School of GeoSciences

Dissertation
For the degree of

MSc in Geographical Information Science

NABILAH NAHARUDIN

August 2014
APPLICATION OF
LOCATION/ALLOCATION MODELS AND GIS
TO THE LOCATION OF NATIONAL PRIMARY SCHOOLS
IN RAWANG, MALAYSIA

By Nabilah Naharudin

Dissertation submitted as a part of
MSc in Geographical Information Science
August 2014
Institute of Geography
The University of Edinburgh
COPYRIGHT

Copyright of this dissertation is retained by the author and The University of Edinburgh. Ideas contained in this dissertation remain the intellectual property of the author and their supervisors, except where explicitly otherwise referenced.

All rights reserved. The use of any part of this dissertation reproduced, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a retrieval system without the prior written consent of the author and The University of Edinburgh (Institute of Geography) is not permitted.

STATEMENT OF ORIGINALITY

I declare that this dissertation represents my own work, and that where the work of others has been used it has been duly accredited. I further declare that the length of the components of this dissertation is words for the Research Paper and words for the Technical Report.

Signed: ___________________________ Date: ___________________________
Thanks to the Almighty. I would never have been able to finish my dissertation without His blessing and will.

I would like to express my gratitude to my supervisor, Dr. Neil Stuart, and also to Dr. Robert L. Hodgart for their continuous guidance throughout this research. Their supportive comments and constructive criticism greatly stimulated me and helped to carry me forward to finish this dissertation.

I also want to thank the Department of Education of the District of Gombak, the Department of Town and Regional Planning of the State of Selangor and the Department of Statistics Malaysia for providing much valuable information needed for this dissertation.

Special thanks to my financial sponsor, Majlis Amanah Rakyat (MARA), for giving me this huge opportunity to study here.

To all my closest friends (you know who you are), thank you so much. I could never be who I am without you.

Last but not least, to my parents and brothers, I can’t express how grateful I am to have all of you by my side ever since I was born.

Thank you.
PART I

RESEARCH PAPER
ABSTRACT

As education is compulsory in Malaysia, all children aged 7 to 12 are expected to attend primary schools. It is therefore a challenge for the government to provide schools which are well located to serve the children conveniently. Various criteria for siting schools may be assessed by using location/allocation models (LAMs), a widely used tool for finding good locations for public facilities. The key factor in siting schools is the location of demand or number of children that will attend the schools involved, here the national primary schools of Malaysia. Based on census data and statistics reported in the Malaysia Education Blueprint, the estimated number of pupils from 23 neighbourhood areas likely to attend national primary schools was estimated using information on the age and ethnic breakdown of population in these units. Then, to increase accuracy in estimating the distribution of demand, estimated numbers of pupils from the 23 neighbourhoods were assigned at a finer scale to 10,718 cadastral plot units which gave quite precise locations for where pupils live. This distribution of demand to a fine scale then helped in assessing how well schools were located to serve the study area concerned using LAMs. First, the current distribution of schools and their catchment areas were examined. Then, various possibilities for improving accessibility to schools were explored by using 2 scenarios involving adding 1 or 2 new schools and using three different types of LAM with and without capacity constraints, including also one scenario involving closing 1 of the 5 existing schools which seemed less well located. Finally, the more realistic solutions found were selected for further consideration and evaluation as a basis for enhancing the accessibility of pupils to national primary schools in Rawang.
TABLE OF CONTENTS

ABSTRACT ... i

TABLE OF CONTENTS .. ii

LIST OF TABLES ... iv

LIST OF FIGURES ... v

LIST OF ABBREVIATIONS .. vi

1. INTRODUCTION ... 1

1.1. Schools in Malaysia ... 2

2. LOCATION-ALLOCATION MODELS ... 3

2.1. Main Types of Location Allocation Models ... 3

2.2. Location-Allocation Problems for Schools ... 4

2.3. Study Area .. 5

3. METHODOLOGY ... 7

3.1. Location-Allocation Models in ArcGIS ... 7

3.1.1. Maximizing Cover ... 8

3.1.2. Minimizing Impedance i.e. Minimizing Aggregate Travel Distance etc. (the p-median) 9

3.1.3. Maximizing Capacitated Coverage .. 10

3.1.4. Minimizing Facilities .. 11

3.2. Data .. 11

3.2.1. The Schools and Their Capacities .. 12

3.2.2. Population of Rawang Town by Age and Ethnicity .. 12
4. RESULTS AND ANALYSIS

4.1. Locational Scenarios Examined and Models Used

4.2. Assessment of the Locations of the Five Existing Schools (Scenario (a))

4.3. Selecting Four out of the Existing Five Schools (Scenario (b))

4.4. Location of Additional Schools

4.4.1. Adding 2 Schools to the Existing Five Schools (Scenario (c))

4.4.2. Adding Two Schools to the Best Four of the Existing Five (Scenario (d))

5. CONCLUSION

REFERENCES
LIST OF TABLES

Table 1 Current Number of Pupils, the Number of Classrooms and the Maximum Capacity of the School .. 12

Table 2 Mean Travel Distance to the Existing Schools, Number of Pupils Allocated to Each and Number within the Recommended Distances (Scenario (a)) ... 20

Table 3 Comparison of Aggregate Travel Distance and Number of Pupils Covered for Scenarios (a) and (b) .. 23

Table 4 Improvement in Location-Allocation Results with One or Two Schools Added to the Existing Five (Scenario (c)) .. 26

Table 5 Review of Schools Selected as Additional to the Existing Five ... 27

Table 6 Improvement in Location-Allocation Results with One or Two Schools Added to the Best Four of the Existing Five (Scenario (d)) .. 30
LIST OF FIGURES

Figure 1 Location Map for Rawang ... 6
Figure 2 Map of Ethnic Composition of Neighbourhoods in Rawang 14
Figure 3 Estimated Number of Pupils in Neighbourhoods .. 15
Figure 4 Number of Pupils in Small Residential Cadastral Plot Units (SRCPUs) 16
Figure 5 Catchment Areas for Existing 5 Schools .. 19
Figure 6 Candidate Locations for Additional Schools and Areas Covered by Existing Schools with Number of Pupils in Small Residential Cadastral Plot Units (SRCPUs) 22
Figure 7 LAMs to Explore the Possibility of Closing One School 23
Figure 8 LAMs to Find Locations for Additional School(s) .. 25
Figure 9 Catchment Areas with Candidates 4 and 18 Added to the Existing Five Schools 29
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSM</td>
<td>Department of Statistics, Malaysia</td>
</tr>
<tr>
<td>DTRP</td>
<td>Department of Town and Regional Planning</td>
</tr>
<tr>
<td>DTRPS</td>
<td>Department of Town and Regional Planning Selangor</td>
</tr>
<tr>
<td>EB</td>
<td>Enumeration Block</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>LA</td>
<td>Location-Allocation</td>
</tr>
<tr>
<td>LAM</td>
<td>Location-Allocation Modelling</td>
</tr>
<tr>
<td>LAMs</td>
<td>Location-Allocation Models</td>
</tr>
<tr>
<td>LAP</td>
<td>Location-Allocation Problem</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>SRCPU</td>
<td>Small Residential Cadastral Plot Unit</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Public facilities for education such as primary and secondary schools are among the most important public service amenities as all children need to attend them. Thus, they should be sited by both planners and policy makers at locations with good accessibility to users. The standard planning policy in Malaysia for building such facilities appears to take account of a number of factors, including the required area of space, the type of land and also the population of the surrounding area according to the guidelines of the Department of Town and Regional Planning of Selangor (DTRPS) in 2010. The key factor is, however, the population of children in the surrounding area because schools are primarily designed to serve demand derived from population nearby.

Location-allocation models (LAMs) which attempt to find good locations for service facilities can be very useful tools for planning the locations of schools (Yeh & Chow, 1996). LAMs attempt to find accessible locations for one or more facilities so that, over the whole region concerned, the population served enjoys the best level of accessibility possible or something close to that. They provide spatial decision support systems that give sets of solutions on which decision makers can focus their discussions. This dissertation is mainly concerned with applying LAMs, integrated with a Geographical Information System (GIS), to locate schools, using travel distance through the local road network as the measure of accessibility.

If the results from LAMs are to be as helpful to planners as possible, it is essential to use accurate and detailed information on where children live and the routes they are likely to travel through the road network to school. Information on the location of population and the relevant age groups has to be obtained from the 2010 census carried out by the Federal Department of Statistics Malaysia (DOSM). The smallest areas for which such population data are available may contain 500-600 people or even some 1500 and can extend over many streets. A major concern of the present dissertation is therefore to use such data to estimate more precisely where children actually live by distributing these areal totals to the houses and apartments where children are likely to reside, using information on cadastral lots and a detailed street network.
More specifically, this dissertation explores various solutions to the problem of locating schools and allocating children to them in the city of Rawang, Selangor State, Malaysia. LAMs are used to examine the current locations of the schools to see how well they meet the Federal Government’s goal of all children being within 800 meters from school and to help identify any poorly served areas (DTRPS, 2010). Then, various possible solutions for improving accessibility to badly served areas will be assessed by using LAMs which allow the provision of one or two new schools in addition to the existing 5 schools and which also explore the consequences of closing any apparently poorly located schools.

1.1. Schools in Malaysia

Primary schools in Malaysia are attended by children aged seven to twelve. Parents can choose to enrol their children in either public or private schools. Public primary schools are divided into two types, both free: national primary schools which use Malay as the first language; and vernacular primary schools which use Chinese, Indian or English as the medium of instruction. All public schools are under the responsibility of the Federal Ministry of Education (MOE). As primary education in Malaysia is compulsory, the government has been working hard to ensure all children aged seven to twelve are able to attend primary school. Therefore, it is essential for schools to be accessible to children. Unless otherwise stated, for convenience, here we will simply use ‘school’ to mean a national primary school.

The planning of schools is under each State’s Department of Town and Regional Planning (DTRP). There are a number of planning criteria which are supposed to serve as guidelines for school location and for allocation of pupils from catchment areas to schools to ensure demand is well served. The two main criteria are as follows.

i. The population to be served must be within the 3000 – 7500 range for a school to be built in an area. However, ethnic and demographic composition also have to be taken into consideration, because within this population range, there may not be enough Malay children to justify a national school or enough Chinese or Indian children to justify a vernacular school
for either group. Thus, the ethnic character of the population can be crucial for planning primary schools.

ii. Ideally, no pupil should be more than 0.8 kilometres (800 metres) from school or travel more than 10 minutes.

The process of allocating pupils to a primary school is a responsibility of the Federal MOE. MOE takes the number of classrooms available in that particular school into consideration in this process with the recommended maximum capacity of any school based on a figure of 30 pupils per classroom. Thus, if there are 2 classrooms in a school for each of the 6 age groups and each of these 12 classes has 30 pupils, the capacity of the school will be 360 pupils. Normally, pupils are supposed to be assigned to the nearest school to their home. If the closest school has already achieved maximum capacity, however, pupils will normally be assigned to the second nearest school and so on (Abdul Rahman, 2014).

2. LOCATION-ALLOCATION MODELS

Location-allocation modelling (LAM) is the process of determining ‘optimal’ locations for one or more facilities so that the area’s population is served in the most convenient manner possible (Schietzelt & Densham, 2003). These models optimize efficiency by simultaneously determining the locational configurations of the facilities and assigning population to facilities (allocation), hence the term location-allocation (Turner, 2006; Chang, 2012)

2.1. Main Types of Location Allocation Models

In a review of the wide range of location-allocation models which had developed up to that point, Hodgart (1978) noted that they can be classified into groups or families according to:

(a) whether they use the geometrical frameworks of planes or networks (the latter are usually more realistic);

(b) whether they prioritise objectives based on spatial efficiency or spatial equity and equality;

(c) the specific goals used to measure spatial efficiency or equity;
whether demand is assigned to the nearest centre or whether catchment areas for facilities may be allowed to overlap to some degree.

A further distinction could be between models with and without capacity constraints on facilities. The present study will only be concerned with network space. As regards objectives, models which prioritise spatial efficiency through minimising aggregate travel distance in the system (often called p-median models) will be used as well as models which can strike a flexible balance between efficiency and equity through attempting to maximise the population ‘covered’ i.e. within the range of a covering radius, which Hodgart (1978) notes can be seen as a mixture of efficiency and equity. Models both with and without capacity constraints will be used here, as schools can be seen as ultimately having limits to their capacity, even if these are not precise. When capacity constraints are used, some pupils may be allocated to their second or even third nearest school, so catchment areas may not be based on nearest centre assignments. Models where allocation is done through use of spatial interaction models to produce catchment areas which overlap to varying degrees, as described by Hodgart (1978 and 1981), are not used.

It may be worth noting here that minimizing the total travel time or total distance over the whole system is mathematically equivalent to minimizing mean time or mean travel distance. LAMs can be used in the private sector to locate warehouses and other private facilities. In the public sector, they can be used widely in locating emergency services, schools, health centres and other public facilities (Blazevic, 2006). To solve such problems, one possible objective for schools is to maximize the number of pupils within a desirable or required travel distance from school (termed radius of cover), known as the maximal covering location problem (MCLP).

2.2. Location-Allocation Problems for Schools

The usage of location-allocation models for school locations has been discussed by several authors (Møller-Jensen, 1998; Ariffin, 2011; Handayani, 1997; Pearce, 2000; London, 2007). The allocation stage typically involves the process of identifying specific areal units or small districts in which demand is located and assigning each of these to one or more schools (usually all the node’s demand
is assigned to the nearest facility with free capacity). Thus many location-allocation models may require four key components: facilities, the capacities of the facilities (where appropriate), a measure of demand and a measure of ‘impedance’ such as distance or time travelled.

A network model essentially consists of a set of connections or routes between a set of nodes made through links (or ‘arcs’) which meet at the nodes i.e. a topological structure (Goodchild, 1992). In this study, a network model based on detailed information on all roads in the study area, including minor roads, will be used to find the shortest travel paths through the road network for pupils travelling from the 10,718 small residential areas, represented as demand nodes, to schools treated as supply nodes and thereby estimate the ‘impedance’ to be overcome in travelling from home to school. This network model consists of 3,956 links and 1,426 nodes and can be regarded as giving a fairly realistic picture of where pupils live and how they travel to school.

LAMs using a network reflect how the transportation of resources on the ground normally takes place along certain pre-defined corridors (Lwin & Murayama, 2012). Each linear feature or link in the network has an impedance value indicating the cost of moving along that line. Here we will only use travel distance.

Implementing the location-allocation models for schools requires digital data with sufficient spatial detail to describe and model the properties of the street network and the distribution of demand accurately. (Handayani, 1997). The number of pupils allocated to a particular school and the corresponding range of distances pupils need to travel can then be reviewed.

2.3. Study Area

Rawang is located about 20 kilometres north-west of Kuala Lumpur in the district Gombak in the State of Selangor (Figure 1). The town is currently experiencing rapid development due to its close proximity to Kuala Lumpur. The constant flow of construction vehicles in and out of the town indicates that much of the urban area is now undergoing transformation. Based on statistics from DOSM, in 2010 there were 38, 416 people living in the town. The Local Plan for Rawang-Kuang
states that, for every 6,250 people living in an area, the government should provide a school. Currently, however, there are only five schools in Rawang to serve its expanding population.

Figure 1 Location Map for Rawang
3. METHODOLOGY

This section will discuss the particular range of Location-Allocation Models used and their implementation in ArcGIS. Finally, the way census data and cadastral data are used to estimate the home locations of pupils is briefly outlined.

