This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
Transition Metal Complex-Based
Molecular Machines

by

Dhassida Sooksawat

Degree of Doctor of Philosophy
School of Chemistry
The University of Edinburgh
October, 2014
Lay Summary

Inspired by the performance and evolutionarily-optimised natural molecular machines that carry out all the essential tasks contributing to the molecular basis of life, for example, ribosomes, large and complex molecular machines that make proteins from amino acids within all living cells, chemists aim towards fabricating synthetic molecular machines that mimic biological nanodevices with potential applications in catalysis, drug delivery, electronic materials and sensing. The use of rotaxanes, compounds that consist of a dumbbell-shaped molecule or a thread surrounded by a ring molecule and terminated by bulky groups that prevent disassembly, as a prototype for molecular machines has emerged as a result of their ability to undergo translational motion between two or more stations within the thread. Although biological machines are capable of complex and intricate functions, their inherent stability and operational conditions are restricted within living organisms. Synthetic systems offer a limitless number of building blocks and a range of interactions to be manipulated. Transition metal-ligand interactions are utilised as one strategy to control the directional movement of submolecular components in artificial machines due to their well-defined geometric requirements and significant strength.

This thesis presents new externally addressable and switchable molecular elements for transition metal complexed-molecular machines involving a common chemical reaction with acid-base. The proton input that induces changes to platinum complexes can be exploited to control exchange between different coordination modes of platinum complexes either 2+2 or 3+1 square planar donor sets. The development of the pH-switchable metal-ligand motif for the stimuli-responsive platinum-complexed molecular shuttle based on a rotaxane structure has also been explored. The metal-directed self-assembly of tubular complexes were studied in order to develop self-assembled rotaxanes. A series of metal building blocks was explored to extend the scope for a tube self-assembly.
Table of Contents

Abstract vii
Declaration viii
Meeting and Lectures Attended and Presentations Given ix
Acknowledgements x
List of Abbreviations xii
General Remarks on Experimental Data xiv
Layout of the Thesis xv

Chapter I: Transition Metal-Complexed Rotaxanes: From Dynamic Systems to Functional Molecular Machines
1.1 Background 2
1.2 Synthesis Strategies of Rotaxanes 3
1.2.1 Non transition metal template 4
1.2.1.1 Aromatic interactions 4
1.2.1.2 Hydrophobic interactions 5
1.2.1.3 Hydrogen-bonding interactions 6
1.2.2 Transition metal templates 7
1.2.2.1 Tetrahedral Cu(I) template 8
1.2.2.2 Octahedral templates 10
1.2.2.3 Square-planar geometries template 12
1.2.2.4 Active metal template 16
1.2.3 Rotaxanes containing metal ions in their framework 20
1.3 Stimuli-Responsive Molecular Shuttles 22
1.3.1 pH induced molecular shuttles 23
1.3.2 Electrochemically induced molecular shuttles 27
1.3.3 Light induced molecular shuttles 30
1.3.4 Molecular shuttles powered by metal ions 34
1.3.5 Anion driven molecular shuttle 37
1.4 Compartmentalised Molecular Machines 38
1.5 Functional Molecular Machines 43
1.5.1 Sequence-specific peptide synthesis by artificial molecular machines 43
1.5.2 Metal complexes molecular biped 43
1.5.3 Rotaxane-based switchable organocatalyst 44
1.6 Self-Assembly Molecular Systems 45
 1.6.1 Tubular coordination complexes 46
 1.6.2 Self-assembled tubes from other metals building blocks 50
 1.6.3 Self-assembled molecular shuttles 52
1.7 Scope of the Thesis 54
1.8 References 55

Chapter II: Acid-Base Responsive Switching between “3+1” and “2+2” Platinum Complexes

Synopsis 62
2.1 Introduction 63
2.2 Results and Discussion
 2.2.1 Formation of a “2+2” complex with acyclic cyclometallated Pt complex 65
 2.2.2 Reversible ligand exchange experiments with acyclic Pt complexes 68
 2.2.3 Macro cyclic cyclometallated Pt complexes 73
 2.2.4 Ligand exchange experiments for macro cyclic Pt complexes 78
2.3 Conclusion 79
2.4 Experimental Section 79
 2.4.1 General experimental procedure 79
 2.4.2 Synthesis 80
 2.4.3 Ligand exchange experiment 87
 2.4.4 Crystal data and structure refinement for \([L^2Pt(3,5-lut)]\) 87
2.5 References 92

Synopsis 94
3.1 Introduction 95
3.2 Results and Discussion
 3.2.1 Basis of the design 96
 3.2.2 Prototype-one-station-[2]rotaxane
 3.2.2.1 Retrosynthesis of rotaxane \([R^{2a}Pt]X\) 98
 3.2.2.2 Synthesis of rotaxane \([R^{2a}Pt]X\) 99
 3.2.2.3 Retrosynthesis of rotaxane \([R^{2b}Pt]X\) 100
 3.2.2.4 Synthesis of rotaxane \([R^{2b}Pt]Cl\) 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 Rotaxane synthesis via threading-followed-by-stoppering strategy</td>
<td>106</td>
</tr>
<tr>
<td>3.2.3.1 Design of platinum-complexed [2]rotaxane</td>
<td>107</td>
</tr>
<tr>
<td>3.2.3.2 Retrosynthesis of rotaxane (\text{py-R}^3\text{Pt})</td>
<td>107</td>
</tr>
<tr>
<td>3.2.3.3 Synthesis of rotaxane (\text{py-R}^3\text{Pt})</td>
<td>109</td>
</tr>
<tr>
<td>3.2.3.4 Saturated 3,5-substituted pyridine ligand for rotaxane formation</td>
<td>110</td>
</tr>
<tr>
<td>3.2.3.5 Retrosynthesis of rotaxane (\text{py-R}^8\text{Pt})</td>
<td>117</td>
</tr>
<tr>
<td>3.2.3.6 Synthesis of rotaxane (\text{py-R}^8\text{Pt})</td>
<td>119</td>
</tr>
<tr>
<td>3.2.3.7 Non-symmetric half-thread in rotaxane (\text{py-R}^9\text{Pt})</td>
<td>124</td>
</tr>
<tr>
<td>3.2.3.8 Synthesis of non-symmetric pseudorotaxane</td>
<td>126</td>
</tr>
<tr>
<td>3.3 Conclusion and Outlook</td>
<td>127</td>
</tr>
<tr>
<td>3.4 Experimental Section</td>
<td>128</td>
</tr>
<tr>
<td>3.4.1 General experimental procedure</td>
<td>128</td>
</tr>
<tr>
<td>3.4.2 Synthesis</td>
<td>129</td>
</tr>
<tr>
<td>3.5 References</td>
<td>145</td>
</tr>
</tbody>
</table>

Chapter IV: Self-Assembled Rotaxanes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>148</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>4.2 Results and Discussion</td>
<td>152</td>
</tr>
<tr>
<td>4.2.1 Design</td>
<td>152</td>
</tr>
<tr>
<td>4.2.2 Synthesis</td>
<td>153</td>
</tr>
<tr>
<td>4.2.2.1 Synthesis of oligo(3,5-pyridine) ligands</td>
<td>153</td>
</tr>
<tr>
<td>4.2.2.2 Synthesis of biphenyl template molecules</td>
<td>154</td>
</tr>
<tr>
<td>4.2.2.3 Self-assembly of tubular rotaxanes</td>
<td>156</td>
</tr>
<tr>
<td>4.2.2.4 Other template molecules</td>
<td>158</td>
</tr>
<tr>
<td>4.2.2.5 Longer ethyleneoxide chain (O)-biphenyl based template</td>
<td>162</td>
</tr>
<tr>
<td>4.2.2.6 (N) station template</td>
<td>165</td>
</tr>
<tr>
<td>4.2.2.7 Other metals building block</td>
<td>167</td>
</tr>
<tr>
<td>4.3 Conclusion and Outlook</td>
<td>169</td>
</tr>
<tr>
<td>4.4 Experimental Section</td>
<td>170</td>
</tr>
<tr>
<td>4.4.1 General experimental procedure</td>
<td>170</td>
</tr>
<tr>
<td>4.4.2 General procedure for tube assembly</td>
<td>170</td>
</tr>
<tr>
<td>4.4.3 Synthesis</td>
<td>171</td>
</tr>
<tr>
<td>4.5 References</td>
<td>188</td>
</tr>
</tbody>
</table>
Abstract

Inspired by the performance and evolutionarily-optimised natural molecular machines that carry out all the essential tasks contributing to the molecular basis of life, chemists aim towards fabricating synthetic molecular machines that mimic biological nanodevices. The use of rotaxanes as a prototype for molecular machines has emerged as a result of their ability to undergo translational motion between two or more co-conformations. Although biological machines are capable of complex and intricate functions, their inherent stability and operational conditions are restricted to in vivo. Synthetic systems offer a limitless number of building blocks and a range of interactions to be manipulated. Transition metal-ligand interactions are utilised as one strategy to control the directional movement of submolecular components in artificial machines due to their well-defined geometric requirements and significant strength.

