min, oven temp 150 °C; Data as in 290.

2-Amino-6-cyano-benzamide 289 : Labelled H₂18O

According to General Procedure I, 3-nitro-phthalonitrile 238 (6.2 mg, 3.6 mmol), *S. cerevisiae* (62.5 mg) and 18^O-labelled water (250.0 µL) were incubated for 2 d. (The small-scale biotransformation was carried out in an eppendorf tube). Ethyl acetate was added and the biphasic layers were mixed using a rotameter and microcentrifuged. The top organic layer was removed and subjected to GCMS analysis which indicated the presence of 2-amino-6-cyano-benzamide 239.

m/z (EI) 161 (M⁺), 144 (M-NH₃), 117 (M-CONH₂); GC: R_i 21.8 min, oven temp 150 °C.
2-Amino-6-cyano-benzoic acid 290.

\[
\text{NH}_2\text{CONH}_2 \xrightarrow{\text{H}_2\text{O}, 30 \, ^\circ\text{C}} \text{NH}_2\text{COOH}
\]

2-Amino-6-cyano-benzamide 289 (48.3 mg, 0.3 mmol) was added to water (20 mL) and incubated in the orbital shaker at 30 °C and 200 rpm. The hydrolysis of the substrate was monitored by GCMS of 1 mL samples withdrawn at regular time intervals from the reaction mixture. Each sample was added to ethyl acetate (1 mL) in an eppendorf tube and the resulting biphasic solution was mixed using a rotameter and then microcentrifuged to separate the layers. The organic layer (800 μL) containing the product(s) was removed and further diluted with ethyl acetate (500 μL) and subjected to GCMS analysis. After 2 d, the aqueous solution was extracted with chloroform (2 x 25 mL) and the combined organic extracts were dried (MgSO₄), filtered and concentrated under reduced pressure to yield a solid. Purification by flash-column chromatography (ethyl acetate:petrol, 1:1) afforded 2-amino-6-cyano-benzoic acid 290 as an orange solid (13.8 mg, 28.4 %).

Rᶠ (EtOAc:Petrol, 1:1) 0.59; Mp 256.6-257.8 °C; GC: Rₜ 14.5 min, oven temp 150 °C; Data as in 290.
7.5 General Procedure II: *S. cerevisiae* catalysed reduction of (di)nitroarene-sulfinyls.

A solution of the substrate (250.0 mg) in the minimum amount of dioxane was added to a suspension of *S. cerevisiae* (25.00 g) in water (100 mL) and incubated. The reduction of the substrate was monitored by chiral HPLC (hexane:iso-propanol/EtOH) of 1 mL samples withdrawn at regular time intervals from the reaction mixture. Each sample was microcentrifuged, 400 µL of the aqueous layer was removed and filtered before being diluted with 600 µL of mobile phase and subjected to chiral HPLC analysis.

Upon complete substrate consumption, the *S. cerevisiae* suspension was continuously extracted with chloroform overnight. The organic extract was dried (MgSO₄), filtered and concentrated *in vacuo* to yield the crude product. Further purification of the crude was achieved by flash-column chromatography.

Reaction times, purification methods and yields are given for each individual biotransformation.
Experimental: Biotransformations.

7.5.1 Reduction of nitroarene-sulfinyls.

2-Ethanesulfinyl-phenylamine 302.

![Chemical Structure](image)

According to General Procedure II, ethanesulfinyl-2-nitrobenzene 261 (250.0 mg, 1.3 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 6 h. After work-up, purification by flash-column chromatography (chloroform:ethanol, 9:1) afforded 2-ethanesulfinyl-phenylamine 302 as a yellow solid (136.0 mg, 61.9 %).

R_f (CHCl₃:MeOH, 9:1) 0.47; Mp 110.3-112.1 °C; ν_{max}(KBr)/cm⁻¹ 3087 (CH), 3335, 3134 (NH₂), 1602 (Ph), 1081 (S=O); δ_H ((CD₃)₂SO, 200 MHz) 7.35 (2H, m, PhH), 7.22 (1H, td, J 8.0, 8.2 and 1.1, PhH), 6.71 (1H, dd, J 8.0 and 1.1, PhH), 5.00 (2H, br s, NH₂), 3.68 (1H, q, J 7.1, CH₂), 2.80 (1H, q, J 7.5, CH₂), 1.35 (1H, t, J 7.5 and 7.1, CH₃); δ_C ((CD₃)₂SO, 63 MHz) 144.1, 140.3 (C), 133.2, 127.8, 122.2, 118.0 (CH), 45.1 (CH₂), 9.2 (CH₃); m/z (El) 169 (M⁺), 140 (M-C₂H₅), 92 (M-C₂H₅SO), 65 (M-C₂H₅SO-HCN), Found (M⁺) 169.0496, C₈H₁₁NSO requires 169.0561; HPLC (hexane:EtOH, 90:10): R_t 18.6 and 20.9 min.

2-(Propane-2-sulfinyl)-phenylamine 303.

![Chemical Structure](image)

According to General Procedure II, 1-nitro-2-(propane-2-sulfinyl)-benzene 262 (255.6 mg, 1.2 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 6 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 9:1) afforded 2-(propane-2-sulfinyl)-phenylamine 303 as a yellow solid (98.0 mg, 45.2 %).
Experimental Biotransformations.

Rf (CHCl₃:MeOH, 1:1) 0.33; Mp 9105.3-106.9 °C; νmax(KBr)/cm⁻¹ 3310, 3112 (NH₂), 2991 (Ph), 1055 (S=O); δH ((CD₃)₂SO, 200 MHz) 7.31 (1H, dd, J 8.2 and 1.0, PhH), 7.25 (1H, td, J 8.2, 8.0 and 1.2, PhH), 7.20 (1H, td, J 8.0, 7.8 and 1.0, PhH), 6.87 (1H, dd, J 7.8 and 1.2, PhH), 4.67 (2H, br s, NH₂), 3.17 (1H, sept, J 6.8, CH), 1.53 (3H, d, J 6.8, CH₃), 0.91 (3H, d, J 6.8, CH₃); δC ((CD₃)₂SO, 63 MHz) 142.8 (C), 132.2, 129.3 (CH), 128.2 (C), 124.1, 120.8, 50.9 (CH), 17.1, 15.2 (CH₃); m/z (EI) 183 (M⁺), 140 (M-C₃H₇), 92 (M-C₅H₅-SO), Found (M⁺) 183.0701, C₉H₁₃NSO requires 183.0718; HPLC (hexane:EtOH, 99:1): Rₜ 35.8 and 43.2 min.

2-(2-Methyl-propane-2-sulfinyl)-phenylamine 304.

![Diagram](image)

According to General Procedure II, butylsulfinyl-2-nitrobenzene 263 (227.0 mg, 1.0 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for 5 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 9:1) afforded methyl-propane-2-sulfinyl-phenylamine 304 as a yellow solid (112.0 mg, 49.3 %).

Rf (CHCl₃:MeOH, 9:1) 0.37; Mp 121.3-122.7 °C; νmax(KBr)/cm⁻¹ 3356, 3140, (NH₂), 3015 (CH), 1605 (Ph), 1057 (S=O); δH ((CD₃)₂SO, 200 MHz) 7.79 (1H, dd, J 8.0, 0.9, PhH), 7.62 (1H, td, J 8.0, 7.8 and 1.2, PhH), 7.52 (1H, td, J 7.9, 7.8 and 0.9, PhH), 7.31 (1H, dd, J 7.9 and 1.2, PhH), 4.85 (2H, br s, NH₂), 1.40 (3H, s, CH₃), 1.40 (3H, s, CH₃), 1.27 (3H, s, CH₃); δC ((CD₃)₂SO, 63 MHz) 148.2, 140.8 (C), 134.7, 128.1, 120.9, 118.7 (CH), 50.1 (C), 25.2 (CH₃); m/z (EI) 197 (M⁺), 140 (M-C(CH₃)₃), 92 (M-SC(CH₃)₃), Found (M⁺) 197.0796, C₁₀H₁₅NSO requires 197.0874; HPLC (hexane:EtOH, 99:1): Rₜ 40.1 and 46.2 min.

207
2-Benzensulfynyl-phenylamine 305.

According to General Procedure II, 1-(benzenesulfynyl)-2-nitrobenzene 264 (247.0 mg, 1.0 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 5 d. After work-up, purification by flash-column chromatography (chloroform:methanol, 9:1) afforded 2-benzenesulfynyl-phenylamine 305 as a yellow solid (98.0 mg, 45.2 %).

R_f (CHCl₃:MeOH, 9:1) 0.39; Mp 95.0-96.9 °C, Lit.²²⁴ 97.5-98.5 °C; υ_{max}(KBr)/cm⁻¹ 3298, 3084 (NH₂), 2977 (CH), 1610 (Ph), 1055 (S=O); δ_H ((CD₃)₂SO, 200 MHz) 7.56 (2H, m, Ph'<H), 7.42 (4H, m, Ph'H and Ph'H), 7.28 (1H, td, J 8.4 and 0.7, Ph'H), 6.74 (1H, td, J 8.4, 8.1 and 1.1, Ph'H), 6.56 (1H, dd, J 8.1 and 0.7, Ph'H), 4.7 (2H, br s, NH₂); δ_C ((CD₃)₂SO, 63 MHz) 147.5, 143.1 (C), 132.8, 130.1, 128.6, 128.2, 124.6 (CH), 120.3 (C), 117.4, 116.9 (CH), m/z (EI) 217 (M⁺), 187 (M-HCN), 110 (M-HCN-C₆H₅); HPLC (hexane:iso-propanol, 95:5): R_t 54.8 and 71.7 min.

2-(Butane-1-sulfinyl)-phenylamine 306.

According to General Procedure II, 1-(butane-1-sulfinyl)-2-nitrobenzene 265 (250.0 mg, 1.1 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 7 h. After work-up, purification by flash-column chromatography (chloroform:ethanol, 9:1) afforded 2-(butane-1-sulfinyl)-phenylamine 306 as a yellow solid (120.0 mg, 55.2 %).

R_f (CHCl₃:MeOH, 9:1) 0.38; Mp 73.0-75.8°C; υ_{max}(KBr)/cm⁻¹ 3358, 3162, (NH₂), 3011 (CH), 1587 (Ph), 1055 (S=O); δ_H ((CD₃)₂SO, 200 MHz) 7.42 (1H, dd, J 7.9 and 1.2, Ph'H), 7.31 (2H, m, Ph'H), 7.27 (1H, td, J 7.9 and 1.0, Ph'H), 4.80 (2H, br s,
Experimental Biotransformations.