3.1. Location-Allocation Models in ArcGIS

For this study, the ArcGIS software (Version 10.1) is used because, within the range of 7 LAMs it supports several which are appropriate for school location problems are now included and its GIS components facilitate display of the results (ESRI, 2012). These seven common LA problems are:

i. Maximize Coverage i.e. the number of service users ‘covered’ i.e. within a specified distance of a facility (MCLP model);

ii. Minimize Impedance i.e. minimize aggregate travel distance or time or cost of users;

iii. Maximize Capacitated Coverage;

iv. Minimize Facilities;

v. Maximize Attendance;

vi. Maximize Market Share;

vii. Target Market Share.

Only the first four models will be used here. The last two problems are not relevant as they involve location problems where private supply centres are competing in a market, which is not appropriate for schools.

The fifth problem is that of maximizing the use of or attendance at facilities when the level of attendance declines with distance from supply, which is not appropriate for schools. To ensure that as many primary school pupils as possible are within specified or desirable distances of a school and to reduce the overall distance pupils travel to school, the Maximize Coverage and Minimize Impedance problems respectively are clearly very relevant here. Additionally, the Maximum Capacitated
Coverage problem is also particularly relevant because in maximizing cover it also takes account of the capacity of each school. The Minimize Facilities problem may also be helpful because it finds the smallest number of facilities needed to ensure all pupils enjoy a specified level of cover.

3.1.1. Maximizing Cover

As implemented in ArcGIS 10.1, the maximizing cover model allocates demand to facilities so that:

i. any demand will be considered as uncovered and unallocated if it is located outside the ‘impedance cutoff’ of all facilities;

ii. demand points within the ‘impedance cutoff’ of only one facility will have all their demand allocated to that facility;

iii. a demand point located within the ‘impedance cutoff’ of more than one facility will be assigned to the closest.

The Maximize Coverage problem has been formulated as follows by Marianov and Serra (2002):

Maximize \(z = \sum_{i \in I} a_i y_i \) \hspace{1cm} (1)

Subject to:

\(y_i \leq \sum_{j \in N_i} x_j \forall i \in I \) \hspace{1cm} (2)

\(\sum_{j \in I} x_j = p \) \hspace{1cm} (3)

\(x_j, y_i = (0,1) \forall j \in J, i \in I \)

The relevant notation is defined as follows:

I = Set of demand locations,

J = Set of candidate facility sites
\[P = \text{The number of facilities to be located} \]
\[x_i = 1 \text{ if facility is sited at } j, \ 0 \text{ otherwise} \]
\[y_i = 1 \text{ if demand node } i \text{ is covered, } 0 \text{ otherwise} \]
\[S = \text{Standard time or distance for coverage} \]
\[N_i = \text{The set of all candidate sites which can cover demand nodes } i \]
\[a_i = \text{The population or demand at demand node } i \]

Equation (1) maximizes the amount of demand covered. Equation (2) states that the demand at node \(i \) is covered whenever at least one facility is located within the standard time or distance \(S \). Equation (3) specifies the total number of facilities to be located.

3.1.2. Minimizing Impedance i.e. Minimizing Aggregate Travel Distance etc. (the p-median)

This problem, as addressed by Hakimi (1969), aims to minimize the distance travelled by the population to facilities, thereby maximising efficiency of access. The p-median problem can also include a distance or impedance cut off constraint such that any population beyond this maximum distance is not served. In the latter model, the facilities will be located at the most accessible points for serving the population within what can be regarded as a manageable distance or within an extreme limit for feasible travel.

The p-median model has various applications in both public and private sectors as it is always better that the total travel distance of pupils etc. is low so that users have better accessibility. The formulation of the p-median problem by Marianov and Serra (2002) is as follows:

\[
\text{Minimize } \left\{ Z = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i d_{ij} x_{ij} \right\} \tag{4}
\]

Subject to:

\[
\sum_{j=1}^{n} x_{ij} = 1 \quad i = 1, \ldots, m \tag{5}
\]
\[x_{ij} \leq x_{jj} \quad i = 1, \ldots, m; \quad j = 1, \ldots, n \]

\[\sum_{j=1}^{n} x_{jj} = p \] \hspace{1cm} (6)

\[x_{ij} = (0, 1) \quad i = 1, \ldots, m; \quad j = 1, \ldots, n \]

Inputs:

- \(x_{ij} = 1 \) if demand area \(i \) is assigned to the facility at \(j \), \(0 \) otherwise,
- \(i \) = Index of demand nodes,
- \(m \) = Total number of demand points in the space of interest,
- \(j \) = Index of potential facility sites,
- \(n \) = Total number of potential facility locations,
- \(a_i \) = Demand at node \(i \),
- \(d_{ij} \) = Distance between demand node \(i \) and potential facility site \(j \),
- \(p \) = The number of facilities to be located,

Equation (4) minimizes the total demand-weighted distance between population and facilities. Equation (5) ensures that every demand is assigned to a facility site i.e. its nearest. Equation (6) limits the number of facilities, \(p \), to be located.

3.1.3. Maximizing Capacitated Coverage

This model is a modification of the Maximize Coverage problem, with the addition of capacity constraints on facilities. Demand is now assigned to the nearest facility with free capacity. Thus, if the nearest facility has reached its capacity limit, demand is then assigned to the second nearest and so on.

This model is primarily concerned with locating centres so that the maximum amount of demand is covered by facilities as long as the capacity limits are not exceeded. Unlike the Maximum Coverage model, it is not compulsory to specify impedance cut offs in running particular problems. If impedance cut offs are set to zero, in ArcGIS 10.1 this problem is then treated as a \(p \)-median with
capacity constraints. However, if impedance cut offs are specified, the model is equivalent to the Maximum Coverage problem with capacity constraints. This model handles demand as follows:

i. facilities are located so that as much demand as possible is covered within the specified distance, as long as the relevant capacities are not exceeded;

ii. demand points have all or none of their demand assigned to the nearest facility with capacity available;

iii. if the total demand within the impedance cut off is greater than the capacity the facility can receive, only the demand points that would maximize the total captured demand or only those that would minimize the total weighted impedance, when the problem becomes a p-median with capacity constraints, are allocated.

3.1.4. Minimizing Facilities

This model finds the minimum number of facilities required to provide a certain standard of service for the whole region (i.e. within the specified impedance cut off). Effectively, this problem involves running the Maximum Covering problem repeatedly, increasing the number of facilities at each run until all demand is within the covering radius (e.g. 800 m for our schools).

3.2. Data

A full list of the datasets used with detailed descriptions of the procedures used on each is given in the Technical Report. A general outline of the procedures used to estimate the location of pupils, using census data for neighbourhoods and detailed cadastral data, was given in the introduction. Estimating the residential locations of pupils was, in fact, a major problem which consumed much time and effort, mainly because finely detailed spatial data on population could not be obtained from DOSM within the time needed.
3.2.1. The Schools and Their Capacities

The current total number of pupils attending each school with its number of classrooms and the estimated or theoretical maximum capacity of the school, assuming each classroom can accommodate 30 pupils are displayed in Table 1.

Table 1 Current Number of Pupils, the Number of Classrooms and the Maximum Capacity of the School

<table>
<thead>
<tr>
<th>School</th>
<th>No. of Pupils</th>
<th>No. of Classroom</th>
<th>Max Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Rawang</td>
<td>432</td>
<td>16</td>
<td>480</td>
</tr>
<tr>
<td>SK Sinaran Budi</td>
<td>929</td>
<td>36</td>
<td>1080</td>
</tr>
<tr>
<td>SK Bukit Rawang Jaya</td>
<td>947</td>
<td>30</td>
<td>1800</td>
</tr>
<tr>
<td>SK Bandar Baru Rawang</td>
<td>573</td>
<td>30</td>
<td>900</td>
</tr>
<tr>
<td>SK Taman Tun Teja</td>
<td>1776</td>
<td>47</td>
<td>2820</td>
</tr>
<tr>
<td>Total</td>
<td>4657</td>
<td></td>
<td>7080</td>
</tr>
</tbody>
</table>

3.2.2. Population of Rawang Town by Age and Ethnicity

The distribution of demand was initially estimated by using population data for 23 neighbourhoods in Rawang derived from the 2010 census data collected by DOSM. The primary building blocks of the Malaysian census are Enumeration Blocks (EBs) which generally consist of 80-120 houses or 500-600 people. Unfortunately, after several attempts to obtain population data for EBs in Rawang from DOSM had failed, data which had been provided earlier by DOSM for generally larger areal units defined by the author (termed here ‘neighbourhoods’) had to be used as the starting point for estimating where pupils live. Though these neighbourhood areas varied in size, they averaged roughly 1670 people and were therefore generally much larger than EBs.

These data from DOSM provide breakdowns of population by gender, age and ethnicity for the neighbourhood areas. Only the three main ethnic groups will be considered here i.e. Malays, Indians
and Chinese (Figure 2) since these three are the only ones mentioned in the Malaysia Education Blueprint. The number of pupils from each neighbourhood likely to attend a school was estimated by using data on the relevant age groups and the proportions of each ethnic group attending schools given officially for the country as the whole (respectively 90%, 44% and 8%) (Ministry of Education (MOE), 2012). This number was then distributed evenly across the small cadastral plots or lots within the areas of the neighbourhood classified as residential. These lots or Small Residential Cadastral Plot Units (SRCPUs) can therefore be taken as defining each house or block of flats giving a total of 10,718 demand units or nodes (Figures 3 and 4). The procedure is explained more fully in Section 3.2 of the Technical Report.
Figure 2 Map of Ethnic Composition of Neighbourhoods in Rawang
Figure 3 Estimated Number of Pupils in Neighbourhoods
Figure 4 Number of Pupils in Small Residential Cadastral Plot Units (SRCPUs)
4. RESULTS AND ANALYSIS

4.1. Locational Scenarios Examined and Models Used

To assess the existing provision of schools and how it could be improved, four basic scenarios were analysed:

(a) the five existing schools at their present locations;
(b) a selection of the four best located schools from the existing five;
(c) finding the best location for 1 new school to add to the existing 5 (‘5+1’) and then the best location for adding one more to the latter solution (‘5+1+1’);
(d) starting with the best four from (b), finding the best location for 1 additional school (‘4+1’) and then adding 1 further new school (‘4+1+1’).

When additional schools were being located these were chosen from a set of 27 additional locations located near residential areas where there seemed to be enough open or vacant space to site a primary school. For each scenario 3 LAMs were first run, all without capacity constraints: minimising aggregate (and therefore mean) travel distance; maximizing the number of pupils within 800 m cover distance; and maximizing the number within 1600 m. Then each of these 3 models was run again, but with the appropriate capacity constraints for each school. Thus for each of the 4 scenarios, at least 6 models had to be run.

Despite these being relatively large problems (compared to many LAMs reported with the literature which typically deal with a few hundred demand points at most) as regards the number of demand points (10,718 SRCPUs), the models with no capacity constraints usually only took 5-15 minutes time to run on the computer. However, a few models with capacity constraints sometimes needed 6-7 hours to find solutions if capacity constraints were biting, probably partly because the algorithms used to solve capacitated problems are more complex. Possibly for the latter reason, the results from models with capacity constraints can at first sight sometimes appear puzzling, especially for aggregate or mean travel and therefore have to be viewed with caution. New schools are assumed to have a
capacity of 1410 pupils, which would be the capacity of the newest school, SK Tun Teja, if it operated with morning sessions only.

In fact, the results for models with and without capacity constraints were nearly always the same or very similar because, with an estimated 3,674 pupils in the system but total capacity for 7,080, the capacity constraints generally had little or no effect on the solution process, though it is possible that they may have had some effect during some iterations of the heuristic algorithms e.g. if a particular configuration of schools meant that, say, SK Rawang did not have sufficient capacity for all pupils assigned to it as their nearest school.

4.2. Assessment of the Locations of the Five Existing Schools (Scenario (a))

Figure 5 shows the catchment areas of the existing 5 schools when all pupils are assigned to their nearest school by drawing straight line from each SRCPU to its allocated school. These lines do not trace the actual paths taken through the network; the assignments are determined by real network distances, which explains why some pupils from areas in the extreme north west are allocated to SK Bandar Baru Rawang, presumably via a convenient road, when 3 other schools appear much closer as the crow flies.

Table 2 gives results for the number of pupils covered by each of the existing 5 schools within 800 and 1600 meters. It also gives the number of pupils in each school’s catchment when all pupils are assigned to their nearest school, plus the mean travel distance in each catchment. These results seem to indicate that the existing schools are not well located to serve demand. Only slightly over half of the children in Rawang are within 1600 m (1844 or 50.2%) and less than one quarter (902 or 24.6%) are within the recommended distance of 800 m. Thus, school locations seem to be resulting in pupils needing to travel rather far. The mean distance travelled by the children to the five schools is approximately 2.33 kilometres, considerably more than the distance recommended by DTRPS.
Figure 5 Catchment Areas for Existing 5 Schools
Table 2 Mean Travel Distance to the Existing Schools, Number of Pupils Allocated to Each and Number within the Recommended Distances (Scenario (a))

<table>
<thead>
<tr>
<th>School</th>
<th>Maximum Capacity</th>
<th>Mean Travel Distance (km)</th>
<th>Number of Pupils</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With Capacity Constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Without Capacity Constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Within Catchment Area</td>
<td>800 m</td>
<td>1600 m</td>
<td>800 m</td>
<td>1600 m</td>
<td>800 m</td>
</tr>
<tr>
<td>SK Rawang</td>
<td>480</td>
<td>2.940</td>
<td>2.940</td>
<td>406</td>
<td>0</td>
<td>28</td>
<td>406</td>
</tr>
<tr>
<td>SK Sinaran Budi</td>
<td>1080</td>
<td>1.835</td>
<td>1.835</td>
<td>295</td>
<td>75</td>
<td>120</td>
<td>295</td>
</tr>
<tr>
<td>SK Bukit Rawang Jaya</td>
<td>1800</td>
<td>1.988</td>
<td>1.988</td>
<td>539</td>
<td>35</td>
<td>80</td>
<td>539</td>
</tr>
<tr>
<td>SK Bandar Baru Rawang</td>
<td>900</td>
<td>1.263</td>
<td>1.263</td>
<td>204</td>
<td>173</td>
<td>176</td>
<td>204</td>
</tr>
<tr>
<td>SK Tun Teja</td>
<td>2820</td>
<td>1.568</td>
<td>1.568</td>
<td>2230</td>
<td>618</td>
<td>1440</td>
<td>2230</td>
</tr>
<tr>
<td>Total</td>
<td>7080</td>
<td>2.233</td>
<td>2.233</td>
<td>3674</td>
<td>902</td>
<td>1844</td>
<td>3674</td>
</tr>
</tbody>
</table>

Judging by the pupils covered within 800 m and 1600 m, one school appears to be rather badly located, i.e. SK Rawang which is located just beside SK Sinaran Budi and only covers 28 pupils at the larger distance of 1600 m (only 0.76% of the whole demand). This is misleading partly because when demand points are within a specified covering distance of two or more schools, the LAM used credits only the nearer school for covering these pupils. Since the residential areas near SK Rawang and SK Sinaran Budi are nearly all closer to SK Sinaran Budi, areas which both cover will nearly all be credited to the latter. Additionally, the demand of the adjoining areas is not that high (0.3 pupils at the most per SRCPU) probably because the major ethnic group living nearby is Indian (61%).
SK Bandar Baru Rawang on the other hand is located rather far from most or Rawang’s residential areas. Its relatively low average travel distance of 1.263 kilometres suggests it is generally serving pupils from areas nearby, as Figure 5 suggests. Beyond that there are extensive zones of industrial land use. This explains its small catchment of 204 and why the number of pupils it covers only increases from 173 to 176 when the cut off rises from 800 m to 1600 m.