This thesis presents new externally addressable and switchable molecular elements for transition metal complexed-molecular machines involving an acid-base switch. The proton input that induces changes to cyclometallated platinum complexes can be exploited to control exchange between different coordination modes. The development of the pH-switchable metal-ligand motif for the stimuli-responsive platinum-complexed molecular shuttle has also been explored. The metal-directed self-assembly of tubular complexes were studied in order to develop self-assembled rotaxanes. A series of metal building blocks was explored to extend the scope for a tube self-assembly.
Declaration

The scientific work described in the present thesis was carried out in the School of Chemistry at the University of Edinburgh between November 2010 and June 2014. Unless otherwise stated, it is the work of the author and has not been submitted in whole or in part for any other degree or professional qualification at this or any other University or institute of learning.

Signed:..

Date:..
Meetings Attended and Presentations Given

 Oral presentations:
 a) *Transition Metal Complex-based Molecular Machines*, December 2011.
 b) *Transition Metal Complex-based Molecular Machines*, January 2013.
 c) *Transition Metal Complex-based Molecular Machines*, May 2014.

2. **School of Chemistry Visiting Speaker Colloquia**, School of Chemistry, University of Edinburgh, UK, 2010-2014.

4. **RSC Perkin Division 40th Scottish Regional Meeting**, University of Strathclyde, UK, December 2011.

5. **School of Chemistry, Organic Section Firbush Symposium**, Firbush Point Centre, University of Edinburgh, UK, April 2012.
 Poster presentation: Towards Molecular Machines based on Platinum(II)-Complexed Rotaxanes

 Poster presentation: *Acid-base Responsive Switchable Platinum Complexes*.

8. **RSC Perkin Division 42nd Scottish Regional Meeting**, Heriot-Watt University, UK, December 2013.
Acknowledgements

First of all, I would like to express my sincerest gratitude to my supervisor, Dr. Paul Lusby, who has given me the opportunity to work in his group and supported me throughout the four years of my PhD journey with patience and encouragements. Without his input, guidance and enthusiasm, I would have struggled and this thesis would not have been completed. I am proud to be student number four who graduated from this powerful and energetic group.

When I first came to the group, Dr. Oleg Chepelin and Dr. Paul Symmers helped me settled down and were always willing to lend their hands when needed. They were also my moral and intellectual supports and we became good friends over my four years in Edinburgh. So, many thanks to both of you for your precious friendship. I am also grateful to David August and Michael Burke, whom I considered more than colleagues. It has been my pleasure to work and play with them over the past two years. Also, I would like to acknowledge Matthew Edwards, my project student last year who recently became a new member of the group.

I would like to extend my thanks to the School’s support staff: Dr. Lorna Murray and Dr. Juraj Bella who always make sure all the NMR spectrometers run smoothly 24/7; Alan Taylor for the mass spec service; Annette, Amanda, Rona and Denise for their help with administrative matters; and Tim, Raymond, John, Sigita, David and Martin from the stores for ensuring that all the chemicals and supplies were available.

When I first came to Edinburgh I moved in with a wonderful Thai friend, Dr. Chaweewan Sapcharoenkul, who helped me adjust to the freezing cold and windy autumn, showed me around, cooked me food and always gave me support for the first two years. Thank you Wow, you are the best flatmate ever.

I would like to thank the rest of the corridor and other chemistry people for creating such a nice environment to be in and for making my time in Edinburgh so memorable; Matt, Nina, Emily, Georg, Tracy, Rachel, Marjorie, Verónica, Maddie, Dharmesh, Sara and others whom I have failed to name.

Special thanks to Paramita Punwong and Watsamon Phusakulkajorn for being the best friends ever, always looking out for me and having my back in times of need. I also
thank Pojanut Suthipinittharm for her friendship and her excellent English skills in proofreading parts of my thesis.

Being a Thai student in the UK for several years has brought me in contact with a Thai community that support each other and help relieve homesickness. I would like to thank everyone I met here and will continue to be a friend to them when back in Thailand: New-Nad, Krieng, Kung, Amm, Goh, Gift, Wa-Mod, Kwang-Art, Kuichai-Trev, Eat-Oak, Mui, Bong, Arm, Lek, Sit, Tee, Noi, Tong, Dee-Aim, Pooh, Pom, Pete and many more.

Thanks are owed also to my sponsor, the DPST programme, which gave me the opportunity to pursue my study to the highest level abroad. I am grateful to all the staffs at DPST and OEA-UK.

Last but by no means least, I would also like to thank my parents, Dhoopdhorng and Wirat Sooksawat and my little sister Natthisa Sooksawat for their encouragements, help and love through every step of my education. This thesis is dedicated to you guys. My family have also been extremely supportive throughout my PhD and I thank them for following my progress with such pride from the beginning and even when times were difficult. They always provided encouragements and have always believed in me.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>12[ane]S₄</td>
<td>1,4,7,10-tetrathiacyclododecane</td>
</tr>
<tr>
<td>3,5-lut</td>
<td>3,5-lutidine</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>bipy</td>
<td>2,2'-bipyridine</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>CAN</td>
<td>Cerium ammonium nitrate</td>
</tr>
<tr>
<td>CD</td>
<td>Cyclodextrin</td>
</tr>
<tr>
<td>C^N</td>
<td>Bidentate ligand coordinating through a carbon and a nitrogen atom</td>
</tr>
<tr>
<td>C^N^C</td>
<td>Tridentate ligand coordinating through a carbon, a nitrogen and another carbon atom</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>CSA</td>
<td>(+)-camphor-10-sulfonic acid/ camphorsulfonate</td>
</tr>
<tr>
<td>CuAAC</td>
<td>copper(I)-catalysed alkyne-azide cycloaddition</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>dec.</td>
<td>Decompose</td>
</tr>
<tr>
<td>DEA</td>
<td>Diethylamine</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N'-disopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N'-dimethylformamide</td>
</tr>
<tr>
<td>dmbipy</td>
<td>5,5'-dimethyl-2,2'-bipyridine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DOSY</td>
<td>Diffusion-Ordered Spectroscopy (NMR)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>en</td>
<td>ethylene diamine</td>
</tr>
<tr>
<td>eq</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>Et₂O</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethylacetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization (MS)</td>
</tr>
<tr>
<td>FAB</td>
<td>Fast Atom Bombardment (MS)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>H₂L¹</td>
<td>2,6-diphenylpyridine</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>L</td>
<td>Ligand</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>nESI</td>
<td>nano-Electrospray Ionisation</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser Effect Spectroscopy (NMR)</td>
</tr>
<tr>
<td>OTs</td>
<td>p-toluenesulfonate</td>
</tr>
<tr>
<td>P$_1$-Bu</td>
<td>Phosphazene base P$_1$-Bu</td>
</tr>
<tr>
<td>PEPPSI</td>
<td>[1,3-Bis(2,6-Diisopropylphenyl)imidazol-2-ylidene][3-chloropyridyl]-palladium(II) dichloride</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rt</td>
<td>Room temperature (23 °C)</td>
</tr>
<tr>
<td>TBACl</td>
<td>Tetrabutylammonium chloride</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TBTA</td>
<td>Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine</td>
</tr>
<tr>
<td>TCE</td>
<td>1,1,2,2-tetrachloroethane</td>
</tr>
<tr>
<td>terpy</td>
<td>2,2',6',2''-terpyridine</td>
</tr>
<tr>
<td>TFE</td>
<td>2,2,2-trifluoroethanol</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-Layer Chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TsOH</td>
<td>p-toluenesulfonic acid</td>
</tr>
<tr>
<td>TTF</td>
<td>tetrathiafulvalene</td>
</tr>
<tr>
<td>TRISPHAT</td>
<td>Δ-tris(tetrachloro-1,2-benzenediolato)phosphate(V)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Vis</td>
<td>Visible</td>
</tr>
<tr>
<td>VT</td>
<td>Variable Temperature (NMR)</td>
</tr>
</tbody>
</table>

NB: Conventional abbreviations for units and physical quantities are not included.
General Remarks in Experimental Data

Unless stated otherwise, all reagents and solvents were purchased from commercial sources without further purification. Dry DCM, CH$_3$CN and THF were obtained by passing the solvent (HPLC grade) through an activated alumina column on a PureSolv™ solvent purification system (Innovative Technologies, Inc., MA). All reactions were carried out under a nitrogen atmosphere, unless stated otherwise. Column chromatography was carried out using Geduran® Silica 60 (particle size 40-63 μm, Merck, Germany) as the stationary phase, and TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F$_{254}$, Merck, Germany) and observed under UV light.