NH$_2$), 3.10 (2H, m, S(O)CH$_2$), 1.75 (4H, m, CH$_2$CH$_2$CH$_3$), 0.94 (3H, t, J 5.2, CH$_3$);
δc ((CD$_3$)$_2$SO, 63 MHz) 145.3, 136.1 (C), 135.8, 130.2, 121.4, 119.3 (CH), 53.1, 37.0, 30.8 (CH$_2$), 11.1 (CH$_3$); m/z (El) 197 (M$^+$), 140 (M-C$_4$H$_9$), 92 (M-C$_4$H$_9$-SO),
Found (M$^+$) 197.0839, C$_{10}$H$_{15}$NSO requires 197.0874; HPLC (hexane:EtOH, 90:10):
R$_t$ 24.9 and 32.1 min.

2-(Diphenyl-methanesulfinyl)-phenylamine 307.

![Chemical structure](attachment:structure.png)

According to General Procedure II, 1-(diphenyl-methanesulfinyl)-2-nitrobenzene 266
(235.9 mg, 0.7 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for
24 h. After work-up, purification by flash-column chromatography
(chloroform:methanol, 9:1) afforded 2-(diphenyl-methanesulfinyl)-phenylamine 307
as a yellow solid (122.0 mg, 56.2%).
R$_f$ (CHCl$_3$:MeOH) 0.31; Mp 132.3-133.8 °C; ν_{max}(KBr)/cm$^{-1}$ 3385, 3175 (NH$_2$),
2974 (CH), 1592 (Ph), 1084 (S=O); δ$_H$ ((CD$_3$)$_2$SO, 200 MHz) 8.58 (1H, dd, J 7.8
and 1.4, PhH), 8.25 (4H, m, Ph'H), 8.02 (4H, m, Ph'H), 7.71 (2H, m, PhH), 7.01
(2H, m, PhH), 6.65 (1H, dd, J 8.1 and 1.2, PhH), 5.22 (1H, s, CH); δ$_c$ ((CD$_3$)$_2$SO,
63 MHz) 145.0, 143.7, 136.8 (C), 135.3, 131.4, 131.3, 129.1, 126.6, 126.2, 125.2,
120.1, 60.2 (CH); m/z (El) 307 (M$^+$), 108 (M-SCH(C$_6$H$_5$)$_2$), 178 (M-SCH(C$_6$H$_5$)$_2$-
NO), Found (M$^+$) 307.1009, C$_{10}$H$_{15}$NSO requires 307.1031; HPLC (hexane:EtOH,
60:40): R$_t$ 30.8 and 38.2 min.
7.5.2 Reduction of dinitroarene-sulfinyls.

2-Ethanesulfinyl-5-nitro-phenylamine \(310\) and 4-Ethanesulfinyl-3-nitro-phenylamine \(311\).

According to General Procedure II, 1-ethanesulfinyl-2,4-dinitrobenzene \(275\) (244.0 mg, 1.0 mmol), \(S. \text{cerevisiae} \ (25.00 \text{g})\) and water (100 mL) were incubated for 4 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 8:2) afforded 2-ethanesulfinyl-5-nitro-phenylamine \(310\) as a yellow solid (71.0 mg, 33.2 %) and 4-ethanesulfinyl-3-nitro-phenylamine \(311\) as an orange gum (65.2 mg, 30.5 %).

2-Ethanesulfinyl-5-nitro-phenylamine: \(R_f \ (\text{CHCl}_3: \text{MeOH}, 8:2) \ 0.45; \ M_p \ 122.3-124.9 \ ^\circC; \ \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \ 3352, 3142 (\text{NH}_2), 2987 (\text{CH}), 1612 (\text{Ph}), 1530, 1334 (\text{NO}_2), 1024 (S=O); \ \delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 7.68 (1H, dd, J 8.2 and 1.2, PhH), 7.35 (1H, d, J 8.2, PhH), 7.12 (1H, d, J 1.3, PhH), 3.31 (1H, q, J 7.1, CH\text{2}), 2.80 (1H, q, J 7.1, CH\text{2}), 1.24 (3H, t, J 7.1, CH\text{3}); \ \delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 148.2, 146.3, 138.1 (C), 127.2, 124.7, 120.2 (CH), 47.1 (CH\text{2}), 10.1 (CH\text{3}); \ m/z (\text{El}) 214 (M\text{+}), 185 (M-\text{C}_2\text{H}_5), 137 (M-\text{SOC}_2\text{H}_5), 110 (M-\text{SOC}_2\text{H}_5-\text{NH}_2), \text{Found (M\text{+}) 214.0426, C}_8\text{H}_{10}\text{N}_2\text{SO}_3 \text{ requires 214.0412; HPLC (hexane:EtOH, 80:20): } R_t \ 10.6 \text{ min.}

4-Ethanesulfinyl-3-nitro-phenylamine: \(R_f \ (\text{CHCl}_3: \text{MeOH}, 8:2) \ 0.39; \ \nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \ 3361, 3145 (\text{NH}_2), 3010 (\text{CH}), 1615 (\text{Ph}), 1541, 1341 (\text{NO}_2), 1030 (S=O); \ \delta_{\text{H}} ((\text{CD}_3)_2\text{SO}, 200 \text{ MHz}) 7.90 (1H, d, J 8.2, PhH), 7.21 (1H, d, J 1.2, PhH), 6.99 (1H, dd, J 8.2 and 1.2, PhH), 3.28 (1H, q, J 6.8, CH\text{2}), 7.76 (1H, q, J 6.8, CH\text{2}), 1.21 (3H, t, J 6.8, CH\text{3}); \ \delta_{\text{C}} ((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 147.1, 145.1, 130.0 (C), 125.9, 123.2, 119.5 (CH), 45.7 (CH\text{2}), 9.2 (CH\text{3}); \ m/z (\text{El}) 214 (M\text{+}), 137 (M-\text{SOC}_2\text{H}_5), 110 (M-\text{SOC}_2\text{H}_5-\text{NH}_2), \text{Found (M\text{+}) 214.0410, C}_8\text{H}_{10}\text{N}_2\text{SO}_3 \text{ requires 214.0412; HPLC (hexane:EtOH, 80:20): } R_t \ 11.8 \text{ min.}

210
2-(Propane-2-sulfinyl)-5-nitro-phenylamine 312 and 4-(Propane-2-sulfinyl)-3-

According to General Procedure II, 1-(propane-2-sulfinyl)-2,4-dinitrobenzene 276
(258.0 mg, 1.0 mmol), \textit{S. cerevisiae} (25.00 g) and water (100 mL) were incubated for
3 h. After work-up, purification by flash-column chromatography
(chloroform:methanol, 9:1) afforded 2-(propane-2-sulfinyl)-5-nitro-phenylamine 312
as a yellow solid (69.3 mg, 30.4 %) and 4-(propane-2-sulfinyl)-3-nitro-phenylamine
313 as a yellow gum (66.6 mg, 29.2 %).

2-(Propane-2-sulfinyl)-5-nitro-phenylamine: \(R_f \) (CHCl\(_3\):MeOH, 9:1) 0.39 ; Mp
122.3-124.1 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3295, 3087 (NH\(_2\)), 3011 (CH), 1615 (Ph), 1530,
1338 (NO\(_2\)), 1050 (S=O); \(\delta_H ((CD_3)_2SO, 200 MHz) \) 8.34 (1H, dd, \(J \) 8.5 and 1.6,
PhH), 8.01 (1H, d, \(J \) 8.5, PhH), 7.84 (1H, d, \(J \) 1.6, PhH), 3.20 (1H, q, \(J \) 7.0, CH),
1.57 (3H, dd, \(J \) 7.0, CH\(_3\)), 0.97 (3H, d, \(J \) 7.0, CH\(_3\)); \(\delta_C ((CD_3)_2SO, 63 MHz) \) 149.2,
141.2, 136.2 (C), 124.1, 120.1, 115.2, 51.4 (CH), 18.1, 15.2 (CH\(_3\)); \(m/z \) (EI) 228
(M\(^+\)), 121 (M-SOC\(_3\)H\(_7\)), 91 (M-SOC\(_3\)H\(_7\)-NO), Found (M\(^+\)) 228.0489, C\(_9\)H\(_{12}\)N\(_2\)S\(_3\)
requires 228.0569; HPLC (hexane:EtOH, 60:40): \(R_t \) 10.0 min.

4-(Propane-2-sulfinyl)-3-nitro-phenylamine: \(R_f \) (CHCl\(_3\):MeOH, 9:1) 0.32;
\(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3285, 3102 (NH\(_2\)), 3000 (CH), 1605 (Ph), 1541, 1342 (NO\(_2\)), 1051
(S=O); \(\delta_H ((CD_3)_2SO, 200 MHz) \) 8.14 (1H, d, \(J \) 8.1, PhH), 7.93 (1H, d, \(J \) 1.9, PhH),
7.68 (1H, dd, \(J \) 8.1 and 1.9, PhH), 3.17 (1H, q, \(J \) 6.8, CH), 1.51 (3H, dd, \(J \) 6.8, CH\(_3\)),
0.87 (6H, d, \(J \) 6.8, CH\(_3\)); \(\delta_C ((CD_3)_2SO, 63 MHz) \) 148.2, 139.5, 129.5 (C), 123.5,
122.1, 113.4, 50.3 (CH), 14.7, 12.5 (CH\(_3\)); \(m/z \) (EI) 228 (M\(^+\)), 91 (M-SOC\(_3\)H\(_7\)-NO),
Found (M\(^+\)) 228.0510, C\(_9\)H\(_{12}\)N\(_2\)S\(_3\) requires 228.0569; HPLC (hexane:EtOH,
60:40): \(R_t \) 11.8 min.
According to General Procedure II, 1-benzenesulfinyl-2,4-dinitrobenzene 277 (234.0 mg, 0.9 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 2 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 8:2) afforded 2-benzenesulfinyl-5-nitro-phenylamine 316 as a yellow solid (84.0 mg, 35.6 %) and 4-benzenesulfinyl-3-nitro-phenylamine 317 as a yellow solid (75.7 mg, 32.1 %).