SK Tun Teja has far more pupils within 800 m and 1600 m (618 and 1440) in both sets of results, so it is providing relatively good access to substantial numbers of pupils in residential areas fairly close (50-70% Malay and having a number of high rise apartment blocks), confirmed by the mean catchment distance of 1.568 km. While the equivalent results for SK Bukit Rawang Jaya give it only 35 and 80 pupils within these cover distances, from Figure 5 it appears to be serving a sizable catchment spread across the east and north east of Rawang (539 pupils with a mean distance of 1.988 km) but much less than its capacity of 1800 could accommodate.

SK Rawang does have a sizable catchment (406), though it is much less compact the others (Figure 5), with a mean travel distance of 2.940 km and only 28 pupils within 1600 m. SK Sinaran Budi has the second smallest catchment area of the 5 (295) and only has 75 and 120 pupils within 800 m and 1600 m respectively. These less favourable results mainly reflect its sharing a fairly central location with SK Rawang.

The notional coverage areas of these 5 schools and a version of the land use map which highlights more dense residential areas are shown together in Figure 6. Three broad areas with high demand and poor accessibility (red in Figure 6) stand out outside the 1600 meters coverage of the existing schools. Most of the 27 candidate locations mentioned earlier are located in or near these three areas. Numbers identifying these 27 candidates are also given in Figure 6.
Figure 6 Candidate Locations for Additional Schools and Areas Covered by Existing Schools with Number of Pupils in Small Residential Cadastral Plot Units (SRCPUs)
4.3. Selecting Four out of the Existing Five Schools (Scenario (b))

Scenario (b) is designed to explore the possible consequences of closing the least well located of the 5 existing schools (Figure 7 and Table 3) with the existing 5 treated as candidate sites in selecting the best 4. The school not selected is then the one that could be considered for closure.

| Selecting Four out of the Existing Five Schools |
| Models Maximizing Demand Covered (with and without capacity) | Model Minimizing Mean Travel Distance (with and without capacity) |
| Comparison of the Results for the Best Four and the Existing Five Schools |
| Assessing the Effect of Closing One School |

Figure 7 LAMs to Explore the Possibility of Closing One School

Table 3 Comparison of Aggregate Travel Distance and Number of Pupils Covered for Scenarios (a) and (b)

| Number of Schools | With Capacity Constraint | | | Without Capacity Constraint | | |
|---|---|---|---|---|---|
| | Aggregate Travel Distance (km) | No. of Pupils Covered | | Aggregate Travel Distance (km) | No. of Pupils Covered | |
| | 800 m | 1600 m | | 800 m | 1600 m |
| Existing Five | 22,735.596 | 902 | 1844 | 22,735.596 | 902 | 1844 |
| Best Four | 23,012.652 | 902 | 1817 | 23,336.941 | 902 | 1834 |
| Differences | 277.056 | 0 | -27 | 601.345 | 0 | -10 |
| School Selected to be Closed | SK Rawang | SK Rawang | SK Rawang | SK Sinaran Budi | SK Rawang | SK Sinaran Budi |

Not surprisingly, SK Rawang is selected for 4 of the 6 models as the school to be closed with SK Sinaran Budi selected for the other two. SK Rawang has the lowest numbers of pupils covered at 800 m and 1600 m and the largest mean distance for its catchment, though it fares better in size of catchment. While SK Sinaran Budi fares better on all of these criteria, except catchment size, it has the 3rd worst covering values and the second smallest catchment. Since it is very close to SK Rawang,
it therefore seems inevitable that it should be selected in the two models where SK Rawang is not selected.

The reason why SK Rawang is closed in the 3 models with capacity constraints is because it has a smaller capacity (480) than its neighbour (1080). Thus the latter can serve all the demand of the surrounding areas accessibly if SK Rawang is closed. However, the reverse is not the case and the loss of SK Sinaran Budi’s capacity would force some pupils to travel to schools further afield with longer distances.

As Table 3 shows, there is not much difference to the aggregate distance in the whole system when the number of schools is reduced to four in one of the preceding ways, because the two prime candidates for closure are located just beside each other. That is also why aggregate travel distance in the uncapacitated model does not increase much. Similarly, there are only very slight reductions in the number of pupils covered within 1600 m by the four selected as opposed to the five existing schools. If some re-organisation is being considered with one of the schools near the centre being closed and provision expanded in the outer areas, these results suggest that SK Rawang is the stronger candidate for closure.

4.4. Location of Additional Schools

Scenarios (c) and (d) are designed to explore the benefits of adding 1 or 2 schools to the existing provision (Figure 8). Scenario (d) uses the best 4 of the existing schools as its starting point with SK Rawang always selected for closure. In both scenarios (c) and (d), the best school from the 27 candidates to add to the existing 5 or best 4 is selected first. Then, the next best additional school is selected from the 26 candidates left to add to the 6 or 5 now in the solution.
4.4.1. Adding 2 Schools to the Existing Five (Scenario (c))

Table 4 sets out the main results for scenario (c). There are substantial improvements in all the criteria used when one school is added and again when a further school is provided, with the latter improvements generally ranging from only slightly smaller for pupils within 800 m to significantly smaller for the other covering objective, both for capacitated and uncapacitated problems (Table 4). Even when 2 schools are added, only 1,715 pupils (46.7%) are within 800 m of a school, though 2,983 (81.2%) are within 1600 m for both capacitated and uncapacitated problems. An exception to this pattern of improvements is the capacitated p-median problem where the second additional school (18) brings a much larger reduction in overall travel distance than the first (4).
Table 4 Improvement in Location-Allocation Results with One or Two Schools Added to the Existing Five (Scenario (c))

<table>
<thead>
<tr>
<th>LAMs</th>
<th>Existing 5</th>
<th>Add 1</th>
<th>Improvement</th>
<th>New School Chosen</th>
<th>Add 1 More</th>
<th>Improvement</th>
<th>New School Chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Capacity Constraints</td>
<td>Aggregate Travel Distance (km)</td>
<td>22, 735.596</td>
<td>21, 045.835</td>
<td>-1, 689.761</td>
<td>4</td>
<td>16, 249.417</td>
<td>-6, 486.179</td>
</tr>
<tr>
<td></td>
<td>Number of Pupils Covered</td>
<td>800 m</td>
<td>902</td>
<td>1, 344</td>
<td>442</td>
<td>27</td>
<td>1, 715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1600 m</td>
<td>1, 844</td>
<td>2, 671</td>
<td>827</td>
<td>4</td>
<td>2, 983</td>
</tr>
<tr>
<td>Without Capacity Constraints</td>
<td>Aggregate Travel Distance (km)</td>
<td>22, 735.596</td>
<td>18, 575.082</td>
<td>-4, 160.514</td>
<td>4</td>
<td>16, 871.533</td>
<td>-5, 684.063</td>
</tr>
<tr>
<td></td>
<td>Number of Pupils Covered</td>
<td>800 m</td>
<td>902</td>
<td>1, 344</td>
<td>442</td>
<td>27</td>
<td>1, 715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1600 m</td>
<td>1, 844</td>
<td>2, 671</td>
<td>827</td>
<td>4</td>
<td>2, 983</td>
</tr>
</tbody>
</table>
Table 5 Review of Schools Selected as Additional to the Existing Five

<table>
<thead>
<tr>
<th>Selected Additional School</th>
<th>Rank when 2 Additional Schools are Selected</th>
<th>Demand of Surrounding Area (Per Housing Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank when 2 Additional Schools are Selected</td>
<td>With Capacity Constraint</td>
<td>Without Capacity Constraint</td>
</tr>
<tr>
<td></td>
<td>Minimizing Distance</td>
<td>800 m</td>
<td>1600 m</td>
</tr>
<tr>
<td>4</td>
<td>1<sup>st</sup></td>
<td>1<sup>st</sup></td>
<td>1<sup>st</sup></td>
</tr>
</tbody>
</table>
| 14 | 2nd | 2nd | 2nd | ✓ | ✓ | - Between SK Tun Teja and SK Rawang catchment areas
- High proportion of Malays in several areas nearby |
| 18 | 2nd | 2nd | ✓ | Located far from other existing schools making it cover an area where pupils are poorly served. |
| 24 | 2nd | 2nd | ✓ | ✓ | - Near to a residential areas which is 100% Malay
- Close to SK Rawang’s catchment area |
| 27 | 1st | 1st | ✓ | ✓ | Located far from other existing schools making it cover pupils that are poorly served and near to a residential areas which is 100% Malay |
In the first stage candidate 4, positioned in the Rawang Perdana 2 neighbourhood near the middle of the poorly served eastern part of Rawang, is selected for both capacitiated and uncapacitated versions of the p-median problem and also for both versions of the second covering problem. Candidate 27, in the southern part of the latter poorly served eastern area is selected to maximise pupils covered within 800 m in both versions of the latter problem, presumably because it has more pupils in its immediate vicinity than 4.

In the second stage of the latter problem candidate 27 is paired with 14, located roughly in the centre of the poorly served area between SK Tun Teja and SK Rawang, for both versions of this problem. To maximise pupils covered within 1600 m, in both versions of the problem candidate 4 is paired with 24 about half a kilometre north west of 14. In the capacitiated p-median problem with 2 extra schools, candidate 4 is paired with location 18, located in the poorly served neighbourhood of Taman Garing Permai in the extreme north west (Figure 9), whereas for the uncapacitated version is paired with 14, also in a somewhat poorly served area, as just noted. Thus, both candidates chosen for the 6th school and the various candidates they are paired with in providing the 7th seem to fill significant gaps in the existing pattern of spatial provision, which gives visual confirmation that the LAMs are choosing good locations.

4.4.2. Adding Two Schools to the Best Four of the Existing Five (Scenario (d))

The results for (d) are described in Table 6. Since SK Rawang is the school closed in scenario (d), the locational configurations of (d) and (c) are very similar. Consequently, nearly all the results in Table 6 regarding the new sites selected at each stage and the improvements they produce in both versions of the 3 models are very similar, or even identical. The only notable difference is that the addition of candidate 4 in the first stage of the capacitiated p-median problem reduces aggregate travel distance much more than it does in scenario (c), though the combination of candidate 4 with 18 in the second stage brings a similar improvement to that achieved by this combination in scenario (c).
The one contrast in these sets of results here appears somewhat puzzling initially, but is probably mainly due to the differences in the capacities available to central areas of Rawang when only SK Sinaran Budi is open in (d), as opposed to both the latter and SK Rawang being open in (c).

With one exception, the same pairs of candidates are selected as before by the various models so that they complement each other by locating in poorly served areas some distance from each and thus filling different gaps in supply. The exception is candidate 7 which replaces 14 as the second location for the first capacitated cover problem, though in fact it is quite close to 14 (less than 700 meters from it).

Figure 9 Catchment Areas with Candidates 4 and 18 Added to the Existing Five Schools
Table 6 Improvement in Location-Allocation Results with One or Two Schools Added to the Best Four of the Existing Five (Scenario (d))

<table>
<thead>
<tr>
<th>LAMs</th>
<th>Existing 4</th>
<th>Add 1</th>
<th>Improvement</th>
<th>New School Chosen</th>
<th>Add 1 More</th>
<th>Improvement</th>
<th>New School Chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate Travel Distance (km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Capacity Constraint</td>
<td>23, 012.652</td>
<td>18, 993.860</td>
<td>-4, 018.79</td>
<td>4</td>
<td>16, 413.002</td>
<td>-6, 599.65</td>
<td>18</td>
</tr>
<tr>
<td>Number of Pupils Covered</td>
<td>800 m</td>
<td>902</td>
<td>1, 344</td>
<td>442</td>
<td>27</td>
<td>1, 713</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>1, 817</td>
<td>2, 643</td>
<td>826</td>
<td>4</td>
<td>2, 983</td>
<td>1, 166</td>
<td>24</td>
</tr>
<tr>
<td>1600 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without Capacity Constraint</td>
<td>23, 012.653</td>
<td>18, 739.043</td>
<td>-4, 273.61</td>
<td>4</td>
<td>16, 873.671</td>
<td>-6, 138.982</td>
<td>14</td>
</tr>
<tr>
<td>Number of Pupils Covered</td>
<td>800 m</td>
<td>902</td>
<td>1, 344</td>
<td>442</td>
<td>27</td>
<td>1, 715</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>1, 817</td>
<td>2, 643</td>
<td>826</td>
<td>4</td>
<td>2, 983</td>
<td>1, 166</td>
<td>24</td>
</tr>
</tbody>
</table>
5. CONCLUSION

In our analysis, the location of demand and the journey to school were both treated in a more detailed and realistic manner spatially than has been the case in virtually all equivalent problems found hitherto in the recent research literature, a significant contribution of the present work and a benefit of having a wide range of LAMs integrated into a GIS with network capability. At this fine scale with 10,718 demand nodes, DTRPS’s recommendation that all children should be within 800 m of a school seems over-ambitious as only 24.6% of the estimated pupils attending national schools in Rawang enjoy this level of access to the existing 5 schools. Even with 2 additional schools added at good locations, this only increases to 46.7% in scenario (c). A distance of 1600 m would serve as a more achievable goal: 50.2% of our pupils are within that distance of the 5 existing schools and 81.2% would be with 2 more well located schools in scenario (c). Results from the Minimizing Facilities model suggest, however, that to cover all pupils within 1600 m would require 12 schools, which is not feasible practically.

The LAMs applied produced results on a range of criteria which gave insight into how well the 5 existing schools serve the area, as well as where substantial areas of poorly served demand lie and also helped to identify and evaluate some good locations for siting one or two new schools. Several pairs of candidates seemed to merit particular consideration and further evaluation in this context, namely candidates 4 and 18 or 4 and 14 or 4 and 24. Candidates 4 and 18 also have the advantage of being located near new residential areas, largely developed since 2010, and therefore not included in our demand data.

Being able to run models with capacity constraints was generally helpful as it could be illuminating to compare results with and without such constraints. Though the two versions of the models rarely produced significantly different results here, they did produce different outcomes in scenario (b) for reasons explained earlier. Generally, scenario (c) seems more realistic than (d), since SK Rawang is unlikely to close because it is the oldest school in Rawang, is popular with parents and alumni and enjoys a good reputation, as well as a central location.
The results from the LAMs used here could be further enhanced if demand could be estimated more accurately using data on EBs or even smaller user defined units plus data on new residential areas, as well as information on how many children from Rawang go to schools elsewhere (e.g. in Kuala Lumpur or rural areas where their grandparents live) and on how many children travel to schools in Rawang from outside. Further ahead, more sophisticated models could be developed taking account of a wider range of variables such as actual modes of travel to school and preferences for different schools.
REFERENCES

Department of Town And Regional Planning Selangor. (1999). Rawang-Kuang Local Plan (2nd ed.). Shah Alam: Department of Town And Regional Planning, Selangor.