All 1H, 13C and 19F NMR spectra were recorded as stated on either the Bruker AV 500, AV 400 or AV 600 instrument at a constant temperature of 298 K, unless otherwise stated. All DOSY experiments were performed on either Bruker AV 400 or AV 500 (Topspin 2.1) using bipolar gradient pulses for diffusion with two spoil gradients (ledbpg2s.compensated) pulse sequence. The data was processed using Bruker Topspin 2.1. Chemical shifts (δ) are reported in parts per million and referenced to residual solvent peaks (CD$_2$Cl$_2$: 1H δ 5.32 ppm, 13C δ 54.0 ppm; CDCl$_3$: 1H δ 7.26 ppm, 13C δ 77.2 ppm; C$_2$D$_2$Cl$_4$: 1H δ 6.00 ppm, 13C δ 73.8 ppm; MeOD-d$_4$: 1H δ 4.87 ppm, 13C δ 49.0 ppm; DMSO-d$_6$: 1H δ 2.50 ppm, 13C δ 39.5 ppm; THF-d$_8$: 1H δ 3.58 ppm, 13C δ 67.6 ppm; DMF-d$_7$: 1H δ 8.03 ppm, 13C δ 34.9 ppm; D$_2$O: 1H δ 4.79 ppm). Coupling constants (J) are reported in hertz (Hz). The J value given per chemical shift, unless stated otherwise, refers to J-J spin coupling through three bonds (3J). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, t= triplet, dd = doublet of doublets, td = triplet of doublets, d = doublet, s = singlet, bs = broad singlet, p = pentet.

Mass spectrometry (MS): FAB and ESI was carried out by the MS services at the University of Edinburgh. Melting points (m.p.) were determined using a 1102D Mel-Temp® apparatus and are reported uncorrected.
Layout of the Thesis

This thesis explores a strategy of achieving control over the relative positions of submolecular components with respect to one another for transition metal complexed-rotaxanes. Attempts towards the synthesis of acid-base switchable platinum(II) complexed rotaxanes and utilising self-assembly approach for a construction of molecular shuttle are also discussed. A brief review of the literature is given in Chapter I, describing the background information concerning the rotaxanes synthesis methodologies, examples of stimuli-responsive molecular shuttles and some functional applications of molecular machines. Self-assembly molecular systems are also described. Chapter II focuses on the investigation of an acid-base induced changes to cyclometallated platinum complexes with different denticity of ligands to be able to develop a stimuli-responsive bistable [2]rotaxane. Chapter III describes the determination of a platinum(II) complexed-[2]rotaxane construction using various strategies. Chapter IV contains the construction of self-assembled tubular complexes and the endeavour to develop a self-assembled rotaxane. The outlook contains closing remarks about the work that has been presented and ideas for its applications.
Acknowledgements

Dr. Paul Lusby is gratefully acknowledged for proofreading this and the following three chapters.
1.1 Background

Molecular machines can be defined using a similar concept to their macroscopic counterparts - as devices in which the component parts display change in their relative position as a result of some external stimulus. Molecular machines operate through chemical reactions and need to be fed by an energy source. Nature uses molecular machines to perform a large number of essential functions including energy conversion, cell division, intracellular displacement and muscle contraction. The studies of biological machines have been investigated in detail; with advancing development in the field, it has been possible to visualise the movement of such systems, in some cases while they are in action. The three most important and well-known examples are ATP synthase, a rotary motor responsible for the synthesis of ATP, the actin-myosin complex of the muscles, which behaves as a linear motor, or kinesin and dynein, essential super family proteins which walk along a microtubule tracks. Another example of a linear biomolecular machine is RNA polymerase, which moves along DNA while carrying out transcriptions. Much of the inspiration to construct molecular machines comes from these outstanding biotic exemplars. At the same time, synthetic and in particular supramolecular chemistry has flourished, opening unlimited possibilities concerning design and construction of artificial molecular machines.

Most of the artificial systems constructed so far are based on interlocked molecules, such as catenanes and rotaxanes. Rotaxanes are chemical structures in which one or more macrocycles are mechanically prevented from dethreading from a linear unit by bulky “stoppers”, while in catenanes two or more macrocycles are interlocked. Their interlocked structure provides them with high degree of freedom, thus allowing tunable movement. The large amplitude submolecular motions achieved from catenanes and rotaxanes can be divided into two classes: pirouetting of the macrocycle around the thread (rotaxanes) or the other ring (catenanes) and translation of the ring along the thread, shuttling (rotaxanes) or around the other macrocycle (catenanes) (Figure 1.1). The relative position of the components in interlocked molecules is often referred to as a “co-conformation”. The translation and rotation envisaged in rotaxanes suggest that they be useful prototypes for the construction of both linear and rotary molecular machines.
Figure 1.1 Schematic representations and possible large amplitude modes of movement for one component relative to another: a) Rotaxane; b) Catenane.

1.2 Synthesis Strategies of Rotaxanes

The first report of a rotaxane synthesis was described by Harrison and co-workers in 1967. The synthesis relied not on any favourable intercomponent interactions but the statistical probability that a finite amount of thread would be encapsulated through the macrocycle. Through several treatments of the resin-bound macrocycle with thread precursor solution, followed by extraction of unwanted reagents, the product was hydrolysed from the solid support with an extremely poor 6% yield. However, this approach established the proof of concept that rotaxane architectures were a synthetic possibility.

Non-covalent intermolecular interactions (i.e. electrostatic, hydrogen bonding, π-π stacking interactions, hydrophobic effects, metal-ligand interactions) have been used in the preparation of rotaxanes and catenanes. There are various ways for making rotaxanes by supramolecular synthesis. They can be self-assembled using template-directed synthesis methods using “threading-followed-by-stoppering” or “capping” where the axle is threaded through the macrocycle, followed by attachment of the stoppers; “clipping” via a preformed thread coordinated to a U-shape which is closed or clipped around the thread; or “slipping” in which the preformed macrocycle slip into the preformed thread strategies (Figure 1.2). The template induces the assembly of specific product by preorganising the reactants in a favourable orientation for the formation of the covalent bonds.
Figure 1.2 Schematic representation of synthetic approach to rotaxane formation: a) Threading-followed-by-stoppering, b) Clipping, c) Slipping.

1.2.1 Non transition metal template

1.2.1.1 Aromatic interactions

Stoddart and co-workers successfully synthesised the first catenane promoted by π-π stacking interactions between electron deficient bipyridinium units and an electron rich diphenol motif in an extraordinary 70% yield in 1989. They also utilised the same motif for the construction of rotaxanes. The first example of a molecular shuttle 14+ was obtained using a clipping technique. Stabilising dispersive forces between bipyridinium units of the diphenol stations on the thread including π-π stacking of the donating and accepting unit brought the subcomponent in the appropriate direction and proximity such that cyclisation took place to give 14+. Unbiased temperature-dependent shuttling of the macrocycle between the two degenerate diphenol stations was observed by a series of variable temperature (VT) NMR experiments.

Figure 1.3 The first reported molecular shuttle 14+.

Similar pseudorotaxane 22+ was obtained using the slippage approach. The macrocyclic and the thread were heated together in MeCN solution at 55 °C. Upon cooling the reaction
mixture, the slipped ring remained threaded on the dumbbell thread as a result of the thermodynamic trap provided by stabilising π–π stacking interactions.

![Figure 1.4](image_url) [2]pseudorotaxane 2^{2+} synthesised by slippage methodology.

Stoddart and co-workers have pioneered the art of building interlocked architectures using the π–π interaction between bipyridinium-based macrocycle and an electron-rich aromatic ring guest motif, and vice versa and have described a wide range of different structures and uses featuring this motif.\(^\text{15}\)

1.2.1.2 Hydrophobic interactions

The most extensively studied rotaxanes formed by exploiting the hydrophobic effect are those containing cyclodextrins (CD). Cyclodextrins have been known to form inclusion complexes with a variety of aromatic hydrocarbon guests since the 1960s,\(^\text{16}\) the first rotaxane was prepared by Ogino group in 1981, a β-CD-based rotaxane 3^{4+} which was afford in low yield (Figure 1.5).\(^\text{17}\)

![Figure 1.5](image_url) Ogino’s cyclodextrin-based [2]rotaxane.