2-Benzencesulfinyl-5-nitro-phenylamine: R$_f$ (CHCl$_3$:MeOH, 8:2) 0.31; 132.3-133.9 °C; $\nu$$_{max}$(KBr)/cm$^{-1}$ 3521, 3124 (NH$_2$), 3098 (CH), 1598 (Ph), 1551, 1362 (NO$_2$), 1069 (S=O); $\delta$$_H$ ((CD$_3$)$_2$SO, 200 MHz) 8.45 (1H, dd, J 8.0 and 1.8, PhH), 8.20 (1H, d, J 8.0, PhH), 8.18 (6H, m, PhH and Ph’H); $\delta$$_C$ ((CD$_3$)$_2$SO, 63 MHz) 148.2, 146.1 (C), 130.1, 128.7, 128.1 (CH), 127.8, 126.3 (C), 124.2, 122.1, 121.9, 118.2, 115.1 (CH); m/z (El) 262 (M$^+$), 185 (M-C$_6$H$_5$), 137 (M-SOC$_6$H$_5$), Found (M$^+$) 262.0400, C$_{12}$H$_{10}$N$_2$S$_2$O$_3$ requires 262.0412; HPLC (hexane:EtOH, 60:40): R$_t$ 6.1 min.

4-Benzencesulfinyl-3-nitro-phenylamine: R$_f$ (CHCl$_3$:MeOH, 8:2) 0.28; Mp 119.2-120.1 °C; $\nu$$_{max}$(KBr)/cm$^{-1}$ 3532, 3130 (NH$_2$), 3054 (CH), 1599 (Ph), 1541, 1348 (NO$_2$), 1055 (S=O); $\delta$$_H$ ((CD$_3$)$_2$SO, 200 MHz) 8.01 (1H, d, J 8.8, PhH), 7.50 (6H, m, PhH and Ph’H), 7.22 (1H, dd, J 8.8 and 1.1, PhH); $\delta$$_C$ ((CD$_3$)$_2$SO, 63 MHz) 148.1, 144.1 (C), 131.5, 129.6 (CH), 129.8 (C), 127.5, 126.1, 125.7, 122.4 (CH), 121.8 (C), 118.2 (CH); m/z (El) 262 (M$^+$), 137 (M-SOC$_6$H$_5$), 107 (M-SOC$_6$H$_5$-NO), Found (M$^+$) 262.0405, C$_{12}$H$_{10}$N$_2$SO$_3$ requires 262.0412; HPLC (hexane:EtOH, 60:40): R$_t$ 18.2 min.
2-(Butane-1-sulfinyl)-5-nitro-phenylamine 314 and 4-(Butane-1-sulfinyl)-3-nitro-phenylamine 315.

According to General Procedure II, 1-(butane-1-sulfinyl)-2,4-dinitrobenzene 278 (244.8 mg, 0.9 mmol), *S. cerevisiae* (25.00 g) and water (100 mL) were incubated for 4 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 9:1) afforded 2-(butane-1-sulfinyl)-5-nitro phenylamine 314 as a yellow solid (80.4 mg, 36.9 %) and 4-(butane-1-sulfinyl)-3-nitro-phenylamine 315 as an orange oil (67.8 mg, 31.2 %).

2-(Butane-1-sulfinyl)-5-nitro phenylamine: *R*_f (CHCl₃:MeOH, 9:1) 0.34; Mp 108.9-111.0 °C; *v*_{max}(KBr)/cm⁻¹ 3074 (CH), 1602 (Ph), 1524, 1335 (NO₂), 1026 (S=O); *δ*_H ((CD₃)₂SO, 200 MHz) 8.25 (1H, dd, *J* 7.6 and 1.5, PhH), 8.01 (1H, d, *J* 7.6, PhH), 7.76 (1H, d, *J* 1.5, PhH), 7.76 (1H, d, *J* 7.6, PhH), 3.35 (1H, t, SCH₂), 3.30 (1H, t, SCH₂), 1.72 (4H, m, CH₂CH₂Me), 1.42 (3H, t, CH₃); *δ*_c ((CD₃)₂SO, 63 MHz) 149.7, 141.6, 136.8 (C), 126.4, 124.1, 118.2 (CH), 47.3, 30.5, 22.5 (CH₂), 14.1 (CH₃); *m/z* (El) 242 (M⁺), 185 (M-C₄H₉), 137 (M-SOC₄H₉), 91 (M-SC₄H₉-NO₂), Found (M⁺) 242.0765, C₁₀H₁₄N₂O₃S requires 242.0725; HPLC (hexane:EtOH, 75:25): *R*_t 5.2 min.

4-(Butane-1-sulfinyl)-3-nitro-phenylamine: *R*_f (CHCl₃:MeOH, 9:1) 0.30; *v*_{max}(KBr)/cm⁻¹ 3061 (CH), 1598 (Ph), 1528, 1336 (NO₂), 1027 (S=O); *δ*_H ((CD₃)₂SO, 200 MHz) 8.17 (1H, d, *J* 7.9, PhH), 7.89 (1H, d, *J* 1.8, PhH), 7.65 (1H, dd, *J* 7.9 and 1.8, PhH), 3.29 (1H, t, SCH₂), 3.22 (1H, t, SCH₂), 1.65 (4H, m, CH₂CH₂Me), 1.33 (3H, t, CH₃); *δ*_c ((CD₃)₂SO, 63 MHz) 148.5, 141.2, 135.0 (C), 127.1, 123.4, 118.1 (CH), 48.5, 28.7, 21.4 (CH₂), 13.9 (CH₃); *m/z* (El) 242 (M⁺), 185 (M-C₄H₉), 137 (M-SOC₄H₉), 91 (M-SC₄H₉-NO₂), Found (M⁺) 242.0712, C₁₀H₁₄N₂O₃S requires 242.0725; HPLC (hexane:EtOH, 75:25): *R*_t 12.8 min.
Experimental: Biotransformations.

According to General Procedure II, 1-(diphenyl-methane-sulfinyl)-2,4-dinitrobenzene 281 (245.0 mg, 0.7 mmol), S. cerevisiae (25.00 g) and water (100 mL) were incubated for 3 h. After work-up, purification by flash-column chromatography (chloroform:methanol, 9:1) afforded 2-(diphenyl-methane-sulfinyl)-5-nitro-phenylamine 318 as a yellow solid (82.2 mg, 33.4 %) and 4-(diphenyl-methane-sulfinyl)-3-nitro-phenylamine 319 as a yellow solid (76.1 mg, 30.9 %).

2-(Diphenyl-methane-sulfinyl)-5-nitro-phenylamine: Rf (CHCl₃:MeOH, 9:1) 0.31; Mp 142.3-143.8 °C; ν_max(KBr)/cm⁻¹ 3318, 3101 (NH₂), 3068 (CH), 1585 (Ph), 1541, 1351 (NO₂), 1068 (S=O); δ₁H ((CD₃)₂SO, 200 MHz) 8.49 (1H, dd, J 8.0 and 1.9, PhH), 8.05 (1H, d, J 8.0, PhH), 7.81 (9H, m, PhH and Ph'H), 7.77 (2H, m, Ph'H), 4.91 (1H, s, CH); δ₁C ((CD₃)₂SO, 63 MHz) 149.2, 145.1, 139.9, 137.1 (C), 132.9, 130.7 (CH), 129.8, 128.7 (C), 128.3, 125.4, 124.2, 120.2, 119.9, 118.3, 115.2 (CH); m/z (El) 352 (M⁺), 137 (M-SOCH(C₆H₅)₂), 107 (M-SOCH(C₆H₅)₂-NO), 91 (M-SOCH(C₆H₅)₂-NO-NH₂), Found (M⁺) 352.0910, C₉H₁₂N₂SO₃ requires 352.0882; HPLC (hexane:EtOH, 50:50): Rₜ 6.2 min.

4-(Diphenyl-methane-sulfinyl)-3-nitro-phenylamine: Rf (CHCl₃:MeOH, 9:1) 0.27; Mp 132.7-133.1 °C; ν_max(KBr)/cm⁻¹ 3304, 33298 (NH₂), 3055 (CH), 1581 (Ph), 1530, 1348 (NO₂), 1041 (S=O); δ₁H ((CD₃)₂SO, 200 MHz) 8.26 (1H, d, J 7.7, PhH), 7.91 (1H, d, J 1.4, PhH), 7.52 (8H, m, Ph'H), 7.40 (2H, m, Ph'H), 7.00 (1H, dd, J 7.7 and 1.4, PhH), 4.87 (1H, s, CH); δ₁C ((CD₃)₂SO, 63 MHz) 144.2, 135.1, 131.1 (C), 133.8, 131.4, 128.2, 125.1 (CH), 120.8 (C), 119.8, 118.1, 117.2, 111.1 (CH); m/z (El) 352 (M⁺), 137 (M-SOCH(C₆H₅)₂), 107 (M-SCH(C₆H₅)₂-NO), Found (M⁺) 352.0879, C₉H₁₂N₂SO₃ requires 352.0882; HPLC (hexane:EtOH, 50:50): Rₜ 6.9 min.

The enzyme (10 μL, 2.0 mmol) and a cofactor, either NADH or NADPH (50 μL, 10.0 mmol) were added to tris buffer (pH 8, 900 μL, 50.0 mmol) in an eppendorf tube and incubated in an orbital shaker at 30 °C and 200 rpm for 30 min. The substrate (10 μL, 50.0 mmol) in the minimum amount of DMSO was added to the enzyme/buffer mixture. The reduction of the substrate was monitored by GCMS of 500 μL samples withdrawn at regular time intervals from the reaction mixture. Each sample was added to ethyl acetate (500 μL) in an eppendorf tube and the resulting biphasic solution was mixed using a rotameter, then microcentrifuged to separate the layers. The organic layer (400 μL) was removed and further diluted with ethyl acetate (200 μL) and subjected to GCMS analysis.

The results are measured in percentage conversion to product with respect to starting material over 1 h and 2 h time periods.

7.6.1 4-Nitro-aniline 321.

\[
\begin{array}{c}
\text{NO}_2 \quad \text{isolation enzyme} \quad \text{NO}_2 \\
\text{NO}_2 \quad \text{NH}_2
\end{array}
\]

According to General Procedure III, 1,4-dinitrobenzene 320 was used as a substrate, with the enzyme or cofactor varied with each reaction as indicated in bold.

1. 1,4-Dinitrobenzene, NRase I, NADPH and buffer were incubated. GCMS analysis (after 1 h) indicated the presence of 4-nitro-aniline 321.

Product conversion: 28.1 % (1 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

ii. 1,4-Dinitrobenzene, NRase I, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 4-nitro-aniline 321.
Experimental: Biotransformations.