PART II

TECHNICAL REPORT
TABLE OF CONTENTS

TABLE OF CONTENTS ...i
LIST OF TABLES ..iv
LIST OF FIGURES ...v
LIST OF ABBREVIATIONS ..vii

1. Further Review of Literature and of Methods ... 1
 1.1. Location-Allocation Models ... 1
 1.1.1. Previous Studies on Location-Allocation Models for Schools 2
 1.2. The Distribution of Demand ... 3
 1.2.1. Estimation of Demand .. 3
 1.2.2. Visualization of data by using Choropleth Maps .. 4
 1.3. Network Models .. 5
 1.4. School Catchment Areas ... 6
 1.4.1. Thiessen Polygons ... 6
 1.4.2. Isochrone Maps ... 7

2. REVIEW OF DATASETS ... 8
 2.1. Land Use Map ... 8
 2.1.1. Description of Land Use Data ... 9
 2.1.2. Data Pre-Processing .. 9
 2.2. Administrative Boundaries .. 10
2.2.1. Description of Boundaries Data... 10

2.2.2. Data Preprocessing.. 11

2.3. Plan of Cadastral Lots for Rawang Municipality.. 12

2.3.1. Description of Data for Cadastral Lots .. 12

2.3.2. Data Preprocessing.. 13

2.4. Data for the Road Network.. 14

2.4.1. Description of Data for the Road Network .. 14

2.4.2. Data Preprocessing.. 14

2.5. Population of Rawang by Age and Ethnicity.. 15

2.5.1. Description of Data.. 15

2.6. Number of current pupils of each national primary school in Rawang 21

2.6.1. Description of Data.. 21

3. METHODOLOGY FOR ESTIMATING DEMAND AT A FINE SPATIAL SCALE..... 23

3.1. Introduction... 23

3.2. The Estimation of the Demand for Primary Schools...................................... 24

3.2.1. Mathematical Formulae for the Estimation of the Demand....................... 24

3.3. Building a Network Model... 27

3.3.1. Creating the Network Dataset for the Road Network 28

3.3.2. Allocating Facilities (i.e. Schools) and Demand to the Network Model........ 28

3.4. School Districting... 29

3.4.1. Thiessen Polygons.. 30

3.4.2. Isochrone Maps... 31

3.5. Location-Allocation Models... 32
3.5.1. Facilities .. 33
3.5.2. Demand .. 35
3.5.3. Analysis Properties .. 36

4. RESULTS ... 37

4.1. Estimation of the Number of Pupils in each Neighbourhood and in Small Cadastral Plot Units (SRCPUs) .. 37

4.2. Existing School Catchment Areas ... 41

4.2.1. Thiessen Polygons .. 41

4.2.2. Areas with High Number of Pupils and Poor Accessibility to Schools .. 45

4.3. Candidate Locations of New Schools ... 48

5. CONCLUSION ... 51

REFERENCES ... 53

APPENDIX ... 56
LIST OF TABLES

Table 1 Type of Land Use ... 8
Table 2 Population of Rawang by Gender, Total Living Quarters and Households for Neighbourhoods
.. 17
Table 3 Population of Rawang by Age Group ... 18
Table 4 Population of Rawang by Ethnic Group .. 19
Table 5 Current Number of Pupils, the Number of Classrooms and the Maximum Capacity of the
School ... 22
Table 6 Estimation of Number of Pupils in each Neighbourhood and Small Residential Cadastral Plot
Unit (SRCPU) .. 38
Table 7 Summary of Thiessen Polygons for Existing Schools ... 44
LIST OF FIGURES

Figure 1 A Dasymetric Technique for Estimating Population Distribution at Finer Scale 4
Figure 2 Land Use Map for Rawang .. 8
Figure 3 Administrative Boundaries within Selangor State (Red Fill shows Rawang Municipality) 10
Figure 4 Cadastral Lots inside Rawang Municipality ... 12
Figure 5 Road Network in the Rawang Area .. 14
Figure 6 Location of the National Primary Schools in Rawang ... 21
Figure 7 Workflow Chart of the Methodology .. 23
Figure 8 The Process of Estimating the Demand for National Primary School based on the Population Data ... 24
Figure 9 The Structure of the Network Model .. 27
Figure 10 The Allocation of Demand for Neighbourhoods to SRCPUs ... 28
Figure 11 Process of Creating Thiessen Polygons .. 30
Figure 12 Steps in Creating an Isochrone Map ... 31
Figure 13 Procedure for Setting the LAM Layer in ArcGIS 10.1 ... 33
Figure 14 Estimated Number of Pupils in Neighbourhood Units .. 39
Figure 15 Demand of Schools at SRCPUs ... 40
Figure 16 Thiessen Polygons for Existing Schools in Relation to Neighbourhood Areas 42
Figure 17 Thiessen Polygons for Existing Schools in Relation to SRCPUs .. 43
Figure 18 Areas Covered by Existing Schools in Relation to Neighbourhood Areas 46
Figure 19 Areas Covered by Existing Schools in Relation to SRCPUs.................................47

Figure 20 Candidate Locations of Schools at Neighbourhood Units..49

Figure 21 Candidate Locations of Schools at SRCPUs ...50
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSM</td>
<td>Department of Statistics, Malaysia</td>
</tr>
<tr>
<td>DTRP</td>
<td>Department of Town and Regional Planning</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>JUPEM</td>
<td>Department of Surveying and Mapping</td>
</tr>
<tr>
<td>LAM</td>
<td>Location-Allocation Model</td>
</tr>
<tr>
<td>LAP</td>
<td>Location-Allocation Problem</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>NDCDB</td>
<td>National Digital Cadastral Database</td>
</tr>
<tr>
<td>SRCPU</td>
<td>Small Residential Cadastral Plot Unit</td>
</tr>
<tr>
<td>TIN</td>
<td>Triangular Irregular Network</td>
</tr>
</tbody>
</table>
1. FURTHER REVIEW OF LITERATURE AND OF METHODS

1.1. Location-Allocation Models

The decision whether to locate, relocate or increase the number of public facilities to support the growing demand is always a challenge to the government in most of the developing countries, including Malaysia. Location-Allocation Models (LAMs) can be used as a support for the decision making process in improving the spatial location of public facilities to enhance the spatial equity or efficiency of the service in meeting the demands of users (Buzai, 2013).

Finding optimal locations for facilities can include various graph-theory techniques (e.g. finding shortest paths), methods for solving the p-median problem or suitability mapping etc. (Hakimi, 1964). The integration of p-median problems with land use maps, for example, could provide a set of suitable candidate locations for facilities at promising locations for serving demand efficiently. The p-median problem could also be combined with advanced spatial models that include various criteria such as land use classification or land cover type and features of the intended facilities in locating facilities to provide good accessibility for users and accommodate demand better (Abdel-Latif, 2007). For example, in Malaysia, new schools will generally be built at places with close proximity to residential areas and with sufficient space for buildings and other amenities like canteens, playing fields and other sports facilities.

It is essential to consider the transportation system and movement through the network which connects different resources and demands throughout an area when employing LAMs. For instance, if there is a limited number of facilities to serve the whole population, LAMs can be used to find good solutions which allocate as much population as possible to facilities which are close or accessible to their users. LAMs can help in solving the problem of matching supply and demand spatially by incorporating various constraints e.g. on how far users can feasibly travel. It is important to try to provide an equitable service to population while maximizing efficiency through minimizing the total distance travelled or time taken. Location-allocation models require information on the location of supply, usually treated as point locations, and on demand - that is the locations of individual users or
consumers plus impedance measures which can be distance or time travelled. Distance or time can be measured by the shortest path to supply centres in a network which is, of course, more accurate and realistic than straight-line distances (Chang, 2012).

LAMs are usually set up for a specified number of facilities and can involve using constraints which specify maximum distances or costs of travel and possibly maximum distances from demand points to facilities. After the analysis is completed, a cost-benefit analysis can be done by examining the reduction in distance travelled resulting, for instance, from adding one or two new facilities. In this study, LAMs were initially used to evaluate how well located existing schools are to serve the existing distribution of children. Other models were then run to explore various LAM-related problems, for instance, models which ensured all children in the study area enjoyed a certain desirable or standard of access to school.

1.1.1. Previous Studies on Location-Allocation Models for Schools

In a case study done in Rascht City, Iran, school catchment areas were created based on the spatial distribution of students and the capacities of schools (Ahmadi Nejad Masouleh, 2006). The boundaries of each school’s catchment were constructed so that the students were allocated to the facility closest to their home. LAMs can also be used to maximize the attendance at each school and match its capacity and also to reduce the distance travelled by students to school.

Maps of school catchment areas can be very useful in identifying areas that are not served well, such as areas that are located too far from the existing schools (Grip, 2013). Existing catchment areas can be modified to suit the changing character and distribution of demand possibly due to growing population. The distribution of supply centres can be evaluated partly through identifying the pupils who are not allocated to the closest school at present. LAMs can help in redistricting the catchment areas to allocate more pupils to their closest school.

When LAMs incorporate capacity constraints, any overcrowding problems of existing schools can also be addressed as well. This method has been used in Baltimore for planning a new school to address the overcrowding of the existing schools (Crepper GIS, 2013). By determining the schools
that exceeded their capacity limits, the new school location was planned taking account of the boundaries between overcrowded schools where the new school could capture the surplus demand from its neighbours. Essentially, LAMs simultaneously locate schools and allocate pupils to the appropriate school.

1.2. The Distribution of Demand

1.2.1. Estimation of Demand

Population is a key component in assessing demand for facilities. It is desirable to have population data at the finest scale possible in order to precisely capture where the demand for the service is located in an area (Zandbergen & Ignizio, 2010). The population census in some countries, such as Malaysia, is aggregated to state or local government areas. The planning of schools seems to be mainly based on the population of these large areas. There is a need, however, for such rather large zones to be disaggregated, creating smaller areal units for population. This should lead to better planning of the location of facilities to serve demand. In this study, the method used as a first step in trying to estimate the location of population at a finer scale is the dasymetric technique. Population figures for smaller areas are estimated through using the boundaries of other types of aggregated information, in this case data on types of land use (Cai, et al., 2006). This dasymetric technique allows the different land use types within a two-dimensional census zone to be represented. The non-residential areas are then masked out to distribute the population only to the residential parts of the zone. It has been used previously in disaggregating population census data to smaller areas in Leicester, UK (Mohammed, et al., 2012). Another technique that could have been used in this context would have been to use the road network to allocate census population totals directly to housing units based on streets or houses or groups of houses. However, in this study, only the dasymetric approach is used, because it allows areas identified as residential on the land use map to be conveniently overlaid on cadastral data for small lots or plots, thereby identifying lots occupied by houses or apartment blocks.
Figure 1 shows the flow diagram for the process of estimating the population at a finer scale by using the dasymetric method, as suggested by Mohammed et al. (2012). The non-residential land use is first masked out from the land use map leaving only residential areas on the map. A map of cadastral plot boundaries derived from a plan of cadastral lots is then combined with the residential land use map to identify which cadastral plot units are likely to be residential. Finally, the census population of each ‘neighbourhood’ is distributed appropriately to each of the cadastral units.

1.2.2. Visualization of data by using Choropleth Maps

A Choropleth map is a cartographic-based thematic mapping technique for presenting and visualizing the statistical data of an area. Each area will be shaded according to the statistical value it holds. It is a widely used technique for visualization, for example, population density maps. It can be linked to the dasymetric technique to improve the accuracy of choropleth map, for instance by shading only the area within a zone or unit which is known to be populated and leaving unshaded unpopulated areas like parks or lakes within the zone in question, where the colour can be scaled according to the density value of each region (Andrienko, et al., 2001).

The numerical values need to be classified in order to be clearly differentiated on the map. There are five types of classification methods commonly used which are Natural Breaks (also known as Jenks Natural Breaks), Equal Interval, Quantiles, Standard Deviation and Geometric Progression, each of which classifies the range of statistical values differently, as the names suggest. The most commonly used technique is probably Natural Breaks to show the discontinuities natural where the statistical
values are then divided according to the number of classes needed to capture these breaks (Cote, 2012).

Choosing an appropriate colour progression to give a good visual impact on the map is another challenge with choropleth maps. The colour progression needs to communicate any patterns well to the map reader. There are basically six techniques of hue progression in displaying the data on the choropleth map which are single-hue, bipolar, blended hue, partial spectral, full spectral and value progression (Cote, 2012). A good choice of colour progression can enhance effective communication between the map and the reader, but a poor selection can result in an ineffective and unappealing map.

1.3. Network Models

GIS provides various data models which facilitate spatial analysis, including models for road networks, river networks or utility networks. The most important network model for solving problems in urban areas is the road network model. This model is widely used in transportation planning, retail market analysis, service allocation, measuring accessibility and so on. It allows simple daily problems to be solved such as finding a shortest route between two locations, looking for the closest facility etc. (Lwin & Murayama, 2012).

In GIS, a network is a set of nodes and links which are topologically connected to each other. This means a network should allow flow characteristics to take place, such as the movement of people, vehicles or goods in a road network (Chang, 2012). Networks contain a set of nodes, representing the intersections of links in the network, and links which connect two or more nodes. When the tables of nodes and links are relationally connected, this creates a topological relationship between both elements.

Network elements can have weights associated with them, for instance the cost of traversing a link in the network in terms of distance or time or cost can be associated with that link. In addition, in transportation planning, the road network can include a speed limit or other road restriction as a component of cost. This weight can be a decisive factor in finding the shortest or least cost path
between two points. Consequently, such data models can be used in various applications such as geocoding and routing problems.

For Rawang, a network model was built from the road network data for the city with the nodes consisting of the intersections and junctions of the network. The weight or cost element is the length of the links between the nodes. In the analysis, left and right turns and u-turns are allowed at the nodes. Subsequently, the road network was topologically connected to the facility locations (schools) and to units of demand i.e. the small areal units of the cadastral plots used to estimate where children live.

1.4. School Catchment Areas

The location of schools should be such as to satisfy the demands of the local school-age population. It is therefore crucial to include census data in any analysis determining the existing school catchment areas across the neighbourhoods of the city. Ideally, this approach should help to describe and assess the present and future distribution of pupils in the neighbourhoods around schools (Pearce, 2000). This can then lead on to an analysis of the school capacities and whether they suit actual or future demand or not.

1.4.1. Thiessen Polygons

Thiessen polygons are such that any point within this type of polygon is closer to one of the set of initial ‘seeds’ (initially specified points or known points) than to the other seeds in the set of seeds. Also called Voronoi polygons, these polygons can be used in various applications, especially for service area analysis for public facilities. By using initial triangulation, the seed points can be connected to form sets of triangles. Delaunay triangulation, for example, ensures that each seed point is connected to its nearest neighbours and the triangles are as equilateral as possible. Once triangulation is done, the Thiessen polygons can be constructed by connecting lines drawn perpendicularly to the sides of the triangles at the midpoints of these sides (Chang, 2012). Thiessen polygons are used internally in GIS to speed up certain geometric operations and as the basis of some powerful methods for generalizing vector databases.
In order to solve the Location Allocation Problem (LAP) for schools, Thiessen Polygons can be used as initial rough indicators in estimating the notional catchment areas of the schools or their 'natural catchments'. The schools can be regarded as centroid points and the polygons will then be created by connecting each centroid or centre to the residential areas for which it is the nearest centre. Areas not covered by such polygons can then be observed.