The first photoswitchable rotaxane was reported by Nakashima and co-workers in 1997.\(^\text{18}\) A cyclodextrin-based [2]rotaxane 4^{4+} featuring an azobenzene moiety in the thread capped with 2,4-dinitrobenzene was prepared in aqueous solution in 30%.
Shuttling of the CD ring was achieved through photoisomerisation of a central azobenzene group. In \textit{trans-4}^{+}, the azo-linkage resides within the cavity of the cyclodextrin unit (Figure 1.6). Irradiation at 360 nm caused isomerisation of the double bond to generate \textit{cis-4}^{+}. NOE NMR experiments suggested that upon formation of the \textit{cis} co-conformer the CD ring translates to a secondary, ethylene spacer moiety. The original \textit{trans-4}^{+} co-conformer was regenerated upon irradiation at 430 nm to complete the switching cycle.

![Figure 1.6](image)

Figure 1.6 Photoresponsive single station shuttle \(4^{+}\) based on azobenzene unit.

1.2.1.3 Hydrogen-bonding interactions

Although hydrogen bonds are a lot weaker than covalent bonds or metal-ligand bonds, multiple recognition sites with high level of preorganisation brings about an effective hydrogen-bonding template. Hydrogen bonding has been used to synthesise peptido-[2]rotaxanes in Leigh’s group by the condensation of appropriate aromatic diacid chlorides and benzylic diamines in the presence of dipeptide derivatives, which template the formation of benzylic amide macrocycles through a five-molecule, hydrogen bond directed “clipping” strategy.\(^1\)

![Figure 1.7](image)

Figure 1.7 a) Hydrogen bond directed-assembled peptide-based [2]rotaxane 5; b) peptide-based degenerate molecular shuttles 6a-c.

Such rotaxanes have been elaborated into shuttles by combining two hydrogen bonding peptide units with additional lipophilic spacer in a thread to provide a simple route to multistationed, hydrogen bond-assembled molecular shuttles.\(^2\) In CDCl\(_3\), the macrocycle
in 6a-c shuttles between the two degenerate peptide stations rapidly at room temperature. In the hydrogen bond accepting solvent, DMSO-d_6, the interaction between the benzylic amide macrocycle and peptide units was broken resulting in the macrocycle positioned primarily at the central polarphobic station while the two stations were solvated.

Rotaxanes 7-H^{3+} were the first switchable molecular shuttles reported using secondary ammonium and crown ether macrocycle units. The dibenzocrown ether is bound to the ammonium cation by means of $N^+\cdot H\cdot\cdot\cdot O$ hydrogen bonds as well as weaker $C-H\cdot\cdot\cdot O$ bonds from α-methyl adjacent to nitrogen atom. Deprotonation of the ammonium centre with base was used to turn off these interactions, resulting in shuttling to a second bipyridinium station (7^{2+}).

![Scheme 1.1](image)

Scheme 1.1 A pH-responsive bistable molecular shuttle displaying good positional integrity in both chemical states.

1.2.2 Transition metal templates

Metal-ligand coordination is very attractive in the field of supramolecular assemblies due to the well-defined geometries of metal complexes allow for angles that cannot be approached in linear hydrogen bonding in natural systems or σ, π-hybridisations in covalent synthesis to be obtained.

A wide range of metals with preferences for different coordination geometries have been used with numerous ligands to template the formation of interlocked architectures. Figure 1.8 shows different transition metal-ligand coordination geometries used in a passive-metal template strategy.
Figure 1.8 The range of transition metal-ligand coordination geometries exploited in the synthesis of mechanically interlocked architectures: a) three-dimensional tetrahedral, b) trigonal bipyramidal, c) octahedral, d) two-dimensional square planar and e) one-dimensional linear motif.

1.2.2.1 Tetrahedral Cu(I) template

In 1983, Sauvage and co-workers achieved the first metal-templated synthesis of a [2]catenane. They employed the preferred tetrahedral geometry of Cu(I) to organise two bidentate phenanthroline ligands in a mutually orthogonal manner creating a crossover point that directs the subsequent macrocyclisation reaction. In the initial two papers, Sauvage used this motif to construct catenates, that could be subsequently demetallated using KCN to afford the catenands.

The first synthesis of a rotaxane based on the same Cu(I) template was reported by Gibson and co-workers in 1991. The rotaxane was produced in 42% by reacting the threaded copper complex with a bulky iodo compound (stopper). The stopper prevents dethreading after subsequent demetallation.
Recently, Leigh and co-workers have reported the assembly of a \([2]\)rotaxane 14 through imine bond formation around Cu(I) ion between a picolinaldehyde 11, and amine 12 and a bipyridine macrocycle 10 following the copper(I) template system introduced by Sauvage and co-workers.\(^{26}\) The assembly was simple and effective. The reactions proceeded with high yields within a few minutes at ambient temperature and it can be extended to form a \([3]\)rotaxane 15 by simply replacing monoamine 12 with diamine 13 (Scheme 1.3).

Scheme 1.2 Gibson’s Cu(I)-phenanthroline based rotaxane synthesis.
1.2.2 Octahedral templates

[2]Rotaxanes can be efficiently formed using a general ligand system of ions that prefer octahedral coordination metals. Leigh and co-workers have reported rotaxane formation by reacting a preformed bis-amine macrocycle 16 with 2,6-diformylpyridine 17 and stopper aniline 18 to form imine bonds with an appropriate divalent metal ion in good yields (57-99%) (Scheme 1.4).

Scheme 1.4 Octahedral amine/imine-based [2]rotaxane 19-MII formed through imine bonds.

The same basic scaffold could be modified to work with harder, trivalent metal ion templates such as CoIII by using 2,6-pyridinedicarboxamide coordinating motif (Scheme 1.5).28 The thread was first bound to labile CoII followed by oxidation of CoII to CoIII to lock the ligands in place and underwent RCM to generate the [2]rotaxane 20-CoIII.

Scheme 1.5 CoIII template synthesis of [2]rotaxane 20-CoIII.

An octahedral "4+2" donor ligand set has been used for the template synthesis of rotaxanes by Sauvage's group in 2003 (Scheme 1.6).29 The reaction of RuII complex 21
and macrocycle 22 that incorporates a 2,2'-bipyridine ligand in ethyleneglycol afforded pseudorotaxane, which was then capped with stoppers by Williamson ether synthesis to form [2]rotaxane 23-RuII in 56% yield.

![Scheme 1.6 Sauvage's octahedral construction of rotaxane 23-RuII.]

1.2.2.3 Square-planar geometries template

The two-dimensional arrangement of donor atoms in a square-planar geometry might be unsuitable for the assembly of a three-dimensional scaffold. However, in a “3+1” donor ligand set,30 the steric demands of the tridentate ligand can force the monodentate ligand to be perpendicular in order that the cross-over point can be generated22 then this can be used to generate a three-dimensional interlocked structure from a two-dimensional template.

Sauvage and co-workers first described an example utilising a palladium square planar “3+1” strategy towards the synthesis of a Pd-pseudo-rotaxane complex.30 A year later, the first synthesis of [2]rotaxane using square-planar template system was prepared by Leigh and co-workers in 2004.31 The rotaxane design based on the palladium chemistry developed by Hirao and co-workers32 consists of a tridentate 2,6-di(benzylamid)pyridine macrocycle precursor and either a 2,6- or 3,5- disubstituted pyridine counterpart (monodentate ligand) (Scheme 1.7). The synthesis commenced by reacting tridentate ligand with Pd(OAc)_2 in acetonitrile to generate PdIII complex 25 in which labile acetonitrile ligand can be displaced with suitable monodentate ligand. However, ring closing olefin metathesis (RCM) followed by hydrogenation (Scheme 1.7 step c) gave the rotaxane 28a in 77%. Although 27b and 27d were formed, no [2]rotaxane was produced after step c. This was attributed to 3,5-substitution pattern macrocyclisation preferentially occurs without encircling the thread, forming a non-
interlocked ring-on-thread-complex resulted in free macrocycle 30 and thread. The X-ray crystal structure of 29a confirmed the interlocked architecture and the pseudo square-planar geometry of the palladium.

Scheme 1.7 Palladium template directed synthesis of rotaxane 29a. Reagents and conditions: a) Pd(OAc)$_2$, MeCN, 76%; b) CHCl$_3$, 50 ºC, 27a = 63%, 27b = 96%, 27c = 0%, 27d = 97%; c) i) Grubb’s 1st Gen. Catalyst, CH$_2$Cl$_2$, ii) H$_2$, Pd/C, THF, 28a = 98%, 26b+30 = 69% (over 2 steps); d) KCN, CH$_2$Cl$_2$, 20 ºC, 1 h then 40 ºC, 0.5 h, 97%.