Product conversion: 12.9 % (1 h), 31.1 % (2 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

2. 1,4-Dinitrobenzene, NRase II, NADPH and buffer were incubated. GCMS analysis (after 1 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 24.1 % (1 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

2i. 1,4-Dinitrobenzene, NRase II, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 6.5 % (1 h), 11.2 % (2 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

3. 1,4-Dinitrobenzene, NRase III, NADPH and buffer were incubated. GCMS analysis (after 1 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 32.1 % (1 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

3i. 1,4-Dinitrobenzene, NRase III, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 11.2 % (1 h), 30.6 % (2 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO).

4. 1,4-Dinitrobenzene, glutathione reductase, NADPH and buffer were incubated. GCMS analysis indicated the presence of the starting material 320.

4i. 1,4-Dinitrobenzene, glutathione reductase, NADH and buffer were incubated. GCMS analysis indicated the presence of the starting material 320.

5. 1,4-Dinitrobenzene, L-lactate dehydrogenase, NADPH and buffer were incubated. GCMS analysis (after 1 h) indicated the presence of 4-nitro-aniline 321.
Experimental: Biotransformations.

Product conversion: 10.0 % (1 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

5i. 1,4-Dinitrobenzene, L-lactate dehydrogenase, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 24.8 % (1 h), 6.2 % (2 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

6. 1,4-Dinitrobenzene, P-450 Cytochrome reductase, NADPH and buffer were incubated. GCMS analysis (after 1 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 35.1 % (1 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

6i. 1,4-Dinitrobenzene, P-450 Cytochrome reductase, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 4-nitro-aniline 321.
Product conversion: 8.9 % (1 h), 6.0 % (2 h); Rₜ 3.1 min, oven temp 150 °C; m/z (EI) 138 (M⁺), 103 (M-NO), 76 (M-NO-HCN).

7.6.2 2-Amino-benzamide 284.

According to General Procedure III, 2-nitro-benzonitrile 282 was used as a substrate, with the enzyme or cofactor varied with each reaction as indicated in bold.

1ii. 2-Nitro-benzonitrile, NRase I, NADPH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 284.
Product conversion: 35.6 % (1 h), 66.2 % (2 h); Rₜ 15.0 min, oven temp 125 °C; m/z (EI) 136 (M⁺), 92 (M-CONH₂), 65 (M-CONH₂-HCN).
1iii. 2-Nitro-benzonitrile, NRase I, NADH and buffer were incubated. GCMS analysis (after 2 h) indicated the presence of 2-amino-benzamide 284.
Product conversion: 0.0 % (1 h), 4.5 % (2 h); Rf 15.0 min, oven temp 125 °C; m/z (El) 136 (M+), 92 (M-CONH2), 65 (M-CONH2-HCN).

2ii. 2-Nitro-benzonitrile, NRase II, NADPH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 284.
Product conversion: 39.8 % (1 h), 75.4 % (2 h); Rf 15.0 min, oven temp 125 °C; m/z (El) 136 (M+), 92 (M-CONH2), 65 (M-CONH2-HCN).

2iii. 2-Nitro-benzonitrile, NRase II, NADH and buffer were incubated. GCMS analysis (after 2 h) indicated the presence of 2-amino-benzamide 284.
Product conversion: 0.0 % (1 h), 7.8 % (2 h); Rf 15.0 min, oven temp 125 °C; m/z (El) 136 (M+), 92 (M-CONH2), 65 (M-CONH2-HCN).

3ii. 2-Nitro-benzonitrile, NRase III, NADPH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 284.
Product conversion: 31.4 % (1 h), 65.7 % (2 h); Rf 15.0 min, oven temp 125 °C; m/z (El) 136 (M+), 92 (M-CONH2), 65 (M-CONH2-HCN).

3iii. 2-Nitro-benzonitrile, NRase III, NADH and buffer were incubated. GCMS analysis (after 2 h) indicated the presence of 2-amino-benzamide 283.
Product conversion: 0.0 % (1 h), 6.5 % (2 h); Rf 15.0 min, oven temp 125 °C; m/z (El) 136 (M+), 92 (M-CONH2), 65 (M-CONH2-HCN).

4ii. 2-Nitro-benzonitrile, glutathione reductase, NADPH and buffer were incubated. GCMS analysis indicated the presence of the starting material 282.

4iii. 2-Nitro-benzonitrile, glutathione reductase, NADH and buffer were incubated. GCMS analysis indicated the presence of the starting material 282.
5ii. 2-Nitro-benzonitrile, L-lactate dehydrogenase, NADPH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 284.

Product conversion: 28.2 % (1 h), 66.1 % (2 h); R_t 15.0 min, oven temp 125 °C; m/z (EI) 136 (M⁺), 92 (M-CONH₂), 65 (M-CONH₂-HCN).

5iii. 2-Nitro-benzonitrile, L-lactate dehydrogenase, NADH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 284.

Product conversion: 38.2 % (1 h), 84.8 % (2 h); R_t 15.0 min, oven temp 125 °C; m/z (EI) 136 (M⁺), 92 (M-CONH₂), 65 (M-CONH₂-HCN).

6ii. 2-Nitro-benzenitride, P-450 Cytochrome reductase, NADPH and buffer were incubated. GCMS analysis (after 1 h and 2 h) indicated the presence of 2-amino-benzamide 283.

Product conversion: 27.9 % (1 h), 26.4 % (2 h); R_t 15.0 min, oven temp 125 °C; m/z (EI) 136 (M⁺), 92 (M-CONH₂), 65 (M-CONH₂-HCN).

6iii. 2-Nitro-benzenitride, P-450 Cytochrome reductase, NADH and buffer were incubated. GCMS analysis (after 2 h) indicated the presence of 2-amino-benzamide 283.

Product conversion: 2.1 % (2 h); R_t 15.0 min, oven temp 125 °C; m/z (EI) 136 (M⁺), 92 (M-CONH₂), 65(M-CONH₂-HCN).
7.7 General Procedure IV: Intermediate isolation.

A solution of the substrate (250.0 mg) in the minimum amount of dioxane was added to a suspension of *S. cerevisiae* (25.00 g) in water (100 mL) and incubated. The reduction of the substrate was monitored by HPLC (acetonitrile:water) or GCMS of 1 mL samples withdrawn at regular time intervals from the reaction mixture.

The reaction was stopped by the addition of ethyl acetate (100 mL) and the organic layer separated. The suspension was extracted with more ethyl acetate (3 × 100 mL) and the combined organic extracts were filtered through a bed of Celite™, dried (MgSO₄), filtered and concentrated under reduced pressure to afford the crude product(s) as yellow/orange solid(s).

Purification of the crude was attempted by flash-column chromatography, preparative HPLC and LCMS techniques.

7.7.1 Label studies.

7.7.1.1 Nitro-benzonitrile 282 studies.

2-Nitro-benzonitrile 282.

\[\text{NO}_2 \text{CN} \xrightarrow{S. cerevisiae} \text{NH}_2 \text{CONH}_2 \]

According to General Procedure VI, 2-nitro-benzonitrile 282 (88.8 mg, 0.6 mmol), *S. cerevisiae* (2.50 g) and water (10 mL) were incubated. After 2 h, HPLC indicated the presence of an unknown intermediate and 2-amino-benzamide. After work-up and purification afforded 2-amino-benzamide 284 as a pale yellow solid.

Rₚ(EtOAc:Petrol, 1:1) 0.26; Mp 110.2-111.9 °C; Data as in 284.
13C-2-Nitro-benzonitrile 342.

![Chemical structure of 13C-2-Nitro-benzonitrile](image)

According to General Procedure VI, 13C-2-nitro-benzonitrile 342 (44.7 mg, 0.3 mmol), *S. cerevisiae* (1.3 g) and water (5 mL) were incubated. The biotransformation was attempted several times, each time the reaction was stopped at different time intervals and work-up and purification afforded labelled 2-amino-benzamide 284 as a pale yellow solid.

R_f (EtOAc:Petrol, 1:1) 0.27; Mp 110.5-112.2 °C; m/z (EI) 137 (M⁺); δ_c ((CD₃)₂S0, 63 MHz) 113.9 (13C), enhanced signal; Data as in 284.

7.7.1.2 Nitro-phthalonitrile 238 studies.

3-Nitro-phthalonitrile 238.

![Chemical structure of 3-Nitro-phthalonitrile](image)

According to General Procedure VI, 3-nitro-phthalonitrile 238 (100.0 mg, 0.6 mmol), *S. cerevisiae* (10.7 g) and water (42.9 mL) were incubated. After 30 min, HPLC indicated the presence of an unknown intermediate and 2-amino-6-cyano-benzamide 289. After work-up and purification afforded a mixture of 2-amino-6-cyano-benzamide 289 and the unknown intermediate.
2-13C-3-Nitro-phthalonitrile 343.

\[
\begin{array}{c}
\text{NO}_2 \quad \text{CN} \quad \text{S. cerevisiae} \quad \text{CN} \\
\text{CN} \quad \text{CN} \quad \rightarrow \quad \text{NH}_2 \quad \text{CONH}_2 \quad + \quad \text{NH}_2 \quad \text{COOH}
\end{array}
\]

According to General Procedure VI, 2-13C-3-nitro-phthalonitrile 343 (52.2 mg, 0.3 mmol), \textit{S. cerevisiae} (5.4 g) and water (21.4 mL) were incubated. The biotransformation was attempted several times, each time the reaction was stopped at different time intervals and work-up and purification afforded 2-amino-6-cyano-benzamide 346, 2-amino-6-cyano-benzoic acid 347 and the unknown intermediate.

\[\delta_{\text{C}}((\text{CD}_3)_2\text{SO}, 63 \text{ MHz}) 162.1, 171.2, 167.9 (^{13}\text{C}), \text{ enhanced signals.}\]
7.8 General Procedure V: *Rhodococcus* sp. catalysed hydrolysis of (di)cyanonitroarenes.\(^{225}\)

Rhodococcus sp. (0.5 mg of cells per mL of buffer) was suspended in phosphate buffer (0.1M, pH 7) and incubated in an orbital shaker at 30 °C and 200 rpm. The substrate (10.0 mmol) was added and the biotransformation monitored by HPLC/GCMS.

Upon complete substrate conversion, the buffer mixture was filtered though a Celite™ pad to remove the cells. The filtrate was basified using NaOH (pH 10, 2M) and extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were washed with brine (50 mL), dried (MgSO\(_4\)), filtered and concentrated under reduced pressure to afford any unreacted starting material.