This method has been demonstrated by Pearce (2000) where the catchment areas of the schools in Lancashire were determined by using the Voronoi-points generated from Thiessen Polygons. The boundaries of the polygons were calculated by finding the perpendicular bisectors of the lines connecting two neighbouring central points i.e. schools. In this type of analysis, the catchment areas of the schools depend on the spacing between the points. This method is useful here as children in Malaysia tend to go to the school which is located nearest to their home, though this method of allocation is rather simplified compared to real world school catchment areas which are influenced by school capacities, among other factors.

1.4.2. Isochrone Maps

Isochrone maps identify and show the areas around facility locations on a network consisting of all the demand points or street units lying within a specified travel time (or distance or cost) of the facility. Accessibility refers to how easy it is to get to a site and can be measured by distance or time travelled or any other impedance on a network.

A simple way to evaluate accessibility is by setting a buffer defined by Euclidean distance around a point. However, considering that people travel by road, this method does not accurately reflect the actual accessibility of the site. Identifying the streets accessible within certain distances of a site via the road network can overcome this limitation. Once created, a network space allows the catchment areas of the facilities to be identified. Multiple concentric service areas show how accessibility changes in terms of the points, lines or polygon units making up the catchment area with set increases in impedance (Chang, 2012).
In this study, the application of the Isochrone method to identify travel distance contours can help in determining the coverage area of schools. It uses the distance through the road network to identify the area and its population that is within a specified network distance of a school which is an intrinsic procedure in the maximum coverage location problem (MCLP).

2. REVIEW OF DATASETS

2.1. Land Use Map

![Figure 11 Land Use Map for Rawang](image)

Table 7 Type of Land Use

<table>
<thead>
<tr>
<th>Colour</th>
<th>Land Use</th>
<th>Colour</th>
<th>Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residential</td>
<td></td>
<td>Infrastructure and Utilities</td>
</tr>
<tr>
<td></td>
<td>Commercial</td>
<td></td>
<td>Agriculture</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td></td>
<td>Forestry</td>
</tr>
<tr>
<td></td>
<td>Institution and Community Centre</td>
<td></td>
<td>Water Bodies</td>
</tr>
<tr>
<td></td>
<td>Open Space and Recreational Area</td>
<td></td>
<td>Transportation</td>
</tr>
</tbody>
</table>
2.1.1. Description of Land Use Data

The Department of Town and Regional Planning (DTRPS) of the State of Selangor has developed a system to monitor information on the existing and planned developments within the state digitally. The Department has applied GIS to develop a web-based system which allows the public to view the land use database for the state. This has produced a large-scale database of land use that can be used by planners or even viewed by the public on their website in map form. This database includes all 12 local authorities within the state using the broad categories of land use listed in Table 1 (including the area of residential land use – and giving the name of each neighbourhood).

These data can be purchased either in hardcopy or digital format from the Department’s headquarter in Shah Alam or from a branch in each local authority. In our case, the paper map version was bought from the Department’s branch in the Selayang Local Authority, Selangor.

This map shows clearly the boundary of each land use as displayed in Figure 2 so residential areas can be clearly distinguished on this map. This is important in identifying the residential areas as the first step in trying to specify the location of demand more accurately. Other types of land use such as open space can also be identified by using this map, which helps in identifying candidate locations for new schools.

2.1.2. Data Pre-Processing

The paper map had no coordinate system and had no projection system associated with it. The map was, therefore, georeferenced into the same coordinate and projection system as the other data that is the WGS 1984 system and was then used as a base map for this study. It was vectorized by digitizing the boundary lines of the land use to create polygons representing the ten types of land use employed.

This digitizing process often creates many topological errors such as slivers and duplicated lines. The data are, therefore, validated after the digitizing process is done with each of the boundaries being checked to ensure that no adjacent polygons overlap. Any duplication or slivers are removed to ensure that a sound topology can be built for the dataset.
2.2. Administrative Boundaries

2.2.1. Description of Boundaries Data

The Federal Department of Surveying and Mapping (JUPEM) has developed a fully electronic database for the whole country. This database includes all the administrative boundaries within the country from the national boundary down to state boundaries, district boundaries and municipality boundaries which show the territories of the various authorities that administer the country at different levels. For example, the state boundaries separate the country into fourteen different state authorities. Each state is then separated into a number of districts with certain responsibilities. Lastly, the boundaries of municipalities separate each district into a set of smaller local authorities. These data
are part of JUPEM’s restricted versions of topographic maps with a scale of 1:50000 covering the State of Selangor (Figure 3).

The data that will be used here are at the municipal level which involves a local authority managing its own area. The study area itself actually consists of part of the territory of Rawang Municipality. The municipality of Rawang lies in Gombak District and is one of the nine districts in the state of Selangor. This administrative boundary is important in defining the extent of the study. More specifically, the study area for the present research is initially defined by the area within Rawang for which detailed road network data showing minor roads are available. Essentially, this is the main built up urban part of Rawang Municipality. It is also the part of Rawang Municipality for which fairly complete cadastral data are available. However, the precise definition of the research area in fact within this built up area was finally defined by the 23 neighbourhood units for which census data was obtained.

2.2.2. Data Preprocessing

i. Data Extent

The administrative boundary that is needed in this study is that for the municipality of Rawang only. Therefore, all other polygons were removed from the dataset.

ii. Data Validation (Topological Checking)

- Polygon Overlap

 Each of the boundaries was checked to ensure that no adjacent polygons overlapped. This is important in developing datasets that are unique and unambiguous.

- Line Duplication

 Thorough topological checking was carried out to ensure that there were unique boundary lines for all the polygons. Any duplication was removed to ensure that a sound topology could be built for the dataset.
2.3. Plan of Cadastral Lots for Rawang Municipality

2.3.1. Description of Data for Cadastral Lots

The digital plan of cadastral lots is derived from the National Digital Cadastral Database (NDCDB) which holds data on all ground that has been surveyed. Data for all the land that has been surveyed by the district surveyors is inserted into this database so that it is available to be viewed by the whole JUPEM community in the state of Selangor.

The data contains the boundary lines, boundary marks, polygons for the lots and any text or annotations describing the lots. These data are in the Cassini Geocentric projection system. Only the polygons for lots are needed in our research to help in specifying more precisely the locations for demand units in geographical space.

Figure 13 Cadastral Lots inside Rawang Municipality
2.3.2. Data Preprocessing

i. Conversion to shapefile

The raw data of the cadastral lot plan obtained were not in shapefile format. Thus, they needed to be converted so that they could be used in an ArcGIS workstation with other vector data. These data are originally in .dxf format. Therefore, the polygons for the plot units were extracted from the datasets to create a new shapefile representing the cadastral lot units or plots.

ii. Projection and Coordinates

The NDCDB data in Malaysia is coordinated separately by each state. Each state, therefore, has its own datum system. Thus, this dataset was rectified into a new projection and coordinate system to fit the other data using the WGS 1984 coordinate system.

iii. Data Extent

The cadastral lot units needed in this study are those within the municipality of Rawang only. Therefore, all other polygons located outside the area within the administrative boundary of Rawang were removed from the dataset by overlaying the administrative polygon layer and the cadastral lot layer. The intersection of both data sets then gave only the cadastral lot units within the Rawang administrative boundary (Figure 4).

iv. Data Validation (Topological Checking)

- Polygon Overlap

 Again, each of the boundaries was checked to ensure that no adjacent polygons overlapped. This was important in establishing a dataset that was unique and unambiguous, particularly because demand data was to be allocated to these cadastral units.

- Line Duplication

 Thorough topological checking was carried out to ensure that there were unique boundary lines for these polygons. Any duplication was removed to ensure that a sound topology could be built for the dataset.
2.4. Data for the Road Network

![Figure 14 Road Network in the Rawang Area](image)

2.4.1. Description of Data for the Road Network

The road network data contain four types of road which are federal roads, highways, major roads and minor roads. The federal roads and highways are built to connect major towns and cities. However, the only difference between these types of road is that highways have toll collecting fees for using them. Major roads are the main roads inside the cities and towns and minor roads are the roads inside the areas of settlements, for example the roads within residential areas.

All of these roads are included in building the network dataset. The road network data is used to find the best routes connecting pupils and schools and the distances travelled to the schools allocated.

2.4.2. Data Preprocessing

i. Data Extent

The road network used in this study is that for Rawang Municipality. Initially, all roads that are located outside the boundary of Rawang are removed from the dataset by
overlaying the administrative polygon layer and the road network layer. The intersection of both data sets then gave the road network located within the administrative boundary of Rawang (Figure 5). However, as noted earlier, the study area is actually only the main built up area of Rawang town itself. This is also the area for which good detailed information on minor roads is available (the road network data obtained mainly gives main roads outside the latter area and generally gives less detail on minor roads outside this built up area).

ii. Data Validation (Topological Checking)

- Network Connectivity

The entire network needs to be connected and snapped together at the junctions to allow turns to be done during the analysis process. This is done by tracing through the network. Any unconnected lines (i.e. links) will be snapped to closely adjacent lines by moving one of the end points of the line to the nearest line in the network to form a new node where the lines now intersect.

- Line Intersection

The tracing process should also check the junction at the intersections of the roads. A junction should never be at lines which cross. In other words, where there are bridges over or underpass roads below another road, there should be no interpretation or assumption that the crossing point between these roads is a junction or node.

2.5. Population of Rawang by Age and Ethnicity

2.5.1. Description of Data

The population data used are from the 2010 census data collected by the Department of Statistics Malaysia (DOSM). The smallest units used by DOSM for collecting data on population and, potentially, for disseminating these data are Enumeration Blocks which typically consist of 80-120 households or 500-600 people. Despite several requests to DOSM for data at Enumeration Block (EB) level, due to confidentiality, apparently, DOSM did not provide data at EB level within the required time scale. Census data were obtained, however, for 23 neighbourhoods, created when the author
divided Rawang into 23 units which corresponded as far as possible to fairly distinct residential districts. Thus, these neighbourhood units were of the author’s own devising and coarser spatially than EBs and had an average size of 1670 people.

In defining these neighbourhoods so that they comprised distinct residential areas as far as possible, the author made use of boundaries between land use zones by using the land use map as discussed earlier and Google Map. Somewhat surprisingly, DOSM eventually offered to provide census data for a set of some 70 areas of Rawang, devised again by the author, and forwarded to DOSM in early May in a further attempt to obtain data at a finer spatial scale when no response had been received to an earlier request for EB data. However, this offer by DOSM to provide data at an even finer spatial scale than EBs arrived after much of the analysis had been completed using the 23 neighbourhoods as the starting point for estimating demand and was therefore much too late to incorporate such data in the research.

DOSM provides population data and data on living quarters with population broken down by gender, age and ethnicity for the defined areas as shown in Tables 2, 3 and 4. The population is divided into sixteen age groups from 0 to 75+. Ethnicity is first divided into two groups, citizens and non-citizens. Citizens are then categorized into two classes, Bumiputera and non-Bumiputera. According to the Federal Constitution of Malaysia, Bumiputera are people whose ancestors originated from the area of land (Now forming Peninsular and East Malaysia). There are two categories of Bumiputera, which are Malays who speak Malay, embrace Islam and practice Malay customs and other Bumiputera who are other indigenous groups. The non-Bumiputera are immigrants who come from outside or whose forebears came to the country before Independence Day in August 31, 1957. There are three groups of non-bumiputra: Chinese, Indians and others.

Only the three main ethnic groups will be considered here i.e. Malays, Indians and Chinese, because other ethnic groups in the study area only have very small and insignificant numbers as compared to these three. These three groups are the only ones that are mentioned in the Malaysia National Education Blueprint describing the nation’s education system and plans for it. Furthermore, most
planning policy in Malaysia only considers these three major ethnic groups in the decision making processes.

i. Population by Gender and Total Living Quarters for Neighbourhoods

Table 8 Population of Rawang by Gender, Total Living Quarters and Households for Neighbourhoods

<table>
<thead>
<tr>
<th>NEIGHBOURHOOD</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>TAMAN GARING PERMAI</td>
<td>2,258</td>
</tr>
<tr>
<td>TAMAN GARING JAYA</td>
<td>423</td>
</tr>
<tr>
<td>KOTA EMERALD</td>
<td>948</td>
</tr>
<tr>
<td>TAMAN SRI RAWANG</td>
<td>707</td>
</tr>
<tr>
<td>GREEN PARK</td>
<td>2,985</td>
</tr>
<tr>
<td>BUKIT RAWANG JAYA</td>
<td>524</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA</td>
<td>3,470</td>
</tr>
<tr>
<td>RAWANG PUTRA</td>
<td>983</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA 2</td>
<td>4,943</td>
</tr>
<tr>
<td>KAMPUNG KENANGA</td>
<td>290</td>
</tr>
<tr>
<td>KAMPUNG DATO’ LEE KIM SAI</td>
<td>1,253</td>
</tr>
<tr>
<td>KAMPUNG SUNGAI TERENTANG</td>
<td>846</td>
</tr>
<tr>
<td>TAMAN BERSATU</td>
<td>3,811</td>
</tr>
<tr>
<td>TAMAN JATI</td>
<td>1,014</td>
</tr>
<tr>
<td>TAMAN TUN PERAK</td>
<td>2,064</td>
</tr>
<tr>
<td>PERUMAHAN PKNS BATU 16</td>
<td>1,093</td>
</tr>
<tr>
<td>TAMAN MAWAR</td>
<td>1,047</td>
</tr>
<tr>
<td>TAMAN KANCING JAYA</td>
<td>1,688</td>
</tr>
<tr>
<td>KAMPUNG MELAYU BATU 16</td>
<td>737</td>
</tr>
<tr>
<td>FLAT TAMAN SETIA</td>
<td>391</td>
</tr>
<tr>
<td>TAMAN SETIA JAYA & TAMAN SETIA</td>
<td>289</td>
</tr>
<tr>
<td>TAMAN PELANGI</td>
<td>2,624</td>
</tr>
<tr>
<td>TAMAN SRI BAYU & TAMAN TUN TEJA</td>
<td>4,028</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38,416</td>
</tr>
</tbody>
</table>
Population by Age