The same “3+1” approach of rotaxane synthesis was also reported later by Takata and Hirao, and Chiu using a similar PdII-macrocycle motif.33 In this example, pseudorotaxanes with terminal hydroxyl groups in the thread were reacted further with isocyanate stoppers to furnish [2]rotaxanes. More recently, it has also been demonstrated that the PdII centre is capable of successively catalysing hydroamination reaction of propargyl or allyl-urethane moieties within the thread, transforming into oxazolidone and oxazolidinone units respectively.34
The robust nature of the square-planar PdII methodology was used in the synthesis of [n]rotaxanes using just a single template site on the thread \textbf{31} (Scheme 1.8).35 The method involved the repetitive coordination, macrocyclisation and demetalation to iteratively generate [2], [3] and [4]rotaxanes. It would appear that the only limiting factor in the synthesis of higher order rotaxanes is the length of the thread.

\begin{center}
\includegraphics[width=\textwidth]{scheme18.png}
\end{center}

\textbf{Scheme 1.8} Synthesis of [4]rotaxane \textbf{32} by the repetitive use of a single templates site of the axle.

The concept was extended to produce precisely controlled sequence isomerism in a rotaxane through constitutionally different macrocycles being sequentially added (Figure 1.9).36
Recently, Nitschke and co-workers have developed a square-planar PdII-bis(imino)pyridine motif and used to prepared a range of metallosupramolecular structures by self-assembly (Scheme 1.9). PdII ions have been combined with amines and 2,6-diformylpyridine instead of former reported 6-coordinate metals. Macrocycles, [2]rotaxanes and [2]catenanes have been shown to form with high yield in one pot synthesis.
Scheme 1.9 Synthesis of a range of metallosupramolecular architectures from 2,6-diformylpyridine, PdII ions, different mono- and diamines, and ancillary ligands.

1.2.2.4 Active metal template

As has been shown, the metal templated approach provides access to increasingly sophisticated interlocked architectures. However, these strategies have one common feature in that they require stoichiometric quantities of the metal template. The role of the metal is essentially a glue to hold the reactive fragments together in an orientation that favours interlocking. Inspired by well-documented principles of transition-metal catalysis, a new strategy has been introduced in which the metal not only induces preorganisation, but also plays an active role in the bond formation. This strategy, developed by the Leigh group, is known as the active metal template approach (Figure 1.10).
Figure 1.10 Schematic representation of the active metal template synthesis. a) Stoichiometric active-metal template synthesis of a [2]rotaxane: i) template assembly and covalent bond forming catalysis; ii) demetalation; b) Catalytic active-metal template synthesis of a [2]rotaxane.

The concept was first demonstrated in 2006 by Leigh and co-workers by using the Cu(I)-catalysed 1,3-dipolar cycloaddition of organic azides with terminal alkynes (CuAAC) “click” reaction to form a disubstitute triazole ring from half-thread 46 (alkyne) and 47 (azide) through the cavity of pyridine-containing macrocycle 48 (Scheme 1.10).38

Treatment of an equimolar solution of the three components with a stoichiometric amount of Cu(I) salt afforded the [2]rotaxane 49 in 57%. Improved yields of 94% were observed when 5 equivalents of 46 and 47 were employed with prolonged reaction time to 72 h. The addition of pyridine to the reaction mixture as a competing ligand caused the Cu(I) catalyst to turn over furnishing rotaxane 49 in 82% yield using only 4 mol% of the metal catalyst relative to half-thread 46 and 47. Additionally, a series of analogous
[2]rotaxanes were formed with the range of the systemic variation of the reaction parameters. The unexpected formation of [3]rotaxane 50 while varying the ratio of macrocycle to Cu(I) from 1:1 to 10:1 has implications for the mechanism of the CuAAC reaction shown in Scheme 1.1.39

More recently, Goldup and co-workers have extended the active template CuAAC strategy to prepare small rotaxane by reducing the size of macrocycles which allowed access to small functionalised rotaxanes based on commercially available materials in excellent yields.40 Their group also demonstrated the first synthesis of rotaxanes under aqueous conditions a few years later.41 Moreover, Goldup group have extended the AT-CuAAC concept to prepare planar chiral rotaxane in high enantiopurity without any used of chiral separation techniques.42

Other copper-based active template reactions were developed after the successful demonstration of CuAAC active template. Saito and co-workers utilised Cu-mediated Glaser diyne coupling and Ullmann C-S bond formation in active template rotaxane formation.43 Leigh group has also developed a Cu(I)-mediated alkyn-alkyne heterocoupling using a modified Cadiot-Chodkiewicz procedure which produces rotaxane with unsymmetrical axle.44
Combining the previous powerful square-planar Pd strategy with active metal template strategy, Leigh and co-workers have investigated synthesis of the interlocked structures using PdII in the active-metal template strategy. The use of palladium-catalysed alkyne-alkyne bond formation in rotaxane formation was developed. Both stoichiometric and catalytic quantities of PdII resulted in good conversion of alkyne-functionalised stopper to [2]rotaxane.45 The Pd(II)-catalysed oxidative Heck cross-coupling over Pd(0) has been developed in the active metal template synthesis of [2]rotaxanes.46 [2]Rotaxane was prepared in 73\% from bipy-based macrocycle, arylboronic acid and vinylic ester in the presence of benzophenone and atmospheric oxygen. The reaction proved tolerant to a variety of coupling partners.

The Pd(II)-mediated Michael addition has been used to assemble rotaxanes with excellent efficiency.47 Reaction of PdII-macrocycle complex 51 with ethyl cyanoacetate 53 leads to Pd complex 54. Ethylcyanoate becomes activated to deprotonation by N,N-diisopropylamine (DIPEA) and still bound within the cavity of the macrocycle allowing two successive Michael addition of the vinyl ketone half-thread 52 to both sides and forms [2]rotaxane complex 55-PdII in 99\% yield. (Scheme 1.12).

Demetallation with KCN gave metal-free rotaxane H\textsubscript{2}55 in which the amide macrocycle shuttles between the two ketone groups of the thread.
1.2.3 Rotaxanes containing metal ions in their framework

In 2006, Wisner and co-workers reported the synthesis of a [2]rotaxane via first- and second-sphere coordination in which the metal centre acted as both an organising template and as covalent attachment points between the components.\(^4\) trans-Bis-benzonitrile palladium(II) dichloride was coordinated with isophthalamide-based tetralactam macrocycle via hydrogen-bonding between Cl and amide hydrogens in the macrocycle. The replacement of the two labile benzonitrile molecules by stronger-coordinating pyridine stoppers gave the Pd-containing rotaxane 56 in 89% yield (Figure 1.11). The authors later extended this strategy replacing halides with thiocyanate ligands\(^4\) which afforded dissymmetric binding geometries of the rotaxane by coordination with the macrocycle via the nitrogen atoms. This suggests SCN moieties act as a ratchet between two degenerate stations as supported by VT \(^1\)H NMR experiments.

Scheme 1.12 Pd(II) promoted Michael addition for the preparation of rotaxane 55-Pd, and its decomplexation to hydrogen-bonded molecular shuttle H\(_2\)55.
A novel threading-followed-by-shrinking strategy was introduced by Asakawa and co-workers in 2004. The secondary diallylammonium salt threads through a crown ether incorporating salophen macrocycle forming a pseudorotaxane. Addition of Pd(OAc)$_2$ afforded the corresponding rotaxane in 30% by shrinking the macrocycle around the thread (Scheme 1.13).

A hybrid organic-inorganic rotaxane was reported by Leigh, Winpenny and co-workers in 2009. The design is based on the observation that a heterometallic Co-Cr ring bridged by fluoride and alkyl/aryl carboxylate formation is templated by various organic cations. The rotaxane was synthesised by reacting secondary amine thread incorporating bulky stoppers at each end with a mixture of Criii and Coii solutions in pivalic acid. The [2]rotaxane was produced in 23% yield. The X-ray structure showed the eight metal centres in each heterometallic wheel to be almost perfectly coplanar. This methodology was extended to prepare [3] and [4]rotaxanes and molecular shuttles in which the ring undergoes random thermal motion between two ammonium sites on the thread.

In 2010, a rotaxane based on a metal cage and a bisanionic thread was reported by Clever and Shionoya.52 The assembly 62 consists of a PdII-mediated molecular cage surrounding an anionic thread as a result of two binding principles: metal coordination for assembly of the cage and ion-pair interactions for guest binding.

Figure 1.12 a) Structure of bisanionic thread; b) X-ray structure of cage.