The aqueous layer was acidified using HCl (pH 2, 2M) and extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were washed with brine (50 mL), dried using MgSO\(_4\), filtered and concentrated under reduced pressure to afford the acid product(s). If necessary, further purification was achieved by preparative HPLC.

Quantities of substrate and buffer used, as well as reaction times, purification methods and yields are given for each individual biotransformation.
7.8.1 Hydrolysis of cyanonitroarenes.

4-Chloro-2-fluoro-benzoic acid 363.

According to General Procedure V, 4-chloro-2-fluoro-benzonitrile 362 (100.0 mg, 0.6 mmol), *Rhodococcus* sp. (25.0 mg) and buffer (50 mL) were incubated for 90 min. Work-up afforded 4-chloro-2-fluoro-benzoic acid 363 as a pale brown solid (84.6 mg, 74.8 %).

Mp 134.2-135.8 °C, Lit. 226 136.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3327, 3116 (br, O-H), 2692 (CH), 1682 (C=O), 1596 (Ph), 1257 (C-F); \(\delta_{\text{H}} \) ((CD₃)₂SO, 200 MHz) 13.4 (1H, br s, COOH), 8.03 (1H, d, \(J \) 1.9, PhH), 7.92 (1H, d, J 8.8, PhH), 7.53 (1H, dd, J 8.3 and 1.9, PhH); \(\delta_{\text{C}} \) ((CD₃)₂SO, 63 MHz) 165.5, 160.1 (C), 131.8, 130.6 (CH), 128.8, 119.5 (C), 117.3 (CH); \(m/z \) (EI) 174 (M⁺), 129 (M-CO₂H), 109 (M-CO₂H-HF); GC: R_t 7.8 min, oven temp 150 °C.

2-Nitro-benzoic acid 364.

According to General Procedure V, 2-nitro-benzonitrile 282 (100.0 mg, 0.7 mmol), *Rhodococcus* sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. Work-up afforded 2-nitro-benzoic acid 364 as a pale yellow solid (37.2 mg, 32.8 %).

Mp 146.8-147.9 °C, Lit. 227 147.0-148.5 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3200 (br, O-H), 2989 (CH), 1719 (C=O), 1589 (Ph), 1555, 1334 (NO₂); \(\delta_{\text{H}} \) ((CD₃)₂SO, 200 MHz) 8.60 (1H, br s, COOH), 7.90 (2H, m, PhH), 7.40 (2H, m, PhH); \(\delta_{\text{C}} \) ((CD₃)₂SO, 63 MHz) 165.8, 148.3 (C), 132.3, 131.4, 129.6 (CH), 127.2 (C), 123.1 (CH); \(m/z \) (EI) 167
Experimental: Biotransformations.

(\text{M}^+), 149 (M-H$_2$O), 119 (M-H$_2$O-NO), 103 (M-H$_2$O-NO$_2$); GC: R$_f$ 10.8 min, oven temp 120 °C.

3-Nitro-benzoic acid 365.

According to General Procedure V, 3-nitro-benzonitrile 285 (100.0 mg, 0.7 mmol), *Rhodococcus* sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. Work-up afforded 3-nitro-benzoic acid 365 as a white solid (61.6 mg, 53.7%).

Mp 142.0 °C, Lit.228 142.0-144.0 °C; ν_{\max} (KBr)/cm$^{-1}$ 3259 (br, O-H), 3022 (CH), 1710 (C=O), 1592 (Ph), 1545, 1340 (NO$_2$); δ_{H} ((CD$_3$)$_2$SO, 200 MHz) 14.0 (1H, br s, COOH), 8.58 (1H, dd, J 2.4 and 1.1, PhH), 8.44 (1H, td, J 7.8, 2.4 and 1.1, PhH), 8.32 (1H, td, J 7.8, 2.4 and 1.1, PhH), 7.79 (1H, dd, J 7.8, Ph); δ_{C} ((CD$_3$)$_2$SO, 63 MHz) 165.3, 147.4 (C), 135.2 (CH), 131.9 (C), 130.0 (CH), 126.9, 123.3 (CH); m/z (EI) 167 (M$^+$), 149 (M-H$_2$O), 119 (M-H$_2$O-NO), 103 (M-H$_2$O-NO$_2$); GC: R$_f$ 10.8 min, oven temp 120 °C.

4-Nitro-benzoic acid 366.

According to General Procedure V, 4-nitro-benzonitrile 287 (100.0 mg, 0.7 mmol), *Rhodococcus* sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. Work-up afforded 4-nitro-benzoic acid 366 as a white solid (58.4 mg, 51.4%).

Mp 240.0-241.5 °C, Lit.229 241.0-243.0 °C; ν_{\max} (KBr)/cm$^{-1}$ 3185 (br, O-H), 2932 (CH), 1730 (C=O), 1601 (Ph), 1530, 1332 (NO$_2$); δ_{H} ((CD$_3$)$_2$SO, 200 MHz) 11.2 (1H, s, COOH), 8.33 (2H, d, J 8.9, PhH), 8.31 (2H, d, J 8.9, PhH); δ_{C} ((CD$_3$)$_2$SO, 63 MHz) 165.3, 147.4 (C), 135.2 (CH), 131.9 (C), 130.0 (CH), 126.9, 123.3 (CH); m/z (EI) 167 (M$^+$), 149 (M-H$_2$O), 119 (M-H$_2$O-NO), 103 (M-H$_2$O-NO$_2$); GC: R$_f$ 10.8 min, oven temp 120 °C.
Experimental: Biotransformations.

MHz) 165.2, 150.1, 136.5 (C), 130.2, 123.0 (CH); m/z (El) 167 (M⁺), 149 (M-H₂O), 119 (M-H₂O-NO), 103 (M-H₂O-NO₂); GC: Rₓ 10.8 min, oven temp 120 °C.

7.8.2 Hydrolysis of dicyanonitroarenes.

Phthalic acid 375 and 2-Cyano-benzoic acid 376.

\[
\begin{align*}
\text{CN} & \quad \text{Rhodococcus sp.} \\
\text{COOH} & \\
\text{CN} & \quad \text{COOH} + \text{COOH}
\end{align*}
\]

According to General Procedure V, 1,2-dicyano-benzene 335 (100.3 mg, 0.8 mmol), Rhodococcus sp. (35.0 mg) and buffer (70 mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 20:80) afforded phthalic acid 375 as a white solid (35.6 mg, 26.8 %) and 2-cyano-benzoic acid 376 as a pale yellow solid (57.5 mg, 48.9 %).

Phthalic acid: Rₓ (MeCN:H₂O, 40:60) 3.1 min; Mp 210.2 °C, Lit.²³⁰ 211.0 °C; \(v_{\text{max}}\) (KBr)/cm⁻¹ 3302, 3258 (br, O-H), 3026 (CH), 1674 (C=O), 1622 (Ph); \(\delta_{\text{H}}\) ((CD₃)₂SO, 200 MHz) 9.20 (2H, br s, COOH), 7.65 (2H, d, J 9.1, PhH), 7.58 (2H, d, J 9.1, PhH); \(\delta_{\text{C}}\) ((CD₃)₂SO, 63 MHz) 167.8, 131.7 (C), 129.8, 127.6 (CH); m/z (ES⁻) 165 (M-H⁺), 148 (M-H₂O), 130 (M-2H₂O).

2-Cyano-benzoic acid: Rₓ (MeCN:H₂O, 40:60) 7.8 min; Mp 183.1-184.7 °C, Lit.²³¹ 183.0-185.0 °C; \(v_{\text{max}}\) (KBr)/cm⁻¹ 3302, 3258 (br, O-H), 3026 (CH), 1674 (C=O), 1622 (Ph); \(\delta_{\text{H}}\) ((CD₃)₂SO, 200 MHz) 8.02 (2H, m, PhH), 7.83 (2H, m, PhH) 7.70 (1H, br s, COOH); \(\delta_{\text{C}}\) ((CD₃)₂SO, 63 MHz) 165.4, 135.8 (C), 135.1, 133.7, 132.9, 130.8 (CH), 119.4, 113.5 (C); m/z (ES⁻) 147 (M-H⁺), 129 (M-H₂O), 99 (M-NO).
3-Nitro-phthalic acid 234 and 2-Cyano-3-nitro-benzoic acid 377.

According to General Procedure V, 3-nitro-phthalonitrile 238 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg, 1.5 eq.) and buffer (250 mL) were incubated for 7 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-nitro-phthalic acid 234 as a yellow solid (14.0 mg, 11.0 %) and 2-cyano-3-nitro-benzoic acid 377 as a yellow solid (24.5 mg, 22.0 %).

3-Nitro-phthalic acid: Rt (MeCN:H2O, 40:60) 3.6 min; Mp 219.2-221.8 °C, Lit.232 220.0-222.0 °C; max(KBr)/cm⁻¹ 3320, 3177 (br, O-H), 3101 (CH), 1766, 1735 (C=O), 1610 (Ph), 1552, 1350 (NO₂); δH ((CD3)2SO, 200 MHz) 8.89 (2H, br s, COOH), 8.32 (1H, dd, J 8.2 and 1.3, PhH), 8.23 (1H, dd, J 8.0 and 1.3, PhH), 7.80 (1H, dd, J 8.2 and 8.0, PhH); δC ((CD3)2SO, 63 MHz) 170.3, 145.9 (C), 134.3, 132.2 (CH), 130.8 (C), 129.8 (CH), 128.7 (C); m/z (ES⁻) 210 (M-H)⁻, 165 (M-CO₂⁻).

2-Cyano-3-nitro-benzoic acid: Rt (MeCN:H2O, 40:60) 0.5 min; Mp 184-186 °C; max(KBr)/cm⁻¹ 3268 (br, O-H), 3028 (CH), 2296 (CN), 1699 (C=O), 1625 (Ph), 1542, 1349 (NO₂); δH ((CD3)2SO, 200 MHz) 8.11 (1H, br s, COOH), 8.30 (1H, dd, J 8.0 and 1.5, PhH), 8.21 (1H, dd, J 7.8 and 1.5, PhH), 7.74 (1H, dd, J 8.0 and 7.8, PhH); δC ((CD3)2SO, 63 MHz) 170.9, 155.2 (C), 138.5 (CH), 131.1 (C), 130.9, 128.2 (CH), 120.9, 113.7 (C); m/z (ES⁻) 191 (M-H)⁻, 146 (M-NO₂), 119 (M-NO₂-NH₂), Found (M-H)⁻ 191.0891, C₅H₄N₂O₄ requires 191.0093.