Table 9: Population of Rawang by Age Group

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMAN GARING PERMAI</td>
<td>2,258</td>
<td>201</td>
<td>271</td>
<td>277</td>
<td>181</td>
<td>157</td>
<td>177</td>
<td>159</td>
<td>219</td>
<td>174</td>
<td>159</td>
<td>102</td>
<td>69</td>
<td>43</td>
<td>23</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>TAMAN GARING JAYA</td>
<td>423</td>
<td>19</td>
<td>38</td>
<td>46</td>
<td>42</td>
<td>43</td>
<td>37</td>
<td>36</td>
<td>30</td>
<td>32</td>
<td>24</td>
<td>14</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>KOTA EMERALD</td>
<td>948</td>
<td>96</td>
<td>65</td>
<td>71</td>
<td>67</td>
<td>108</td>
<td>63</td>
<td>97</td>
<td>83</td>
<td>43</td>
<td>88</td>
<td>91</td>
<td>53</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>TAMAN SRI RAWANG</td>
<td>707</td>
<td>46</td>
<td>39</td>
<td>57</td>
<td>69</td>
<td>67</td>
<td>58</td>
<td>71</td>
<td>54</td>
<td>39</td>
<td>59</td>
<td>65</td>
<td>29</td>
<td>24</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>GREEN PARK</td>
<td>2,985</td>
<td>128</td>
<td>186</td>
<td>253</td>
<td>259</td>
<td>233</td>
<td>316</td>
<td>201</td>
<td>196</td>
<td>185</td>
<td>215</td>
<td>213</td>
<td>151</td>
<td>168</td>
<td>107</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td>BUKIT RAWANG JAYA</td>
<td>524</td>
<td>30</td>
<td>54</td>
<td>44</td>
<td>37</td>
<td>55</td>
<td>42</td>
<td>62</td>
<td>46</td>
<td>50</td>
<td>33</td>
<td>30</td>
<td>12</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA</td>
<td>3,470</td>
<td>195</td>
<td>297</td>
<td>346</td>
<td>289</td>
<td>286</td>
<td>344</td>
<td>359</td>
<td>304</td>
<td>279</td>
<td>249</td>
<td>158</td>
<td>152</td>
<td>78</td>
<td>57</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>RAWANG PUTRA</td>
<td>983</td>
<td>91</td>
<td>87</td>
<td>82</td>
<td>67</td>
<td>89</td>
<td>120</td>
<td>83</td>
<td>100</td>
<td>77</td>
<td>66</td>
<td>38</td>
<td>37</td>
<td>14</td>
<td>22</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA 2</td>
<td>4,943</td>
<td>519</td>
<td>475</td>
<td>502</td>
<td>348</td>
<td>362</td>
<td>431</td>
<td>421</td>
<td>436</td>
<td>432</td>
<td>291</td>
<td>190</td>
<td>176</td>
<td>131</td>
<td>110</td>
<td>65</td>
<td>54</td>
</tr>
<tr>
<td>KAMPUNG KENANGA</td>
<td>290</td>
<td>17</td>
<td>27</td>
<td>26</td>
<td>30</td>
<td>26</td>
<td>14</td>
<td>13</td>
<td>24</td>
<td>14</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>KAMPUNG DATO’ LEE KIM SAI</td>
<td>1,253</td>
<td>55</td>
<td>126</td>
<td>106</td>
<td>69</td>
<td>82</td>
<td>95</td>
<td>102</td>
<td>116</td>
<td>115</td>
<td>87</td>
<td>53</td>
<td>71</td>
<td>56</td>
<td>44</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>KAMPUNG SUNGAI TERENTANG</td>
<td>846</td>
<td>34</td>
<td>34</td>
<td>76</td>
<td>69</td>
<td>75</td>
<td>82</td>
<td>70</td>
<td>63</td>
<td>57</td>
<td>53</td>
<td>64</td>
<td>40</td>
<td>40</td>
<td>37</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>TAMAN BERSATU</td>
<td>3,811</td>
<td>217</td>
<td>264</td>
<td>351</td>
<td>370</td>
<td>373</td>
<td>450</td>
<td>327</td>
<td>248</td>
<td>239</td>
<td>295</td>
<td>254</td>
<td>170</td>
<td>122</td>
<td>55</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>TAMAN JATI</td>
<td>1,014</td>
<td>132</td>
<td>113</td>
<td>129</td>
<td>60</td>
<td>71</td>
<td>109</td>
<td>94</td>
<td>92</td>
<td>79</td>
<td>60</td>
<td>30</td>
<td>16</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>TAMAN TUN PERAK</td>
<td>2,064</td>
<td>266</td>
<td>248</td>
<td>213</td>
<td>142</td>
<td>132</td>
<td>200</td>
<td>213</td>
<td>214</td>
<td>143</td>
<td>121</td>
<td>68</td>
<td>34</td>
<td>32</td>
<td>15</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>PERUMAHAN PKNS BATU 16</td>
<td>1,093</td>
<td>106</td>
<td>186</td>
<td>142</td>
<td>80</td>
<td>69</td>
<td>79</td>
<td>75</td>
<td>106</td>
<td>83</td>
<td>81</td>
<td>37</td>
<td>21</td>
<td>12</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>TAMAN MAWAR</td>
<td>1,047</td>
<td>82</td>
<td>81</td>
<td>119</td>
<td>90</td>
<td>202</td>
<td>129</td>
<td>59</td>
<td>57</td>
<td>68</td>
<td>86</td>
<td>34</td>
<td>15</td>
<td>13</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>TAMAN KANCING JAYA</td>
<td>1,688</td>
<td>126</td>
<td>62</td>
<td>571</td>
<td>296</td>
<td>166</td>
<td>86</td>
<td>67</td>
<td>39</td>
<td>42</td>
<td>90</td>
<td>82</td>
<td>21</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>KAMPUNG MELAYU BATU 16</td>
<td>737</td>
<td>59</td>
<td>53</td>
<td>67</td>
<td>54</td>
<td>57</td>
<td>63</td>
<td>47</td>
<td>41</td>
<td>48</td>
<td>52</td>
<td>37</td>
<td>47</td>
<td>40</td>
<td>29</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>FLAT TAMAN SETIA</td>
<td>391</td>
<td>61</td>
<td>47</td>
<td>33</td>
<td>26</td>
<td>21</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>15</td>
<td>43</td>
<td>22</td>
<td>13</td>
<td>20</td>
<td>6</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>TAMAN SETIA JAYA & TAMAN SETIA</td>
<td>289</td>
<td>112</td>
<td>3</td>
<td>51</td>
<td>8</td>
<td>24</td>
<td>33</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
iii. Population by Ethnicity

Table 10 Population of Rawang by Ethnic Group

<table>
<thead>
<tr>
<th>Study Area Rawang</th>
<th>Total</th>
<th>Malaysian citizens</th>
<th>Bumiputera</th>
<th>Chinese</th>
<th>Indians</th>
<th>Others</th>
<th>Non-Malaysian citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Total</td>
<td>Malay</td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taman Garing Permai</td>
<td>2,258</td>
<td>2,209</td>
<td>561</td>
<td>550</td>
<td>11</td>
<td>436</td>
<td>1,212</td>
</tr>
<tr>
<td>Taman Garing Jaya</td>
<td>423</td>
<td>410</td>
<td>130</td>
<td>130</td>
<td>-</td>
<td>21</td>
<td>259</td>
</tr>
<tr>
<td>Kota Emerald</td>
<td>948</td>
<td>930</td>
<td>332</td>
<td>331</td>
<td>1</td>
<td>419</td>
<td>177</td>
</tr>
<tr>
<td>Taman Sri Rawang</td>
<td>707</td>
<td>694</td>
<td>106</td>
<td>106</td>
<td>-</td>
<td>119</td>
<td>468</td>
</tr>
<tr>
<td>Green Park</td>
<td>2,985</td>
<td>2,900</td>
<td>183</td>
<td>169</td>
<td>14</td>
<td>1,846</td>
<td>845</td>
</tr>
<tr>
<td>Bukit Rawang Jaya</td>
<td>524</td>
<td>482</td>
<td>141</td>
<td>137</td>
<td>4</td>
<td>131</td>
<td>210</td>
</tr>
<tr>
<td>Taman Rawang Perdana</td>
<td>3,470</td>
<td>3,155</td>
<td>626</td>
<td>562</td>
<td>64</td>
<td>1,641</td>
<td>876</td>
</tr>
<tr>
<td>Rawang Putra</td>
<td>983</td>
<td>939</td>
<td>262</td>
<td>255</td>
<td>7</td>
<td>455</td>
<td>214</td>
</tr>
<tr>
<td>Taman Rawang Perdana 2</td>
<td>4,943</td>
<td>4,728</td>
<td>1,631</td>
<td>1,611</td>
<td>20</td>
<td>1,571</td>
<td>1,509</td>
</tr>
<tr>
<td>Kampung Kenanga</td>
<td>290</td>
<td>274</td>
<td>272</td>
<td>272</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kampung Dato’ Lee Kim Sai</td>
<td>1,253</td>
<td>1,224</td>
<td>228</td>
<td>227</td>
<td>1</td>
<td>920</td>
<td>70</td>
</tr>
<tr>
<td>Kampung Sungai Terentang</td>
<td>846</td>
<td>806</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>766</td>
<td>36</td>
</tr>
<tr>
<td>Taman Bersatu</td>
<td>3,811</td>
<td>3,512</td>
<td>1,763</td>
<td>1,757</td>
<td>6</td>
<td>990</td>
<td>734</td>
</tr>
<tr>
<td>Taman Jati</td>
<td>1,014</td>
<td>996</td>
<td>668</td>
<td>668</td>
<td>-</td>
<td>177</td>
<td>150</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>TAMAN TUN PERAK</td>
<td>2,064</td>
<td>2,004</td>
<td>1,234</td>
<td>1,217</td>
<td>17</td>
<td>468</td>
<td>295</td>
</tr>
<tr>
<td>PERUMAHAN PKNS BATU 16</td>
<td>1,093</td>
<td>1,048</td>
<td>770</td>
<td>758</td>
<td>12</td>
<td>144</td>
<td>132</td>
</tr>
<tr>
<td>TAMAN MAWAR</td>
<td>1,047</td>
<td>988</td>
<td>697</td>
<td>697</td>
<td>-</td>
<td>145</td>
<td>141</td>
</tr>
<tr>
<td>TAMAN KANCING JAYA</td>
<td>1,688</td>
<td>1,662</td>
<td>1,207</td>
<td>1,207</td>
<td>-</td>
<td>311</td>
<td>144</td>
</tr>
<tr>
<td>KAMPUNG MELAYU BATU 16</td>
<td>737</td>
<td>691</td>
<td>686</td>
<td>680</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLAT TAMAN SETIA</td>
<td>391</td>
<td>370</td>
<td>370</td>
<td>370</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TAMAN SETIA JAYA & TAMAN SETIA</td>
<td>289</td>
<td>288</td>
<td>39</td>
<td>39</td>
<td>-</td>
<td>154</td>
<td>95</td>
</tr>
<tr>
<td>TAMAN PELANGI</td>
<td>2,624</td>
<td>2,160</td>
<td>1,498</td>
<td>1,490</td>
<td>8</td>
<td>122</td>
<td>508</td>
</tr>
<tr>
<td>TAMAN SRI BAYU & TAMAN TUN TEJA</td>
<td>4,028</td>
<td>3,897</td>
<td>2,323</td>
<td>2,308</td>
<td>15</td>
<td>792</td>
<td>775</td>
</tr>
<tr>
<td>Total</td>
<td>38,416</td>
<td>36,367</td>
<td>15,731</td>
<td>15,545</td>
<td>186</td>
<td>11,646</td>
<td>8,850</td>
</tr>
</tbody>
</table>
2.6. Number of current pupils of each national primary school in Rawang

![Figure 15 Location of the National Primary Schools in Rawang](image)

2.6.1. Description of Data

Five national primary schools are located in our study area, as illustrated in Figure 6. Each school has pupils aged from 7 to 12, representing grade 1 to 6. According to MOE policy, each class can only have a maximum of thirty pupils. Two of the schools, SK Bandar Baru Rawang and SK Bukit Rawang Jaya, have a similar structure as both were built in 2000 during the same National Plans; each of them has three 4-storey buildings. The oldest national school, SK Rawang, has only two 4-storey buildings. The former English-medium school, SK Sinaran Budi, has four 3-storey buildings. The newest school, which opened in 2011, SK Tun Teja, has three 4-storey buildings. The current total numbers of pupils attending school with the number of classrooms and the maximum capacity the school can receive are displayed in the Table 5.
Table 11: Current Number of Pupils, the Number of Classrooms and the Maximum Capacity of the School

<table>
<thead>
<tr>
<th>School</th>
<th>No. of Pupils</th>
<th>No. of Classrooms</th>
<th>Max Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Rawang</td>
<td>432</td>
<td>16</td>
<td>480</td>
</tr>
<tr>
<td>SK Sinaran Budi</td>
<td>929</td>
<td>36</td>
<td>1080</td>
</tr>
<tr>
<td>SK Bukit Rawang Jaya</td>
<td>947</td>
<td>30</td>
<td>1800</td>
</tr>
<tr>
<td>SK Bandar Baru Rawang</td>
<td>573</td>
<td>30</td>
<td>900</td>
</tr>
<tr>
<td>SK Tun Teja</td>
<td>1776</td>
<td>47</td>
<td>2820</td>
</tr>
</tbody>
</table>

In fact, there are two kinds of school here, those which are only in session in the mornings, usually from 7.00 a.m. to 1.00 p.m., and those which have both morning and afternoon sessions (usually from, say 1.15 p.m. to 6.30 p.m.). Two of these five schools, SK Bukit Rawang Jaya and SK Tun Teja, operate with morning and afternoon sessions and, therefore, have roughly twice the capacity suggested by their number of classrooms. The other 3 schools only operate morning sessions. The capacity figures given in Table 5 reflect these differences.
3. METHODOLOGY FOR ESTIMATING DEMAND AT A FINE SPATIAL SCALE

3.1. Introduction

This chapter discusses the methodology and procedures used in more detail than was possible with the Research Paper. The first section presents a workflow chart for the methodology, Figure 7 setting out all the steps involved in the research. In the sections which follow all of the steps illustrated in the workflow chart are then explained in detail.

![Figure 16 Workflow Chart of the Methodology](image-url)
3.2. The Estimation of the Demand for Primary Schools

The demand for the service supplied by facilities is one of the key elements in LAMs. It is really important therefore to define this demand at the finest spatial scale possible to enhance the value of the solutions derived from the model. In this study, the estimates of demand are constructed from census data obtained from DOSM. As noted previously, these data provide breakdowns of population by ethnicity and age, which are essential in estimating the size of the age group which attends primary school and the proportions of each ethnic group likely to attend the national primary schools we are concerned with. The DOSM data also include the total number of living quarters in the areal units involved. These could be used later in roughly checking the location of demand at a fine spatial scale. Figure 8 shows the flowchart of the process for estimating demand for the national primary schools.

3.2.1. Mathematical Formulae for the Estimation of the Demand

The Census data groups children into three age groups relevant here with an age range of five, i.e. 0-4, 5-9 and 10-14. However, for primary school age in Malaysia is from seven to twelve years old, so the age groups defined by DOSM are not ideal. Therefore, it is necessary to first break down the latter
two age groups appropriately to achieve an estimate of school-age population for each
neighbourhood.

For current demand, which is the number of children aged from seven to twelve years old, the two age
groups, 5-9 and 10-14 will be used. The numbers of primary school age can then be estimated by
simply dividing both age groups by three fifths.

Thus,

\[
\text{Estimated size of (7-9) group} = \frac{3}{5} \times \text{Population of (5-9)}
\]

and

\[
\text{Estimated size of (10-12) group} = \frac{3}{5} \times \text{Population of (10-14)}
\]

Both of the numbers will then be added up to estimate the school-age population for each census area.
This gives the potential current demand, if all children went to national primary schools. Thus

\[
\text{Potential Current School Age Population of each census unit} = \text{Population of (7-9)} + \text{Population of (10-12)}
\]

However, Malaysia is a multi-racial or multi-ethnic country and each state primary school in Malaysia
is notionally planned to serve one of the three ethnic groups. Therefore, in estimating demand for the
national primary schools, mainly intended to serve the Malay population but attended by certain
proportion of Chinese and Indian children, it is also necessary to take ethnicity into consideration. In
the Malaysia Education Blueprint (2013-2025), it is estimated that 90% of Malay, 8% of Chinese and
44% of Indian children attend the national primary schools (Ministry of Education (MOE), 2012). By
using these percentages, the demand for these schools therefore can be estimated more accurately.
First, the ethnic composition each school-age group will be estimated by using the appropriate
percentage for each census unit.
Population of each Age Group by Ethnic Breakdown for the census unit = Proportion of that Ethnic Group x Population of the School-age group for the census unit

= (Population of Ethnic Group/Total Population of census unit) x Population of School-age group

Then, by taking the composition of the age group by ethnicity, and the preceding estimates made by the Malaysia Education Blueprint (2013-2025), the number of children that will attend a national primary school from that census areal unit can be estimated:

Population of Children likely to attend a national primary school for each census unit = Proportion of each ethnic group attending a national primary school x Population of primary school age of that ethnic group

= (0.9 x Population of the Malay Age Group) + (0.08 x Population of the Chinese Age Group) + (0.44 x Population of the Indian Age Group)

These values are used to estimate the demand for schools more accurately initially for the neighbourhoods.