1.3 Stimuli-Responsive Molecular Shuttles

A rotaxane can be designed and synthesised with two or more recognition sites within its axle component. If two identical stations are arranged, a degenerate, co-conformation equilibrium state is obtained in which the macrocycle spontaneously shuttles back and forth between two sites as discussed above for Stoddart’s first molecular shuttle (Section 1.2.1.1). A rotaxane will exist as two different equilibrating co-conformations if the two recognition sites are different. The populations of each station reflect the strengths of the
two different sets of non-covalent binding interactions. If the macrocycle affinity between two stations is appropriately large, the macrocycle resides predominantly in one co-conformation. In stimuli-responsive molecular shuttles, an external stimulus does not induce directional motion of the macrocycle, but rather changes the non-covalent intercomponent interactions. The binding strength of the less-populated station is increased and/or the initially preferred binding site is destabilised to the extent that the second binding site becomes energetically more favoured, causing shuttling of the macrocycle to the second station. The system can be returned to its original state by using a second chemical modification (Figure 1.13). A biased Brownian motion arises from a difference in the activation energies for movement in different directions, not from the difference in energy minima. In suitably designed rotaxanes, the switching process can be controlled by reversible chemical reactions (protonation-deprotonation, reduction-oxidation, isomerisation) from chemical, electrochemical or photochemical triggers.

![Diagram of molecular shuttle](image)

Figure 1.13 Translational submolecular motion in a stimuli-responsive molecular shuttle: a) the macrocycle initially resides on the preferred station (orange); b) a reaction occurs (purple→green) which changes the relative binding potentials of the two stations such that, c) the macrocycle “shuttles” to the now-preferred station (green). If the reverse reaction (green→purple) now occurs (d), the components return to their original positions.53

1.3.1 pH induced molecular shuttles

The first bistable switchable molecular shuttle which could be considered as an example of a molecular Brownian motion machine was reported by Stoddart and co-workers in 1994 (Scheme 1.15).54 The electron-accepting tetracationic cyclophane in 63^{4+} was shown to rapidly shuttle between both potential π-electron donor sites, hydroquinol and benzidine, at room temperature but upon cooling to 229 K the macrocycle was found to reside over benzidine station in a ratio of 21:4 as evidenced by 1H NMR spectroscopy. Protonation of the benzidine residue with trifluoroacetic acid destabilises its interaction
with the ring and it moves to reside on the secondary hydroquinol station to generate $[63\cdot2\text{H}]^{6+}$. The system can be restored by adding pyridine-d_5 to neutralise the system.

Scheme 1.15 The first non-degenerate shuttle 63^{4+}:

Rotaxane $[7\cdot\text{H}]^{3+}$ (as shown in Section 1.2.1.3) was another example of acid-base switchable rotaxane that exhibits good macrocycle positional integrity in both chemical states. Stoddart, Balzani and co-workers have generated a so-called “molecular elevator” by incorporating the architectural feature of $[7\cdot\text{H}]^{3+}$. This molecule, $[64\cdot3\text{H}]^{9+}$ consists of a tripod thread component containing an ammonium centre and a bipyridinium motif in each leg which is interlocked by a platform-like tritopic macrocyclic host (Scheme 1.16). The macrocycle initially resided at the ammonium site (upper level). Upon adding over three equivalents of base, the ammonium centres were deprotonated and as a result, the platform moved to bipyridinium (lower level) stations. Subsequent treatment with acid restored the ammonium stations, the macrocycle moved back to the upper level. The “up and down” motion corresponds to a quantitative switching and can be repeated many times.
A pH-responsive switch that exploited hydrogen-bonding interactions to anions was reported by Leigh and co-workers in 2004.56 The rotaxane 65 is formed from a hydrogen bonded benzylic amide macrocycle and succinimide peptide containing thread. The thread also contains a cinnamate derivative. In the neutral state, the macrocycle resides exclusively on succinamide station due to poor hydrogen-bond of phenol moiety. Deprotonation in DMF-\textit{d}$_7$ results in the macrocycle binding to the phenolate anion. Reprotonation of the phenol returns the system to its original state. The shuttling is extremely solvent-dependent and it usually performs best in non-competing solvents.

Scheme 1.16 Chemical structure of a “molecular elevator” [64.3H]$^{3+}$/64$^{6+}$

Scheme 1.17 pH-switched anion-induced shuttling in hydrogen-bonded [2]rotaxane 65-H/65 in DMF-\textit{d}$_7$ at rt. Bases that are effective include LiOH, NaOH, KOH, CsOH, Bu$_4$NOH, tBuOK, DBU and Schwesinger’s phosphazine P$_1$ base.
Leigh and co-workers have reported the assembly and operation of a pH-responsive Pd(II)-complexed molecular shuttle. The rotaxane 69 consists of a palladium complexed bis-carboxamide pyridine macrocycle and a thread with DMAP and pyridine stations. The thread 67 or 68 was then reacted with macrocycle 66 in a ligand exchange reaction, leading to the kinetically trapped pseudorotaxane which was subsequently subjected to Mitsunobu reaction with a stopper to obtain rotaxane 69-Pd.

Scheme 1.18 a) Synthesis of Palladium-complexed molecular shuttle 69-Pd; b) operation of the palladium-complexed molecular shuttle 69-Pd.

Translocation of the palladium-complexed macrocycle between two monodentate stations was achieved as a function of basicity. Switching of the macrocycle in DMAP-69-Pd was attempted upon treatment with 1 equivalent of TsOH. The metastable co-conformer DMAP-[70Hpd]OTs was formed but the macrocycle remained bound to the DMAP station. The 1H NMR spectrum showed no shift of the DMAP signals over several days indicating that the co-conformer is stable at ambient temperature. However, upon heating DMAP-[70Hpd]OTs at 383 K, positional switching of the palladium macrocycle was observed reaching an equilibrium of 89:11 ratio of Py:DMAP-[70Hpd]OTs after 16 h (DMF- d_7) or 36 h (C$_2$D$_2$Cl$_4$). Deprotonation of this isomeric mixture of [70Hpd]OTs (Na$_2$CO$_3$, CH$_2$Cl$_2$, 30 min) generates the neutral co-conformers. Heating either pure Py-
69Pd or the non-equilibrium 11:89 mixture of DMAP/Py-70Pd at 383 K in DMF-d$_7$ for 90 min reversed the coordinative bias of the metal to complete the cycle with an equilibrium ratio of 86:14 DMAP/Py-70Pd.

A second generation Pd(II)-complexed molecular shuttle, 71-Pd (Figure 1.14) was reported three years later58 featuring a change to the size and shape of the macrocycle. A significant increase in the shuttling rates and more pronounced positional discrimination in both chemical states (neutral and protonated) was observed. It has been suggested that the larger macrocycle in the second generation shuttle provides a less sterically demanding environment around the metal and thus better accommodates the incoming coordinating solvent molecule or OTs$^-$ anion, in turn gives a faster shuttling rate. In the protonated state, the better positional bias of the Pd(II) macrocycle suggests that the Pd-(bis-anilide) ring binds less strongly to the thread than the Pd-(benzylic amide) while in neutral condition, the bias arises from a subtle balance of solvation, metal-ligand coordination and π-stacking interactions.

![Figure 1.14 Second generation Pd(II)-based pH-responsive molecular shuttle 71-Pd.](image)

1.3.2 Electrochemically induced molecular shuttles

In the pH-switchable shuttle 63 (Scheme 1.15), the translation could also be achieved by electrochemical oxidation of the benzidine station to give the radical cation; the macrocycle shuttles to the biphenol station.54 However, the use of redox-active stations based on tetrathiafulvalene (TTF) brings about a series of redox-active shuttles in Stoddart group. In the ground state of 72$^{4+}$ (Scheme 1.19) the tetracationic cyclophane mostly resides on the more electron-rich TTF station. Chemical or electrochemical oxidation of the TTF to either its radical cation or dication results in a shift of the cyclophane to the dihydroxynaphthalene station.59
Scheme 1.19 Redox-switchable molecular shuttle $72^{+}\/72^{\circ}$. The redox reactions may be carried out either chemically or electrochemically.

An electrochemical switchable amide-based [2]rotaxane 73 including two potential hydrogen-bonding stations, a succinamide (succ) and a redox-active 3,6-di-tert-butyl-1,8-naphthalimide (ni) reported by Leigh and co-workers (Scheme 1.20) is one of the molecular shuttles with the highest reported positional loyalty ($ca.10^6$;1 in one state; $ca.1:500$ in the other). The neutral naphthalimide moiety is poor H-bond acceptor thus does not hold the macrocycle efficiently, as a result, macrocycle binding at succ station tightly in CDCl$_3$, CD$_3$CN, and THF-d_8. One-electron reduction of naphthalimide to the corresponding radical anion, results in a substantial increase in electron density on the imide carbonyls with an accompanying increase in hydrogen-bond acceptor strength. This leads to a co-conformation $ni^{-}-73^{-}$. Subsequent reoxidation to the neutral state restores the original binding affinities and the macrocycle returns to succ station.