4-Nitro-isophthalic acid 232 and 3-Cyano-4-nitro-benzoic acid 378.

According to General Procedure V, 4-nitro-isophthalonitrile 233 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 24
h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-nitro-isophthalic acid 232 as a yellow solid (18.8 mg, 15.4 %) and 3-cyano-4-nitro-benzoic acid 378 as a pale yellow solid (74.5 mg, 67.1 %).

4-Nitro-isophthalic acid: R$_t$ (MeCN:H$_2$O, 40:60) 4.0 min; Mp 245.2-247.8 °C, Lit.172 245.0-246.0 °C; v_{max}(KBr)/cm$^{-1}$ 3350 (br, O-H), 3087 (CH), 1718, 1685 (C=O), 1617 (Ph), 1522, 1354 (NO$_2$); δH ((CD$_3$)$_2$SO, 200 MHz) 8.88 (1H, d, J 1.7, PhH), 8.22 (1H, dd, J 8.2 and 1.7, PhH), 8.02 (1H, d, J 1.7, PhH); δC ((CD$_3$)$_2$SO, 63 MHz) 165.8, 165.2, 151.0, 134.2 (C), 130.9, 128.9 (CH), 126.9 (C), 124.2 (CH); m/z (ES$^-$) 210 (M-H)$^-$, 165 (M-CO$_2$).

3-Cyano-4-nitro-benzoic acid: R$_t$ (MeCN:H$_2$O, 40:60) 5.4 min; Mp 198.3-199.9 °C, (Found C, 48.41; H, 14.82; N, 33.00; C$_8$H$_4$N$_2$O$_4$ requires C, 50.21; H, 14.59; N, 33.32); v_{max}(KBr)/cm$^{-1}$ 3306, 3179 (br, O-H), 3073 (CH), 2245 (CN), 1700, 1684 (C=O), 1603 (Ph), 1533, 1351 (NO$_2$); δH ((CD$_3$)$_2$SO, 200 MHz) 9.62 (1H, br s, COOH), 8.52 (1H, d, J 1.8, PhH), 8.35 (1H, d, J 8.6, PhH), 8.48 (1H, dd, J 8.6, and 1.8,PhH); δC((CD$_3$)$_2$SO, 63 MHz) 164.6, 149.5, 139.5 (C), 134.5, 133.5, 126.2 (CH), 115.4, 107.3 (C); m/z (ES$^-$) 191 (M-H)$^-$, 146 (M-NO$_2$), Found (M-H)$^-$ 191.1824, C$_8$H$_4$N$_2$O$_4$ requires 191.0093.

2-Nitro-terephthalic acid 222 and 4-Cyano-3-nitro-benzoic acid 379.

According to General Procedure V, 2-nitro-terephthalonitrile 225 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 10 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 2-nitro-terephthalic acid 222 as a yellow solid (18.8 mg, 15.4 %) and 4-cyano-3-nitro-benzoic acid 379 as a pale yellow solid (78.1 mg, 70.4 %).

2-Nitro-terephthalic acid: R$_t$ (MeCN:H$_2$O, 40:60) 4.0 min; Mp 264.5-266.1 °C, Lit.233 266.0 °C; v_{max}(KBr)/cm$^{-1}$ 3359, 3196 (br, O-H), 3109 (CH), 1700, 1662 (C=O), 1616 (Ph), 1533, 1350 (NO$_2$); δH ((CD$_3$)$_2$SO, 200 MHz) 9.05 (1H, d, J 1.5,
Experimental: Biotransformations.

PhH), 8.50 (1H, dd, J 7.8 and 1.5, PhH), 8.25 (1H, d, J 7.9, PhH); δc ((CD3)2SO, 63 MHz) 166.8, 165.3, 147.1, 136.2 (C), 132.2 (CH), 131.9 (C), 129.3, 123.0 (CH); m/z (ES⁻) 210 (M-H)⁻, 165 (M-CO2).

4-Cyano-3-nitro-benzoic acid: Rf (MeCN:H2O, 40:60) 5.4 min; Mp 204.0-205.6 ºC, Lit234 205.0-206.0 ºC; νmax(KBr)/cm⁻¹ 3376, 3184 (br, O-H), 2238 (CN), 1675 (C=O), 1625 (Ph), 1539, 1343 (NO2); δH ((CD3)2SO, 200 MHz) 10.30 (1H, br s, COOH), 9.13 (1H, d, J 1.5, PhH), 8.39 (1H, dd, J 8.0 and 1.5, PhH), 8.16 (1H, d, J 8.0, PhH); δc ((CD3)2SO, 63 MHz) 164.5, 148.6 (C), 136.3 (CH), 135.9 (C), 133.2, 124.2 (CH), 115.4, 109.2 (C); m/z (ES⁻) 191 (M-H)⁻, 174 (M-H2O), 128 (M-H2O-NO2).

3-Cyano-2-nitro-benzoic acid 386.

According to General Procedure V, 2-nitro-isophthalonitrile 230 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 5 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-cyano-2-nitro-benzoic acid 386 as a white solid (80.0 mg, 72.1 %).

3-Cyano-2-nitro-benzoic acid: Rf (MeCN:H2O, 40:60) 4.5 min; Mp 184.0-186.0 ºC, (Found C, 49.92; H, 12.69; N, 33.57; C8H4N2O4 requires C, 50.21; H, 14.59; N, 33.32); νmax(KBr)/cm⁻¹ 3309 (br, O-H), 3193 (CH), 2241 (CN), 1673 (C=O), 1605 (Ph), 1536, 1355 (NO2); δH ((CD3)2SO, 200 MHz) 8.42 (1H, br s, COOH), 8.39 (1H, dd, J 7.7 and 1.0, PhH), 8.06 (1H, dd, J 8.0 and 1.0, PhH), 7.93 (1H, dd, J 8.0 and 7.7, PhH); δc ((CD3)2SO, 63 MHz) 165.0, 149.3 (C), 136.0, 133.9, 133.0 (CH), 130.2, 114.1, 106.4 (C); m/z (ES⁻) 191 (M-H)⁻, 146 (M-NO2), Found (M-H)⁻ 190.9892, C8H4N2O4 requires 191.0093.
According to General Procedure V, 4-nitro-phthalonitrile 294 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 12 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-nitro-phthalic acid 388 as a pale orange solid (6.0 mg, 8.0 %) and 6-cyano-3-nitro-benzoic acid 387 as a yellow solid (65.0 mg, 59.0 %).

4-Nitro-phthalic acid: R (MeCN:H₂O, 40:60) 4.8 min; Mp 163.0-164.5 °C; Lit.235 163.0-165.0 °C; νmax(KBr)/cm⁻¹ 3330 (br, O-H), 3112 (CH), 1792, 1700 (C=O), 1622 (Ph), 1547, 1350 (NO₂); δH ((CD₃)₂SO, 200 MHz) 9.91 (1H, br s, COOH), 9.05 (1H, d, J 2.3, PhH), 9.00 (1H, br s, COOH), 8.68 (1H, dd, J 8.6 and 2.3, PhH), 8.43 (1H, d, J 8.6, PhH); δC ((CD₃)₂SO, 63 MHz) 167.5, 147.5, 138.9, 132.9 (C), 129.2, 125.3, 123.1 (CH); m/z (ES⁻) 210 (M-H)⁻, 165 (M-CO₂).

6-Cyano-3-nitro-benzoic acid: R, (MeCN:H₂O, 40:60) 7.6 min; Mp 212.0-214.0 °C; νmax (KBr)/cm⁻¹ 3259 (br, O-H), 2987 (CH), 2314 (CN), 1687 (C=O), 1610 (Ph), 1561, 1346 (NO₂); δH ((CD₃)₂SO, 200 MHz) 8.91 (1H, d, J 2.0, PhH), 8.69 (1H, br s, COOH) 8.57 (1H, dd, J 8.0 and 2.0, PhH), 8.15 (1H, d, J 8.0, PhH); δC ((CD₃)₂SO, 63 MHz) 164.8, 145.2, 135.4 (C), 134.2, 128.9, 126.3 (CH), 124.6, 118.7 (C); m/z (ES⁻) 191 (M-H)⁻, 146 (M-NO₂), Found (M-H⁻) 191.0177, C₈H₆N₂O₄ requires 191.0093.

5-Nitro-isophthalic acid 218 and 5-Cyano-3-nitro-benzoic acid 389.

According to General Procedure III, 5-nitro-isophthalonitrile 221 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for
12 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded **5-nitro-isophthalic acid 218** as a pale yellow solid (20.0 mg, 15.0 %) and **5-cyano-3-nitro-benzoic acid 389** as a yellow solid (77.0 mg, 69.0 %).

5-Nitro-isophthalic acid: R$_t$ (MeCN:H$_2$O, 40:60) 3.4 min; Mp 255.9-256.8 °C, Lit.163 256.0-258.0 °C; ν_{max}(KBr)/cm$^{-1}$ 3456, 3347 (br, O-H), 3087 (CH), 1717, 1685 (C=O), 1616 (Ph), 1522, 1355 (NO$_2$); δ_{H} ((CD$_3$)$_2$SO, 200 MHz) 10.2 (2H, br s, COOH), 8.81 (2H, d, J 1.4, PhH), 8.79 (1H, t, J 1.4, PhH); δ_{C} ((CD$_3$)$_2$SO, 63 MHz) 165.5, 148.0, 136.2 (C), 132.8, 124.6 (CH); m/z (ES$^-$) 210 (M-H)$^-$, 165 (M-CO$_2$).

5-Cyano-3-nitro-benzoic acid: R$_t$ (MeCN:H$_2$O, 40:60) 7.0 min; Mp 170.0 °C, Lit.163 170.0-171.0 °C; ν_{max}(KBr, cm$^{-1}$) 3395 (br, O-H), 3079 (CH), 2250 (CN), 1672 (C=O), 1617 (Ph), 1540, 1353 (NO$_2$); δ_{H} ((CD$_3$)$_2$SO, 200 MHz) 9.85 (1H, br s, COOH), 9.12 (1H, dd, J 1.5, PhH), 8.89 (1H, dd, J 1.5, PhH), 8.69 (1H, dd, J 1.5, PhH); δ_{C} ((CD$_3$)$_2$SO, 63 MHz) 168.2, 148.3 (C), 137.0, 135.1 (CH), 135.0 (C), 129.9 (CH), 116.8, 113.2 (C); m/z (EI) 192 (M$^+$), 146 (M-NO$_2$).
7.9 General Procedure VI: *Rhodococcus* sp. catalysed hydrolysis of *S. cerevisiae* products.