These two sets of calculations will give the number of children that currently go to the national primary schools in each of the census units. It is however, crucial for these relatively large areal units of demand to be assigned spatially to smaller units at the finest scale possible for more precise analysis. The basic census units used were neighbourhoods. Therefore, in order to identify smaller units, the small cadastral units within each neighbourhood in the data are noted. The number of children as calculated previously for each neighbourhood is then divided evenly across all its dwelling units, whether houses or apartments within that neighbourhood. This will then give the estimated number of children per house or apartment of that neighbourhood.

Current School-age Population per Dwelling Unit = Current School Age Population / Number of Dwelling Units
Similarly, the likely future demand can be estimated too. The age group 0-4 would automatically be taken into account in this estimation. Next would be the population of age 5-6 years old that belonged to the age group 5-9. To obtain the population of children aged five and six, the total population of the latter age group would be split into two fifths.

\[
\text{Estimated size of (5-6)} = \frac{2}{5} \times \text{Population of (5-9)}
\]

\[
\text{Future School Age Population} = \text{Population of (0-4)} + \text{Population of (5-6)}
\]

Therefore;

\[
\text{Future School-age Population per Dwelling Unit} = \frac{\text{Future School Age Population}}{\text{Number of Dwelling Units}}
\]

This number will later be used to distribute children to the map of cadastral plot units to create a spatially detailed map of demand. The procedure involved for allocating demand units to the network is explained in the next section.

3.3. Building a Network Model

The network model was built using the road data, the school locations and weighted demand points. This process of constructing the network’s connectivity and attribute information for the participating feature classes in the network dataset is crucial for further analysis. Basically, the datasets are related through the road they are located on. The topological relationship of point-on-line features is used to ensure each small residential cadastral plot unit and each school is located accurately on the road network.

<table>
<thead>
<tr>
<th>Demand</th>
<th>Road Network</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Links</td>
<td>Point</td>
</tr>
<tr>
<td>Key Attributes:</td>
<td>Located on</td>
<td>Key Attributes:</td>
</tr>
<tr>
<td>• Name</td>
<td>Located on</td>
<td>• Name</td>
</tr>
<tr>
<td>• Estimated Demand</td>
<td></td>
<td>• Maximum Capacity</td>
</tr>
</tbody>
</table>

Figure 18 The Structure of the Network Model
3.3.1. Creating the Network Dataset for the Road Network

The network dataset is created by using the road network data with the cost of traversing each link specified as the distance between the two nodes at either end. A junction on the road network which includes any intersection of links is designated a node in the network dataset. These nodes, as noted previously, will allow any type of turn to be done during the later analysis.

3.3.2. Allocating Facilities (i.e. Schools) and Demand to the Network Model

i. School

The locations of schools are treated as points in the network model, both in spatial and attribute terms. Schools are located in the network by referring to their coordinates obtained from Google Maps. Since the coordinate system for the network model is the same as for Google Maps, which is WGS 1984 the schools can be located in the model by using those coordinates.

Each of the points for schools also has attribute data with the name, current number of pupils and the maximum capacity of the school. These data are important, of course, for understanding how many pupils a school can actually receive. The maximum capacity of the school is therefore a limit on the number of the pupils that can attend the school, when using a LAM with capacity constraints.

ii. Allocating Demand to Small Residential Cadastral Plot Units (SRCPUs)

![Diagram of Allocating Demand to SRCPUs]

Figure 19 The Allocation of Demand for Neighbourhoods to SRCPUs
The demand for national primary school that was estimated previously at the neighbourhood level is now distributed to very small units consisting of cadastral lots (or plots) and located on the network model. The original cadastral lot units mostly represent the property boundaries of houses, factories, office buildings or other units of land ownership. As explained earlier, a map of land use types was previously used to filter out cadastral plots which are non-residential. Thus the remaining small cadastral plot units left after filtering give a very useful indication of the location of houses or apartments occupied by families. Considering that each of these dwelling units will have a possibility of pupils attending a national primary school, the estimated total demand of the neighbourhood is then assigned evenly to the dwelling units within that neighbourhood using the average number of estimated pupils per dwelling unit for that neighbourhood previously calculated and allowing for the fact that SRCPUs consisting of high rise blocks of flats will contain more dwelling units. The number of estimated pupils assigned to SRCPUs occupied by high rise blocks took account of the number of dwelling units involved but treated all as if they were located at the centre if the SRCPU involved. Therefore, the demand is assigned spatially to the whole block of the high rise building which is represented by one rather large cadastral lot unit. This is probably reasonably accurate spatially due to the fact that each of the housing units in a high-rise building will probably have a similar distance to any school they could be assigned to.

The demand is then split into five classes to visualize demand better using a Choropleth Map to show how demand is distributed across the study area.

3.4. School Districting

Two methods are used to create the maps of possible catchment areas for the national primary schools. Both methods are performed using ArcGIS software to show and explore how well the schools are located for serving population demand in the area. The notional territory of each school is shown by the boundary lines that are drawn in each method. These procedures can help to understand the pattern of access of population to the schools and can help to identify any poorly served areas.
3.4.1. Thiessen Polygons

Basically, each school will be regarded as the centroid of its surrounding polygon because the purpose of this method is to determine the notional territory of each school. The polygon of the school’s territory will essentially consist of the SRCPUs for which it is the nearest school. The boundary lines indicating the areas that are notionally served by each of the schools are shown by drawing Thiessen Polygons. These lines will thus divide the study area into the five notional territories of the schools.

As mentioned previously, this method uses one of the tools in ArcGIS i.e. a tool named similarly to the method i.e. Thiessen Polygon, located under the Analysis Toolbox. This method uses Euclidean distances to generate the polygons from sets of defined centroids. The process of generating Thiessen Polygons is illustrated in Figure 11.

![Figure 20 Process of Creating Thiessen Polygons](image)

Technically, the polygons are created to generate a polygon topology. All of the defined centroids are first triangulated into a triangulated irregular network (TIN) and each of the triangle edges generated is then responsible for forming the Thiessen Polygons through the bisectors of the sides of each triangle being drawn. The intersections of these bisectors then determine the locations of the polygon vertices.
3.4.2. Isochrone Maps

By specifying the maximum distance from home to schools regarded as desirable by the DTRPS, the area covered within this distance by each of the schools can be mapped. This was done initially for DTRPS’s ideal maximum distance of 800 meters. The map produced is essentially equivalent to an isochrone map but showing distance rather than time.

![Figure 21 Steps in Creating an Isochrone Map](image)

In ArcGIS, the tool that is used for creating Isochrone Maps is known as the Service Area Analysis tool. Located under Network Analyst, this tool uses impedance either for the distance or time travelled through the network from demand points to the central facility and requires the network dataset to be created first. Analysis can then be performed exploring the effect of using a range of covering distance or ‘isochrones’. This analysis uses Dijkstra’s algorithm for finding the shortest route between any two points in the network and can be used to create a set of Service Area polygons for the schools, according to a range of specified distances. The service areas generated can give insight into accessibility to the schools, as shaped by the road transport network.

In this study, the service areas within 800 meters of each school are created through points that are located on the network 800 meters from each school in question. Considering that some of the pupils might ride a bus or use other means of transportation than walking to school, a map of the areas within 1600 meters (double the recommended desirable distance) was also created. This map helps to give further insight into the accessibility of the national primary schools to pupils and helps to identify areas of high demand but poor access which can be taken into consideration as possible areas for new schools.
3.5. Location-Allocation Models

As discussed in Section 3 of the Research Paper, there are four models that are used here to solve location-allocation problems for schools, namely the Maximizing Coverage, the Minimizing Impedance, the Minimizing Facilities and the Maximizing Capacitated Coverage LAMs. The models are all used to help evaluate the existing distribution of schools and explore possible locations for additional new schools.

LAM functionality in the ArcGIS environment is known as the Location-Allocation Analysis tool, located under the Network Analysis toolbox. This analysis applies a heuristic algorithm, the Teitz and Bart algorithm, to find solutions for the LAMs involved. As a heuristic algorithm, Teitz and Bart is not guaranteed to find the optimal solution to any problem specified, but instead progressively evaluates different sets of candidate locations so that it always improves the set of facility locations until no further improvement can be obtained. The algorithm has then converged on a solution, which should be a good solution and may even possibly be the optimal solution. Essentially, this algorithm was originally designed to solve the p-median problem i.e. find the best set of candidate locations where the sum of the weighted distances from the demand nodes to their closest facility is minimized.

Before the algorithm can be implemented, it requires the origin-destination matrix of all the shortest-paths between each of the possible facility locations and all demand points through the network which is generated using Dijkstra’s algorithm. In fact, Hillsman (1984) has shown how this cost matrix can be edited to solve a wide range of LAMs with other objectives and constraints, including the seven LAM problems as described previously in the Research Paper. Viewed from another perspective, effectively the Teitz and Bart algorithm generates the randomized solutions to find a group of good solutions for the required problem. As a heuristic, it may well converge on different solution when given different initial starting points for search. The group of good solutions can be combined metaheuristically in order to refine it to find even better solutions or even the best solution for the problem. This is an iterative process, which only stops when no additional improvement is possible.
The process of LAM in the ArcGIS environment starts with the creation of the network model (ESRI, 2012). This process has already been discussed previously in Section 3.3. The network model acts as the workspace for the analysis to be performed. The network model contains the facilities (schools), demand points and the road network dataset. Various properties and parameters of these elements of the analysis can be chosen to decide how the model will be run (Figure 13).

![Diagram](image)

Figure 22 Procedure for Setting the LAM Layer in ArcGIS 10.1

3.5.1. Facilities

The facilities are represented by point features that hold various types of attribute or requirement for the site. It is important to specify the properties of the facilities in the analysis. There are four types of facility property, as discussed next.

1. **Candidate**

 If a particular facility site could be part of the solution, but is not required to be in the solution, it is a Candidate facility. Normally, this type of facility is one that is tested to
become part of the final solution from the analysis. The candidate facility site should be a location that is suitable for the event or service being located. There is no specific correct way to determine feasible candidate sites for facilities, which simply is a prior procedure to the LAMs. In this study, the candidate facilities are usually possible new locations for schools selected across the study area by considering various factors such as the location of poorly served areas with significant demand and sites where there appears to be space to build a new school.

ii. Required

If a facility is required to be included in the solution, it should be set as a Required facility. Considering that most of the time, planners in the Klang Valley decide to locate new schools without closing any existing schools in many runs of these models it make sense to treat the potential sites for new schools as candidate facilities and the current schools as required facilities.

iii. Competitor

A Competitor facility is a specific type of facility that is used in the target market share problem types. Such a facility represents a facility which is a rival to other facilities. For obvious reasons given earlier, this type of facility is not used here as all schools share the common function of ensuring all children will be able to attend to school i.e. they complement each other spatially rather than compete spatially.

iv. Chosen

Once the solution procedure decides that a Candidate facility is a part of the solution, it will now become a Chosen facility.

Other key properties of the facility include its weight and capacity. The weight can represent its importance or attractiveness to demand in the model. The bigger the weight of the facility, the more attractive it is to consumers in problems involving facilities competing in a market environment, as in the maximizing market share or target market share problems. In this study, since all of the schools are equally important in serving demand, the weight of each school has the default value of 1.0. The
capacity property is only relevant to the Maximize Capacitated Coverage problem. Capacity will act as the limit or constraint for the amount of demand that can be allocated to the facility. When the facility reaches its maximum capacity, no further demand will be allocated, even demand within the impedance cut off.

3.5.2. Demand

A demand point is a location that represents anything that requires the services of the facilities. Usually it represents the people that need to use the facility provided. It could be a postcode centroid weighted by the actual number of people living in that area or by the estimated number. Here the demand points are cadastral lots or units in area of residential land use which can very probably be assumed to be houses or flats from which children travel to school. As with facilities, there are certain key properties of demand points that are essential for the model in allocating demand to facilities optimally.

i. Group Name (Groups of Demand Points)

Demand points can be grouped by giving each group a distinct name. In the process of solution all members of the group may then be allocated to the same facility, if we ask for this option. However, when an impedance cut off is present, none of the group members will be allocated to a facility, if any of the group members is beyond the cut off. This property is ignored in the Maximize Capacitated Coverage, Target Market Share and Maximize Market Share problems.

ii. Weight

Unlike facilities, the weight of demand points does not represent their importance. It is a numerical indication of the amount of demand for the service, usually the number of people requiring service at or from a facility, in this case the number of children living in a SRCPU estimated as likely to attend a national primary school.
3.5.3. Analysis Properties

Analysis parameters are set as guidelines for the model in solving the problem as specified, prior to a particular problem being run. Apart from selecting the problem type for the model to solve, there are two more key properties essential for each run.

i. Number of Facilities to Choose

The number of facilities to be located is the most important property to be specified for any run and is a prior decision. There are no specific requirements in deciding how many facilities are to be located but normally, there should be sufficient to satisfy the demand of the region in question. This parameter has to be specified for all types of LAMs, except Minimize Facilities since the latter involves a solution process that searches for the smallest number of facilities needed to achieve a certain level of cover across the whole region.

ii. Impedance

This property specifies the network costs attribute used to define the travelling cost along the elements in the network. An impedance cut off can be used as a constraint limiting how far search or analysis procedures will extend through the network, usually to determine the amount of demand covered within a specified distance.

Once the Network Datasets, Facilities, Demand and Analysis Properties are specified, a particular LAM can be solved. The outputs from the analysis include the facility Locations, allocation of demand points and Lines connecting demand points to the facilities they are allocated to (often called ‘spider graphs’). This output can then be analysed and interpreted to understand how demand is allocated to facilities and how facilities have been selected to be in good locations to serve the demand.
4. RESULTS

4.1. Estimation of the Number of Pupils in each Neighbourhood and in Small Cadastral Plot Units (SRCPUs)

The striking areas in Figures 14 and 15 (red fill) all consist of high-rise apartment blocks. The number of pupils is estimated for each of the apartments blocks instead of per dwelling unit as in the other areas with mainly one and two storey houses. Distances from all the apartment units in one block are treated as the same as one another. The estimated number of pupils for the high-rise apartments is classified into the range of 4-35 or 36-50 pupils per block. Small SRCPUs representing one and two storey houses are classified into three ranges: whether they have none, less than 1 or 1 to 3 pupils in each unit.

The most dense areas are in the south east and east of Rawang. Both of these areas mostly have at least 1 pupil per SRCPU and 50 pupils at the most where there are high rise blocks of flats. In the south east, there are 11 blocks of high-rise apartments with an average of 9 pupils per block all in the Apartment Taman Tun Teja neighbourhood. The SRCPUs in the other neighbourhoods in the south east all have 1 to 3 pupils per unit (Taman Sri Bayu, Taman Tun Teja, Taman Mawar, Taman Kancing Jaya, Perumahan PKNS Batu 17, Taman Jati, Taman Bersatu, Taman Tun Perak and Kampung Dato’ Lee Kim Sai). By referring to the map of number of pupils per neighbourhood (Figure 14), it is clear that the neighbourhoods around Tun Teja are quite dense (71 to 400 pupils). These areas generally have a high percentage of Malay population and so have high proportion going to a national primary school.