Scheme 1.20 A photochemically and electrochemically switchable hydrogen-bonded molecular shuttle 73.
The electrochemically-induced translation of a macrocycle in the copper-based rotaxane 74^+ (Figure 1.15) has been reported by Sauvage and co-workers in 1997. 61 This system functions on the same principle as that of the first switchable [2]catenane, published three years earlier. 62 The [2]rotaxane 74^+ possesses a tridentate $2,2',6',2''$-terpyridine (terpy) and a bidentate $2,9$-diphenyl-$1,10$-phenanthroline (dpp) in the thread and the macrocycle has only dpp. The electrochemical properties of copper complexes were used to set the system in motion, utilising the oxidation states +1 and +2 which show differences in the preferred coordination number (CN): CN = 4 for copper(I) and CN = 5 (or 6) for copper (II). The interconversion between both co-conformations is electrochemically triggered and results in the “sliding” of the ring along the thread. Although the system was set in motion using a redox signal (Cu^{II}/Cu^{I}), the gliding motions are slow on the CV time scale.

![Diagram of Cu-rotaxane](image)

Figure 1.15 The first copper-based molecular shuttle 74 and schematic in shuttling process.

Subsequently, new shuttles have been designed within the Sauvage group incorporating the wide and non sterically hindering dpbiiq ($8,8'$-diphenyl-$3,3'$-biisoquinoline) macrocycle (75) and its corresponding rotaxane (76^+) compared to a dpp-based analogue (77^+) (Figure 1.16). † The behaviour of these two Cu-rotaxanes has been investigated by CV. The rate constant for the conversion of 76_{4}^{2+} to 76_{5}^{2+} is approximately 2 s^{-1}. By contrast, after oxidation of 77_{4}^{+} to 77_{4}^{2+}, the thermodynamically † The subscript indicates coordination number of the complexes.
unstable form of the complex seems to be stable for several hours, also showing that the rigid purely aromatic connector between phen and terpy is much less favourable to fast translation than the flexible axis used in 74. The opposite motion observed in 5-coordinate rotaxanes is relatively fast for both shuttles with the half-life of the 5-coordinate Cu(I) species being below 20 ms for the dpiq-containing system 76 and below 1 s for the dpp-based molecule 77.

Figure 1.16 New design macrocycle 75, containing a dpbiq unit, its corresponding rotaxane 76 and dpp-containing rotaxane 77.

1.3.3 Light-induced molecular shuttles

Reversible cis-trans photoisomerisation of stilbene and azobenzene motifs have been widely exploited for realising translation in rotaxane-based systems. One example is shown for a cyclodextrin-based [2]rotaxane 4 by Nakashima (Section 1.2.1.2). The same author has varied ethylene spacer length between the stopper and aromatic unit in the rotaxane structures and showed that the shuttling process can be driven by light, heating and solvent polarity.

A molecular shuttle based on [2]rotaxane 78 containing α-cyclodextrin macrocycle, azobenzene, biphenyl chain and two different fluorescent naphthalimide units was
reported by Tian and co-workers (Scheme 1.21). Reversible motion of the CD macrocycle between azobenzene and biphenyl station takes place after irradiation at 360 and 430 nm, respectively. The CD macrocycle locates over the azobenzene unit in trans-form and it moves to the biphenyl site when the azo motif undergoes isomerism to the cis-form. This net translational displacement is accompanied by reversible changes in fluorescence intensity of the two stoppers which increase when the CD reside in the close proximity and decrease when CD is away.

Scheme 1.21 A light driven molecular shuttle based on CD-[2]rotaxane 78.

Similar shuttling has also been observed when stilbene was used as a photoresponsive unit (Scheme 1.22). Isophthalic acid stopper was found to form hydrogen-bond interactions with the CD macrocycle and prevent the shuttling motion. Upon treatment with base, the shuttling is enabled. The reaction progress was monitored by ¹H NMR spectroscopy and fluorescence spectrophotometry.

Scheme 1.22 The strong hydrogen-bonding between the OH groups in CD and two carboxyl groups in the isophthalic acid unit locks the photo-driven motion of CD. The addition of Na₂CO₃ destroys the H-bond, unlocking the shuttling motion.
Andersen and co-workers demonstrated unprecedented directional shuttling of an asymmetric cyclodextrin macrocycle (smaller 6-rim vs larger 3-rim) along a symmetric organic axle featuring a stilbene moiety (Scheme 1.23).67 In \textit{trans-80}, a rapid gliding motion of the CD ring along the thread was observed by 2D NMR spectroscopy. Irradiation at 340 nm led to \textit{trans-cis} isomerisation to afford \textit{cis-80}. In the \textit{cis}-conformer, the stilbene unit of the thread is located in close proximity to the 6-rim of the CD ring whilst the wider 3-rim is able to better accommodate the bulky "stopper" group. The molecular switching cycle between the two co-conformers was completed upon irradiation of \textit{cis-80} at 265 nm.

\textbf{Scheme 1.23} Photoresponsive single-station shuttles 80 based on stilbene units.

The Leigh group has reported the shuttles that utilise the interconversion of fumaramide (\textit{trans}) and maleamide (\textit{cis}) isomers of the olefin units by photochemical and thermal stimuli (Scheme 1.24).68 Fumaramide groups are excellent binding sites for a benzylic amide macrocycle69 with ideal positioning of \textit{trans} hydrogen-bond acceptor sites for interactions with the ring. Irradiation of fumaramide rotaxane (\textit{E})-\textit{81} at 254 nm produces the corresponding \textit{cis}-maleamide rotaxane (\textit{Z})-\textit{81} which reduces the number of intercomponent hydrogen bonds and so the macrocycle changes position to the succinamide station. This translational form is stable until a new stimulus (heat) is applied to re-isomerise the maleamide unit back to fumaramide.

\textbf{Scheme 1.24} Bistable light and heat responsive molecular shuttle 81.

Rotaxane 8266 was designed to achieve photoinduced ring shuttling in solution by Balzani, Stoddart and co-workers.70 The operation to obtain abacus-like movement
starts with light excitation of the photoactive unit ruthenium(II) tris(bipyridine) complex followed by the transfer of an electron from the excited state to the 4,4:\'-bipyridinium station, which is surrounded by the macrocycle, with the consequent deactivation of this station. This photoinduced electron-transfer process has to compete with the intrinsic decay of the metal center excited state. The ring moves from the reduced 4,4:\'-bipyridinium station to the 3,3:\'-demethyl-4,4:\'-bipyridinium unit, a step that has to compete with the back electron-transfer process from reduced 4,4:\'-bipyridinium station (still encircled by the ring) to the oxidised unit Ru\(^{3+}\). A back electron-transfer process from the free reduced bipyridinium station to the oxidised Ru\(^{3+}\) unit restores the electron-deficient bipyridinium station. As a consequence of the electronic reset, the ring moves back from the dimethyl-bipyridinium station to the bipyridinium station. It has been shown that the absorption of a visible photon by \(82^{e+}\) can cause the ring movement. A full mechanical cycle that does not generate any waste products is illustrated in Scheme 1.25b. \(82^{e+}\) performs as a “four stroke” autonomous artificial linear motor working by an intramolecular mechanism powered by visible light.

Scheme 1.25 a) Chemical formula of the rotaxane \(81^{e+}\); b) Operation of rotaxane \(81^{e+}\) as an autonomous “four stroke” molecular shuttle powered by light.

In addition, photoinduced translational motion in [2]rotaxane 23-Ru\(^{II}\) has been realised by Sauvage and co-workers in 2005.\(^{71}\) The Ru(II) metal centre was preferred to endo-coordinate to the thread by tuning the size of ligands of the macrocycle to obtain
rotaxane 23^{2+}. By irradiating a solution of 23^{3+} in 1,2-dichloroethane at 470 nm and in the presence of a large excess of Cl^-, a clean photochemical reaction takes place, two coordination sites of Ru(II) were filled by chloride ligands which caused dissociation of the macrocycle to permit the translation along the thread.