Rhodococcus sp. (0.5 mg of cells per mL of buffer) was suspended in phosphate buffer (0.1M, pH 7) and incubated in an orbital shaker at 30 °C and 200 rpm. The substrate was added and the biotransformation monitored by HPLC. Upon complete substrate conversion, the reaction was filtered through a Celite™ pad to remove the enzyme. The aqueous filtrate was concentrated under reduced pressure to yield the crude amino acid derivative(s) which were purified by preparative HPLC.

Quantities of substrate and buffer used, as well as reaction times, purification conditions and yields are given for each individual biotransformation.

7.9.1 Hydrolysis of amino-benzonitriles.

2-Amino-benzoic acid 367.

According to General Procedure VI, 2-amino-benzonitrile 283 (100.0 mg, 0.9 mmol), *Rhodococcus* sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 20:80) afforded 2-amino-benzoic acid 367 as a cream solid (40.7 mg, 35.0%).

R_t (MeCN:H₂O, 40:60) 4.8 min; Mp 146.5 °C, Lit. 145.0-148.0 °C; <i>v</i>_{max}(KBr)/cm⁻¹ 3624, 3542 (NH₂), 3202 (br, O-H), 1705 (C=O), 1612 (Ph), 1525, 1355 (NO₂); δ_{ii} (CDCl₃, 200 MHz) 8.60 (1H, br s, COOH), 7.88 (1H, dd, <i>J</i> 8.4, 8.2 and 1.9, PhH), 7.25 (1H, td, <i>J</i> 8.4, 8.2 and 1.9, PhH), 7.65 (2H, m, PhH), 7.25 (1H, td, <i>J</i> 8.4 and 1.9, PhH); δ_c (CDCl₃, 63 MHz) 168.9, 151.2 (C), 132.9, 131.2, 115.8, 114.1 (CH), 108.3 (C); <i>m/z</i> (EI) 137 (M⁺), 120 (M-NH₃), 102 (M-NH₃-H₂O).
3-Amino-benzoic acid 368.

According to General Procedure VI, 3-amino-benzonitrile 286 (100.0 mg, 0.9 mmol), Rhodococcus sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-benzoic acid 368 as a white solid (83.8 mg, 72.0 %).

Rf (MeCN:H2O, 40:60) 4.2 min; Mp 175.5 °C, Lit. 237 175.0-177.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3144 (br, O-H), 1682 (C=O), 1608 (Ph), 1531, 1342 (NO2); \(\delta_{\text{H}} \) (CDCl3, 200 MHz) 7.18 (1H, dd, J 1.4 and 1.2, PhH), 7.09 (2H, m, J 8.7, PhH), 6.78 (1H, td, J 6.8, 6.1 and 1.2, PhH); \(\delta_{\text{C}} \) (CDCl3, 63 MHz) 169.8, 147.9, 131.0 (C), 128.2, 118.0, 117.1, 114.4 (CH); m/z (El) 137 (M+), 120 (M-NH3), 102 (M-NH3·H2O).

4-Amino-benzoic acid 369.

According to General Procedure VI, 4-amino-benzonitrile 288 (100.0 mg, 0.9 mmol), Rhodococcus sp. (25.0 mg) and buffer (50 mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-amino-benzoic acid 369 as a yellow solid (64.3 mg, 55.2 %).

Rf (MeCN:H2O, 40:60) 3.6 min; Mp 186.2-187.5 °C, Lit. 238 187.0-190.0 °C; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3685, 3508 (NH2), 3152 (br, O-H), 1692 (C=O), 1622 (Ph), 1520, 1342 (NO2); \(\delta_{\text{H}} \) (CDCl3, 200 MHz) 7.65 (2H, d, J 8.0, PhH), 6.59 (2H, d, J 8.0, PhH), 4.10 (2H, br s, NH2); \(\delta_{\text{C}} \) (CDCl3, 63 MHz, CDCl3) 167.3 (C), 152.2, 131.2 (CH), 117.0 (C), 112.0 (CH); m/z (El) 137 (M+), 120 (M-NH3), 102 (M-NH3·H2O).
7.9.2 Hydrolysis of amino/(amido)-benzonitriles.

3-Amino-phthalamic acid 381.

According to General Procedure VI, 2-amino-6-cyano-benzamide 289 (100.0 mg, 0.6 mmol), *Rhodococcus* sp. (125.0 mg, 1.3 eq.) and buffer (250mL) were incubated for 48 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-phthalamic acid 381 as a yellow solid (31.8 mg, 29.4 %).

Rf (MeCN:H2O, 20:80) 6.1 min; Mp 172.0-174.5 °C; vmax(KBr)/cm⁻¹ 3421, 3258 (NH2), 3246 (br, O-H), 1698 (C=O), 1664 (NH), 1619 (Ph); δH ((CD3)2SO, 200 MHz) 7.89 (1H, dd, J 6.9 and 0.8, PhH), 7.55 (1H, dd, J 6.9 and 6.7, PhH), 7.02 (1H, dd, J 6.7 and 0.8, PhH); δC ((CD3)2SO, 63 MHz) 167.8, 166.5, 143.8 (C), 136.4 (CH), 130.5, 123.8 (C), 125.8, 123.2 (CH); m/z (EI) 180 (M⁺), 162 (M-H2O), 144 (M-2H2O), 96 (M-2H2O-NO), Found (M⁺) 180.0498 C8H8N2O3 requires 180.0535.

4-Amino-isophthalamic acid 382.

According to General Procedure VI, 2-amino-5-cyano-benzamide 291 (100.0 mg, 0.6 mmol), *Rhodococcus* sp. (125.0 mg) and buffer (250mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-amino-isophthalamic acid 382 as an orange solid (78.9 mg, 66.9 %).

Rf (MeCN:H2O, 40:60) 3.6 min; Mp 274.0-275.3 °C; (Found C, 50.92; H, 4.27; N, 17.45; C8H8N2O3 requires C, 53.32; H, 4.48; N, 15.55; vmax(KBr)/cm⁻¹ 3515, 3377 (br, O-H, NH2), 3190 (CH), 1682 (C=O, NH), 1651 (Ph); δH ((CD3)2SO, 200 MHz) 7.89 (1H, br s, COOH), 7.80 (1H, d, J 1.5, PhH), 7.31 (1H, br s, CONH2), 7.16 (1H,
Experimental: Biotransformations.

dd, J 8.2 and 1.5, PhH), 6.93 (1H, d, J 8.2, PhH), 6.66 (1H, br s, CONH₂), 3.5 (2H, br s, NH₂); δc ((CD₃)₂SO, 63 MHz) 170.9, 168.1, 150.1 (C), 137.5, 128.8 (CH), 118.2, 115.7 (C), 113.1 (CH); m/z (EI) 205 (MNa⁺), 163 (M-H₂O), Found (M⁺) 180.04341. C₈H₈N₂O₃ requires 180.0535.

3-Amino-terephthalamic acid 383.

According to General Procedure VI, using 2-amino-4-cyano-benzamid 292 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-terephthalamic acid 383 as a pale orange solid (60.3 mg, 69.7%).

R₁ (MeCN:H₂O, 40:60) 6.0 min; Mp 280.0-282.0 °C, (Found C, 53.11; H, 4.33; N, 15.81; C₈H₈N₂O₃ requires C, 53.32; H, 4.48; N, 15.55); νmax (KBr)/cm⁻¹ 3498, 3379 (br, O-H, NH₂), 3028 (CH), 1652 (C=O, NH), 1589 (Ph); δH ((CD₃)₂SO, 200 MHz) 7.92 (1H, br s, COOH), 7.62 (1H, d, J 8.2, PhH), 7.36 (1H, br s, CONH₂), 7.26 (1H, dd, J 8.2 and 1.5, PhH), 7.14 (1H, br s, CONH₂), 7.05 (1H, d, J 1.5, PhH), 3.40 (2H, br s, NH₂); δc ((CD₃)₂SO, 63 MHz) 170.5, 167.8, 148.2, 137.5 (C), 128.8 (CH), 125.0 (C), 122.1, 114.4 (CH); m/z (EI) 205 (MNa⁺), 180 (M⁺), 163 (M-H₂O), Found (M⁺) 180.0427. C₈H₈N₂O₃ requires 180.0535.
Experimental: Biotransformations.

2-Amino-isophthalamic acid 391.

According to General Procedure VI, using 2-amino-3-cyano-benzamide 293 (25.0 mg, 0.2 mmol), Rhodococcus sp. (38.0 mg) and buffer (75 mL) were incubated for 3 d. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 2-amino-isophthalamic acid 391 as a pale yellow gum (25.0 mg, 89.0 %).

4-Amino-phthalic acid 394 and 4-Amino-2-cyano-benzoic acid 392.

According to General Procedure VI, 4-amino-isophthalonitrile 295 (100.0 mg, 0.6 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 48 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-amino-phthalic acid 394 as a pale yellow solid (15.7 mg, 14.3 %) and 3-amino-6-cyano-benzoic acid 392 as a pale orange solid (52.0 mg, 52.8 %).

4-Amino-phthalic acid: Rf (MeCN:H2O, 20:80) 5.8 min; νmax (KBr)/cm⁻¹ 3422, 3215 (NH₂), 3208 (br, O-H), 2982 (CH), 1754 (C=O), 1619 (Ph); δH ((CD3)2SO, 200 MHz) 9.23 (1H, br s, COOH), 8.22 (1H, d, J 8.1, PhH), 8.13 (1H, d, J 2.1, PhH), 8.02 (1H, dd, J 8.1 and 2.1, PhH), 6.89 (2H, br s,
NH₂); δc ((CD₃)₂SO, 63 MHz) 166.3, 158.2, 138.0 (C), 134.2 (CH), 125.4 (C), 123.5, 119.8 (CH); m/z (FAB⁺) 182 (MH⁺).