The second area of high demand is in the east of Rawang. Similar to the south east, it also has several high rise apartment blocks. In fact, there are two areas of apartments there: Rawang Putra and Apartment Rawang Perdana 2 with 2 and 8 blocks of apartments respectively. These apartments are estimated to have 35 – 50 pupils per block. Other SRCPUs have 1 to 3 pupils per unit i.e. in the Rawang Perdana 1 and Rawang Perdana 2 neighbourhoods. Some of the SRCPUs, however, have less than 1 pupil per unit. This is probably due to the balanced ethnic composition of neighbourhoods in
this region, mixing areas with fairly high proportions of Malay, Chinese and Indians with their varying proportions using national primary schools. Thus, the number of pupils per SRCPU varies irregularly across this area somewhat in contrast to the south east part of Rawang where the pattern is more uniform.

Table 12 Estimation of Number of Pupils in each Neighbourhood and Small Residential Cadastral Plot Unit (SRCPU)

<table>
<thead>
<tr>
<th>Study Area of Rawang</th>
<th>Estimated No. of Pupils</th>
<th>No. of SRCPUs</th>
<th>No. of Pupils per SRCPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMAN GARING PERMAI</td>
<td>201</td>
<td>1807</td>
<td>0.1</td>
</tr>
<tr>
<td>TAMAN GARING JAYA</td>
<td>30</td>
<td>107</td>
<td>0.3</td>
</tr>
<tr>
<td>KOTA EMERALD</td>
<td>61</td>
<td>330</td>
<td>0.2</td>
</tr>
<tr>
<td>TAMAN SRI RAWANG</td>
<td>32</td>
<td>297</td>
<td>0.1</td>
</tr>
<tr>
<td>GREEN PARK</td>
<td>178</td>
<td>818</td>
<td>0.2</td>
</tr>
<tr>
<td>BUKIT RAWANG JAYA</td>
<td>36</td>
<td>264</td>
<td>0.1</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA</td>
<td>245</td>
<td>917</td>
<td>0.3</td>
</tr>
<tr>
<td>RAWANG PUTRA *</td>
<td>71</td>
<td>2</td>
<td>35.5</td>
</tr>
<tr>
<td>TAMAN RAWANG PERDANA 2</td>
<td>370</td>
<td>1243</td>
<td>0.3</td>
</tr>
<tr>
<td>APARTMENT TAMAN RAWANG PERDANA 2 *</td>
<td>399</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>KAMPUNG KENANG</td>
<td>27</td>
<td>148</td>
<td>0.2</td>
</tr>
<tr>
<td>KAMPUNG DATO’ LEE KIM SAI</td>
<td>108</td>
<td>189</td>
<td>0.6</td>
</tr>
<tr>
<td>KAMPUNG SUNGAI TERENTANG</td>
<td>49</td>
<td>233</td>
<td>0.2</td>
</tr>
<tr>
<td>TAMAN BERSATU</td>
<td>261</td>
<td>922</td>
<td>0.3</td>
</tr>
<tr>
<td>TAMAN JATI</td>
<td>116</td>
<td>280</td>
<td>0.4</td>
</tr>
<tr>
<td>TAMAN TUN PERAK</td>
<td>214</td>
<td>640</td>
<td>0.3</td>
</tr>
<tr>
<td>PERUMAHAN PKNS BATU 16</td>
<td>154</td>
<td>317</td>
<td>0.5</td>
</tr>
<tr>
<td>TAMAN MAWAR</td>
<td>92</td>
<td>330</td>
<td>0.3</td>
</tr>
<tr>
<td>TAMAN KANCING JAYA</td>
<td>315</td>
<td>338</td>
<td>0.9</td>
</tr>
<tr>
<td>KAMPUNG MELAYU BATU 16</td>
<td>60</td>
<td>302</td>
<td>0.2</td>
</tr>
<tr>
<td>TAMAN SETIA JAYA</td>
<td>1</td>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>TAMAN SETIA</td>
<td>22</td>
<td>165</td>
<td>0.1</td>
</tr>
<tr>
<td>TAMAN PELANGI</td>
<td>176</td>
<td>98</td>
<td>1.8</td>
</tr>
<tr>
<td>TAMAN SRI BAYU</td>
<td>167</td>
<td>198</td>
<td>0.8</td>
</tr>
<tr>
<td>TAMAN TUN TEJA</td>
<td>197</td>
<td>233</td>
<td>0.8</td>
</tr>
<tr>
<td>APARTMENT TAMAN TUN TEJA *</td>
<td>93</td>
<td>11</td>
<td>8.5</td>
</tr>
</tbody>
</table>

* High Rise Apartments with 10 floors and 10 dwelling units per floor
Figure 23 Estimated Number of Pupils in Neighbourhood Units
Figure 24 Demand of Schools at SRCPUs
4.2. Existing School Catchment Areas

4.2.1. Thiessen Polygons

Judging from the territorial polygons for each school, one school’s polygon contains fewer residential areas than the other four. SK Rawang seems to only cover 3 neighbourhoods which have 70 pupils at the most. The SRCPUs covered by SK Rawang only have 1 pupil at the most. Furthermore, all 3 neighbourhoods are quite far from SK Rawang. Its neighbour, SK Sinaran Budi, seems to have a similarly small number of pupils (at the neighbourhood and SRCPU levels) in its territory. However, the latter seems to cover more neighbourhoods (4) which are in close proximity to each other.

SK Bandar Baru Rawang only has 1 neighbourhood within its territory (Taman Pelangi). However, this neighbourhood has quite a high number of pupils (176). The SRCPUs in its territory have an average of 1.8 pupils per unit which is the highest among any other SRCPUs in the study area without apartment blocks.

The areas in the polygons of SK Bukit Rawang Jaya and SK Tun Teja generally have high numbers of pupils. As discussed earlier, the eastern region of Rawang generally has high demand both in its south eastern and north eastern parts which is reflected in the fairly large numbers of pupils attending these two schools. Both of these schools have high capacity with morning and afternoon sessions to accommodate these high demands.

Four areas, however, are outside these 5 Thiessen polygons and are not allocated to any school’s territory. One such area (Rawang Perdana 2) has quite high demand from its high-rise apartments plus 1-3 pupils per SRCPUs in its territory.
Figure 25 Thiessen Polygons for Existing Schools in Relation to Neighbourhood Areas
Figure 26 Thiessen Polygons for Existing Schools in Relation to SRCPUs
Table 13 Summary of Thiessen Polygons for Existing Schools

<table>
<thead>
<tr>
<th>School</th>
<th>No. of Neighbourhoods mostly within its Territory</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK Rawang</td>
<td>3</td>
<td>- SRCPUs with less than 1 pupil and 1-3 pupils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- One all Malay area and one all Chinese area</td>
</tr>
<tr>
<td>SK Sinaran Budi</td>
<td>4</td>
<td>- SRCPUs with less than 1 pupil and 1-3 pupils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mixed ethnic composition</td>
</tr>
<tr>
<td>SK Bukit Rawang Jaya</td>
<td>5</td>
<td>- High demand area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High rise apartments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mostly SRCPUs with less than 1 or 1-3 pupils</td>
</tr>
<tr>
<td>SK Bandar Baru Rawang</td>
<td>1</td>
<td>- High demand area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mostly SRCPUs with 1-3 pupils</td>
</tr>
<tr>
<td>SK Tun Teja</td>
<td>9</td>
<td>- High rise apartment areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mostly SRCPUs with 1-3 pupils</td>
</tr>
</tbody>
</table>
4.2.2. Areas with High Number of Pupils and Poor Accessibility to Schools

The eastern central area of Rawang is not covered by any school within the 800 m and 1600 m distance zones. As mentioned earlier, this area has been identified as a high demand area. According to Figures 18 and 19, it also has poor accessibility to the existing schools. Thus, this area seems to be in need of a school, probably more than any other part of Rawang.

The second area with poor accessibility is in the north west of Rawang. The closest school here is either SK Sinaran Budi or SK Rawang which are more than 3 km away. However, since it has less than 1 pupil in each of its SRCPUs, it does not have very high demand compared to the eastern area just discussed.

The area between central and south east Rawang also has quite poor accessibility to schools, though it also has quite high demand, as noted earlier. None of the schools cover this area, so it probably also has a strong case for a new school like the eastern central part of Rawang. In addition, there is only one school (SK Tun Teja) located in the adjoining south eastern area of the city to accommodate the high number of pupils living there. Thus, a new school could be needed, not only to improve accessibility, but possibly also to support SK Tun Teja in accommodating the substantial numbers of pupils in this broad sector of the city more conveniently.
Figure 27: Areas Covered by Existing Schools in Relation to Neighbourhood Areas
Figure 28 Areas Covered by Existing Schools in Relation to SRCPU
4.3. Candidate Locations of New Schools

Twenty seven possible candidate locations for new schools (Figures 20 and 21) were selected nearly all in high demand areas with poor access to any existing school, as defined in the previous section. The eastern central area of Rawang was prioritized as having high demand and being particularly poorly served by schools. These candidate locations were all selected in areas which seemed to have available open space for building a new school.

The north western part of Rawang was also chosen for several candidate locations since it has poor access to schools. Considering that this area is still undergoing much growth and development, it makes sense to have a school there to accommodate pupils in the future.
Figure 29 Candidate Locations of Schools at Neighbourhood Units
Figure 30 Candidate Locations of Schools at SRCPUs
5. CONCLUSION

The main conclusions of the research as regards the benefits of applying Location/Allocation models to the provision of national primary schools in Rawang and integrating these models with a GIS and also on how the data used in the models could be made more accurate are given in the Research Paper. The latter paper also gives the main substantive conclusions as regards good locations for siting 1 or 2 new schools to improve the accessibility of children to national primary schools in Rawang.

The present supporting document has explained in more detail than was possible in the former paper how the number of children likely to attend national primary schools was estimated by taking the age and ethnic composition of population into consideration and following the DTRPS’s guidelines in planning for schools. The estimated number of pupils for 23 neighbourhoods was then distributed to a finer spatial scale of units employing 10,718 Small Residential Cadastral Plot Units to represent the houses and apartments from which children travel to school.

In choosing candidate locations for additional schools it was assumed that any sites of sufficient size in areas of green or open space were eligible. However, this selection of candidates could be made more realistic by using more detailed information on land use and land cover to eliminate areas of green or open space which are not suitable e.g. because they consist of playing fields, public parks, forest reserves, buffer zones between residential zones or other inappropriate types of green or open space.

To assess how good the 5 existing schools are at making national primary schools accessible to all the children of Rawang, two fairly simple approaches, based mainly on cartographic or visual methods, were used: Thiessen polygons and ‘isochrones’ based on 800 m and 1600 m travel distances. The maps produced from these methods were very helpful in identifying areas which are outside the 1600 metre coverage areas of the existing schools and can therefore be seen as badly served but also containing substantial numbers of children. The isochrones on Figures 18 and 19, especially on the latter, were particularly illuminating in this respect and gave clear suggestions as to areas meriting
strong consideration if 1 or 2 more schools were to be located. Interestingly, the sites suggested from this cartographic analysis were very similar to those selected by LAMs in scenarios (c) and (d) of the research paper.

Thus the conclusions of the simple methods used here accords well with those yielded by the more complex and sophisticated methods of location modelling of the Research paper. The latter methods, however, allow more thorough evaluation of each site in quantitative terms via criteria such as the actual numbers of pupils covered at various distances by each school and the numbers within each school’s catchment. In addition, the LAMs give values for aggregate and mean travel distance within each catchment plus valuable information on the aggregate travel distance and numbers covered at various distance thresholds across the whole system. It is also very helpful that all the latter criteria can be evaluated when capacity constraints are taken into account and when such limits are ignored. Thus, while the simpler visual cartographic methods and the more complex and flexible location models can be seen as complementary to a large extent, the latter methods take the analysis to a greater depth and allow a range of potentially better locational scenarios to be assessed more broadly and more systematically through a range of criteria which can be directly compared.
REFERENCES

APPENDIX

Data Sources

1. Land Use Map

<table>
<thead>
<tr>
<th>Source</th>
<th>SISMAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Department of Town and Regional Planning Selangor, Malaysia</td>
</tr>
<tr>
<td>Format</td>
<td>Paper copy</td>
</tr>
<tr>
<td>Projection</td>
<td>Malaysia Rectified Skew Orthomorphic</td>
</tr>
<tr>
<td>Extent</td>
<td>Rawang town/urban settlement area</td>
</tr>
</tbody>
</table>

2. Administrative Boundary

<table>
<thead>
<tr>
<th>Source</th>
<th>Department of Surveying and Mapping Wilayah Persekutuan Kuala Lumpur dan Putrajaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>https://www.jupem.gov.my/</td>
</tr>
<tr>
<td>Format</td>
<td>Shapefile (.shp) - Line</td>
</tr>
<tr>
<td>Projection</td>
<td>Malaysia Rectified Skew Orthomorphic</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>WGS 1984</td>
</tr>
<tr>
<td>Extent</td>
<td>State of Selangor, Malaysia</td>
</tr>
</tbody>
</table>
3. Road Transportation Network

<table>
<thead>
<tr>
<th>Source</th>
<th>Department of Surveying and Mapping Wilayah Persekutuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>https://www.jupem.gov.my/</td>
</tr>
<tr>
<td>Format</td>
<td>Shapefile (.shp) - Line</td>
</tr>
<tr>
<td>Projection</td>
<td>Malaysia Rectified Skew Orthomorphic</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>WGS 1984</td>
</tr>
<tr>
<td>Extent</td>
<td>State of Selangor, Malaysia</td>
</tr>
</tbody>
</table>

4. Cadastral Lot Map

<table>
<thead>
<tr>
<th>Source</th>
<th>Department of Surveying and Mapping Selangor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>http://spak.jusl.gov.my/</td>
</tr>
<tr>
<td>Format</td>
<td>AutoCAD Drawing Exchange Format (.dxf)</td>
</tr>
<tr>
<td>Projection</td>
<td>Cassini Geocentric</td>
</tr>
<tr>
<td>Geographic Coordinate System</td>
<td>GDM 2000 Selangor</td>
</tr>
<tr>
<td>Extent</td>
<td>State of Selangor, Malaysia</td>
</tr>
</tbody>
</table>

5. Population by Age and Ethnicity

<table>
<thead>
<tr>
<th>Source</th>
<th>Department of Statistics Malaysia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Spreadsheet</td>
</tr>
<tr>
<td>Extent</td>
<td>Rawang urban settlement area</td>
</tr>
</tbody>
</table>
6. Number of current pupils of each national primary schools in Rawang

<table>
<thead>
<tr>
<th>Source</th>
<th>District Education Office of Gombak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>http://www.pelajarangombak.net/v1/</td>
</tr>
<tr>
<td>Format</td>
<td>Shapefile (.shp) - point</td>
</tr>
<tr>
<td>Projection</td>
<td>WGS 1984</td>
</tr>
<tr>
<td>Extent</td>
<td>Rawang urban settlement area</td>
</tr>
</tbody>
</table>