3-Amino-6-cyano-benzoic acid: Rₜ (MeCN:H₂O, 20:80) 8.6 min; Mp 162.0-163.0 °C; νmax(KBr)/cm⁻¹ 3456, 3375 (NH₂), 2215 (CN), 1700 (C=O), 1598 (Ph); δH ((CD₃)₂SO, 200 MHz) 8.10 (1H, br s, COOH), 7.63 (1H, d, J 2.3, PhH), 7.02 (1H, d, J 8.7, PhH), 6.83 (1H, dd, J 8.7 and 2.3, PhH), 6.74 (2H, br s, NH₂); δc ((CD₃)₂SO, 63 MHz) 169.3, 153.3, 140.0 (C), 135.1, 125.7, 120.3 (CH), 116.6, 110.3 (C), 97.8 (C); m/z (El) 162 (M⁺), 144 (M-H₂O), Found (M⁺) 162.0434, C₈H₆N₂O₃ requires 162.0430.

5-Amino-isophthalic acid 395 and 3-Amino-5-cyano-benzoic acid 393.

According to General Procedure VI, 5-amino-isophthalonitrile 296 (100.0 mg, 0.8 mmol), Rhodococcus sp. (125.0 mg) and buffer (250 mL) were incubated for 3 d. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 5-amino-isophthalic acid 395 as a white solid (20.0 mg, 15.8 %) and 3-amino-5-cyano-benzoic acid 393 as a pale orange solid (55.0 mg, 48.7 %).

5-Amino-isophthalic acid: Rₜ (MeCN:H₂O, 10:90) 4.7 min; Mp > 300.0 °C, Lit.²⁴⁰ > 300.0 °C; νmax(KBr)/cm⁻¹ 3204, 3346 (NH₂), 2218 (CN), 1682 (C=O, NH), 1616 (Ph); δH ((CD₃)₂SO, 200 MHz) 9.52 (2H, br s, COOH), 7.88 (2H, d, J 1.3, PhH), 8.16 (1H, s, J 1.3, PhH), 6.17 (2H, br s, NH₂); δc ((CD₃)₂SO, 63 MHz) 169.3, 150.4, 135.2 (C), 121.2, 120.3 (CH); m/z (FAB⁺) 182 (MH⁺).

3-Amino-5-cyano-benzoic acid: Rₜ (MeCN:H₂O, 10:90) 6.0 min; Mp 172.0-174.4 °C, (Found C, 59.13; H, 3.42; N, 17.53; C₈H₆N₂O₂ requires C, 59.26; H, 3.73; N, 17.28); νmax(KBr)/cm⁻¹ 3501, 3346 (br, O-H, NH₂), 3129 (CH), 2230 (CN), 1687 (C=O), 1598 (Ph); δH ((CD₃)₂SO, 200 MHz) 7.56 (1H, dd, J 1.8, PhH), 7.44 (1H, dd, J 1.8, PhH), 7.02 (1H, dd, J 1.8, PhH) 6.01 (2H, br s, NH₂); δc ((CD₃)₂SO, 63 MHz) 169.8,
Experimental: Biotransformations.

150.0, 138.2 (C), 128.9, 126.2, 124.3 (CH), 114.9, 113.5 (C); m/z (FAB\(^+\)) 205 (MNa\(^+\)), Found (MH\(^+\)) 163.0500, C\(_8\)H\(_6\)N\(_2\)O\(_2\) requires 163.0508.

7.10 General Procedure VII: *S. cerevisiae* catalysed reduction of *Rhodococcus* sp. products.

A solution of the substrate (250.0 mg) in the minimum amount of dioxane was added to a suspension of *S. cerevisiae* (25.00 g) in water (100 mL) and incubated. The reduction of the substrate was monitored by HPLC (acetonitrile:water) of 1 mL samples withdrawn at regular time intervals from the reaction mixture. Each sample was microcentrifuged, 400 µL of the aqueous layer was removed and filtered before being diluted with 600 µL of mobile phase and subjected to HPLC analysis.

Upon complete substrate consumption, the *S. cerevisiae* suspension was centrifuged and the aqueous layer was removed and filtered through a Celite\(^{TM}\) pad. The filtrate collected was concentrated under reduced pressure to yield crude amino-acid derivatives, which were purified by preparative HPLC.

Quantities of substrate and *S. cerevisiae* used, as well as reaction times, purification conditions and yields are given for each individual biotransformation.

7.10.1 Reduction of nitro-benzoic acids.

2-Amino-benzoic acid 367.

\[
\begin{align*}
\begin{array}{c}
\text{NO}_2 \\
\text{COOH}
\end{array}
& \xrightarrow{S. \text{cerevisiae}} \\
\begin{array}{c}
\text{NH}_2 \\
\text{COOH}
\end{array}
\end{align*}
\]

According to General Procedure VII, 2-nitro-benzoic acid 364 (100.0 mg, 0.6 mmol), *S. cerevisiae* (10.00 g) and water (40 mL) were incubated for 24 h. After work-up,
purification by preparative HPLC (acetonitrile:water, 20:80) afforded 2-amino-
benzoic acid 367 as a cream solid (45.4 mg, 55.2 %).
R_t (MeCN:H₂O, 40:60) 4.8 min; Mp 146.5 °C; Data as in 367.

3-Amino-benzoic acid 368.

\[
\begin{align*}
\text{NO}_2 & \quad \text{COOH} \\
\text{S. cerevisiae} & \quad \rightarrow \\
\text{NH}_2 & \quad \text{COOH}
\end{align*}
\]

According to General Procedure VII, 3-nitro-benzoic acid 365 (100.0 mg, 0.6 mmol),
S. cerevisiae (10.00 g) and water (40 mL) were incubated for 24 h. After work-up,
purification by preparative HPLC (acetonitrile:water, 20:80) afforded 3-amino-
benzoic acid 368 as a white solid (41.6 mg, 50.6 %).
R_t (MeCN:H₂O, 40:60) 4.2 min; Mp 175.5 °C; Data as in 368.

4-Amino-benzoic acid 369.

\[
\begin{align*}
\text{NO}_2 & \quad \text{COOH} \\
\text{S. cerevisiae} & \quad \rightarrow \\
\text{NH}_2 & \quad \text{COOH}
\end{align*}
\]

According to General Procedure VII, 4-nitro-benzoic acid 366 (100.0 mg, 0.6 mmol),
S. cerevisiae (10.00 g) and water (40 mL) were incubated for 24 h. After work-up,
purification by preparative HPLC (acetonitrile:water, 20:80) afforded 4-amino-
benzoic acid 369 as a yellow solid (45.0 mg, 54.7 %).
R_t (MeCN:H₂O, 40:60) 3.6 min; Mp 186.2-187.5 °C; Data as in 369.
7.10.2 Reduction of nitro-cyano-benzoic acids.

3-Amino-phthalamic acid 381.

\[
\text{NO}_2 - \text{CN} \quad \text{NH}_2 \quad \text{CONH}_2
\]

According to General Procedure V, 2-cyano-3-nitro-benzoic acid 377 (57.6 mg, 0.3 mmol), \textit{S. cerevisiae} (4.50 g) and water (18 mL) were incubated for 24 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-phthalamic acid 381 as a yellow solid (11.9 mg, 22.1 %).

\(R_1 (\text{MeCN}:\text{H}_2\text{O}, 20:80) \ 6.3 \ \text{min}; \ \text{Mp} \ 171.1-173.2 \ ^\circ\text{C}; \ \text{Data as in 381.} \)

4-Amino-isophthalamic acid 382.

\[
\text{NO}_2 - \text{CN} \quad \text{NH}_2 \quad \text{CONH}_2
\]

According to General Procedure V, 3-cyano-4-nitro-benzoic acid 378 (57.6 mg, 0.3 mmol), \textit{S. cerevisiae} (4.50 g) and water (18 mL) were incubated for 4 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 4-amino-isophthalamic acid 382 as an orange solid (62.5 mg, 75.0 %); Data as in 382.

3-Amino-terephthalamic acid 383.

\[
\text{NO}_2 - \text{CN} \quad \text{NH}_2 \quad \text{CONH}_2
\]

According to General Procedure V, 4-cyano-3-nitro-benzoic acid 379 (96.0 mg, 0.5 mmol), \textit{S. cerevisiae} (7.50 g) and water (30 mL) were incubated for 3.5 h. After
work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-terephthalamic acid 383 as an orange solid (61.2 mg, 73.4 %).
R_t (MeCN:H₂O, 15:85) 6.2 min; Mp 281.0-282.3 °C; Data as in 383.

2-Amino-isophthalamic acid 391.

\[
\text{HOOC}_2\text{NO}_2\text{CN} \xrightarrow{\text{S. cerevisiae}} \text{HOOC}_2\text{NH}_2\text{CONH}_2
\]

According to General Procedure V, 3-cyano-2-nitro-benzoic acid 386 (57.6 mg, 0.3 mmol), S. cerevisiae (4.00 g) and water (16 mL) were incubated for 2 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 2-amino-isophthalamic acid 391 as a yellow gum (36.2 mg, 80.4 %).
R_t (MeCN:H₂O, 15:85) 3.4 min; Data as in 391.

3-Amino-6-cyano-benzoic acid 392.

\[
\text{NO}_2\text{CN} \xrightarrow{\text{S. cerevisiae}} \text{CONH}_2
\]

According to General Procedure V, 6-cyano-3-nitro-benzoic acid 387 (96.0 mg, 0.5 mmol), S. cerevisiae (7.50 g) and water (30 mL) were incubated for 6 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-6-cyano-benzoic acid 392 as a pale orange solid (50.3 mg, 60.3 %).
R_t (MeCN:H₂O, 20:80) 8.6 min; Mp 162.0-163.0 °C; Data as in 392.
3-Amino-5-cyano-benzoic acid 393.

According to General Procedure V, 5-cyano-3-nitro-benzoic acid 389 (96.0 mg, 0.5 mmol), *S. cerevisiae* (7.50 g) and water (30 mL) were incubated for 8 h. After work-up, purification by preparative HPLC (acetonitrile:water, 10:90) afforded 3-amino-5-cyano-benzoic acid 393 as an orange solid (126.0 mg, 61.4%).

R_t (MeCN:H₂O, 10:90) 6.0 min; Mp 172.1 °C; Data as in 393.
8. Bibliography.

Bibliography.

Bibliography.

94 M. Alexeeva, in 'Unpublished Results'.

Bibliography.

Bibliography.

143 J. Pinnow and E. Muller, *Chem. Ber.*, 1895, 28, 149.
166 CH 614230/1973 (The Wellcome Foundation).

180 NL 6408999/1963 (Shell. Res.).

182 FR 1321726/1963 (Shell).

183 NL 6408999/1963 (Shell. Res. Maat.).

Bibliography.

Bibliography.

234 US 2195076/1937 (Gen. Aniline & Film Corp.).