1.3.4 Molecular shuttles powered by metal ions

A molecular shuttle that can be switched upon the addition of lithium ions was produced by the Sanders and Stoddart groups. The co-conformation of [2]rotaxane 83 with the macrocycle sitting over the naphthaldimid station is dominant in the charge neutral form, but rather than one electron reduction to change the macrocycle bias to the pyrimellitic diimide station, addition of Li^+ ions also results in the movement of the ring. Two lithium ions can be complexed between the crown ether macrocycle and the carbonyl of the diimide moieties with a significantly stronger interaction in comparison to naphthaldimide (Scheme 1.26). The system was reset by addition of a large excess of $[12]$crown-4.

![Scheme 1.26 Cation-induced shuttling based on lithium-ion complexation and decomplexation in 83.](image)

Metal-ion binding can be used to destabilise the binding of the macrocycle at one site, and cause translational motion to the other station through two distinct mechanisms as reported by Leigh and co-workers in 2006 (Scheme 1.27). The macrocycle in rotaxane $\text{H}_2\text{84}$ preferable resides over the glycyglycine derivatised station with a bis(2-picoyl)amino stopper. Upon addition of one equivalent of $\text{Cd(NO}_3\text{)}_2\cdot4\text{H}_2\text{O}$, a complex in which the metal ion is bound to the carboxamide carbonyl oxygen on the thread and
three nitrogen of stopper is produced and the macrocycle still rests at the same position. However, deprotonation of the adjacent peptidic station causes the metal to wrap itself up to form the \([\text{Cd}84(\text{NO}_3)\text{(H)}]\) complex, thus switching off the interaction with the macrocycle. The macrocycle then shuttles to the succinic amide ester station. The process is fully reversible: removal of \(\text{Cd}^{2+}\) ion with excess cyanide and \textit{in situ} reprotonation of the amide nitrogen with \(\text{NH}_4\text{Cl}\) quantitatively regenerates \(\text{H}_2\text{84}\). In the case of rotaxane \(\text{85}\), \(\text{Cd}^{2+}\) ions are only chelated to the three nitrogen atoms of the stopper. As the two pyridyl units have to adopt a coplanar conformation, this causes a steric hindrance and destabilises the interaction with the macrocycle. The macrocycle is thus forced to move to the weaker succinic amide ester site. The shuttling is fully reversible on demetallation of \([\text{Cd}(\text{NO}_3)_2\text{(85)}]\) with cyanide.\(^{74}\)

\begin{center}
\textbf{Scheme 1.27} (a) Shuttling of \(\text{84}\) through stepwise competitive binding. (b) An allosterically regulated molecular shuttle \(\text{85}\).
\end{center}

A molecular machine that nominally mimics the function of actin/myosin linear motors has been constructed by Sauvage and co-workers.\(^{75}\) The system is based on a symmetrical doubly threaded topology and is able to contract or stretch under the action of an external chemical signal. Each filament contains both a bidentate and a tridentate chelate contributing to the copper-complexed rotaxane \(\text{86}^{2+}\), Figure 1.17. The rotaxane
dimer 86^{2+} was set in motion by exchanging the complexed metal centres. The free ligand obtained by reacting the stretched isomer, 4-coordinate Cu(I) with an excess of KCN was then subsequently remetalated with Zn(NO$_3$)$_2$ affording the 5-coordinated Zn$^{2+}$-complex 86^{4+} in the contraction form. The reverse motion could be induced upon addition of excess Cu(CH$_3$CN)$_4$.

![Diagram showing two states of the muscle-like molecule 86.](image)

Figure 1.17 The two states of the muscle-like molecule 86.

The group of Sauvage has reported a [3]rotaxane 87^{2+} representing the first example of an adaptable receptor based on an interlocked compound (Scheme 1.28). Two porphyrinic “plates” are able to glide along the track that threads through the macrocycle. Starting from the copper-free [3]rotaxane 88, metalation of the coordination sites will induce a translational motion of the threaded rings and the porphyrins will come into closer proximity. As a result, a flexible substrate, 89 trapped in between these two porphyrins will be compressed whereas the rigid substrate, 89 will be destabilised and possibly expelled from the receptor.

1.3.5 Anion driven molecular shuttle

Leigh and Lusby have established an example of an anion switchable molecular shuttle 91 based on a bistable palladium(II)-containing [2]rotaxane (Scheme 1.29).\(^{27}\) Up to this point, palladium(II) has been used to play the role of prearranging the subcomponents of the rotaxanes or catenanes for the interlocking step. Here, the rotaxane 91 was covalently captured using the CuAAC reaction, whilst the palladium-chloro macrocycle complex was residing over the benzyl-pyridinium position of the track due to ion pairing and secondary interactions of the macrocycle with the track components. The resultant triazole unit served as a secondary station for the palladium(II)-based macrocycle. To switch to the other station, the chloride anion was removed with a silver(I) salt, and the coordinative unsaturated palladium macrocycle translocated to the triazole unit. The process could be reversed upon treatment with Bu\(_4\)NCl.
1.4 Compartmentalised Molecular Machines

To create artificial Brownian machines, control over the kinetics for exchange of the substrate between two sites of the machine, which is recognised as ratcheting, must be introduced. In doing so, resetting the Brownian machines does not undo the work it has carried out or the task performed.

In 2006, Leigh and co-workers produced rotaxane 93 which was developed from rotaxane 92 (Scheme 1.30a) featuring fumaramide and succinamide stations separated by a bulky silyl ether gate that prevents a macrocycle from shuttling (Scheme 1.30b). The system was prepared as a single positional isomer with the macrocycle residing over fumaramide station. When the kinetic barrier provided by the silyl ether group was removed, the machine was statistically balanced (85% of the macrocycle on the fumaramide station, 15% on the succinamide station). The balance was broken by light-induced $E \rightarrow Z$ photoisomerisation, which concomitantly reduced the affinity of the macrocycle for site closest to the diphenyl stopper generating a new equilibrium with 56% of the macrocycle over the succinamide station (the photostationary state from irradiation at trans-fumaramide unit at 312 nm is 49:51 ±2% $E:Z$). Applying an unlinking stimulus, by addition of a silyl group, stop the exchange between two compartments. Thermal $Z \rightarrow E$ isomerisation was then used to reset the system and make it thermodynamically unbalanced, unlinked, and not in equilibrium. After a single
operational cycle of the machine (balanced-unlinked, unbalanced-unlinked, unbalance-linked and reset to initial unlinked state), 56% of the macrocycles were located on the succinamide station. In this system, the thread performed a task of directionally changing the net position of the macrocycle, moving it energetically uphill.

Scheme 1.30 a) Operation of a compartmentalised Brownian molecular machine 91 that act as an irreversible switch; b) Operation of a compartmentalised molecular machine 92 that transports a particle (macrocycle) energetically uphill.

In 2007, Leigh and co-workers published a photo-operated molecular information ratchet based on rotaxane 94, which consists of a dibenzo crown ether based macrocycle mechanically interlocked onto a thread containing two secondary ammonium stations separated by an α-methyl stilbene group (Scheme 1.31). This stilbene group acts as a gate that either permits (E-configuration) or prevent (Z-configuration) the macrocycle from shuttling between the dibenzyl ammonium compartment (dba, left) and monobenzyl ammonium compartment (mba, right). The gate is mostly closed upon
irradiation in the presence of an external benzil photosensitiser. However, the benzophenone associated with the macrocycle can undergo energy transfer, which is distance dependent, to induce $Z \rightarrow E$ photoisomerisation, thus opening the gate. Significantly, the macrocycle can only signal its position when it is in the left compartment and close to the gate. Following translocation to the mba station, the macrocycle is far from the gate, and the benzil sensitised reaction dominates and the gate remains closed.

This operation can drive the macrocycle distribution away from its equilibrium value (when the gate remains open) of 65:35 dba-94:mba-94 to a maximum ratio of 45:55.

Scheme 1.31 A light-powered molecular information ratchet.

Chemically-driven information ratchet, rotaxane 95 was demonstrated by Leigh and co-workers in 2008 (Scheme 1.32a). The parent, unfunctionalised symmetrical bis(fumaramide) rotaxane has an equal macrocycle distribution between the two fumaramide groups. A chiral acylation catalyst was used to drive the system from its equilibrium ratio of 50:50 left-95:right-95 to an unequal populations of 33:67. The chiral
catalyst is able to discriminate between the two pseudo-enantiomeric co-conformers of 95 and reacts more rapidly when the macrocycle is on the same prochiral fumaramide side. Use of the catalyst’s chiral antipode gave the expected equal and opposite ratio of 67:33 left-95:right-95. This unequal distribution corresponds to a decrease in entropy (the energy for this is probably offset by the consumption of the chemical reagents), but the enthalpy of macrocycle-thread interaction is unaffected.

Scheme 1.32 a) A chemically fuelled molecular information ratchet; b) A chemically fuelled molecular information ratchet capable of ratcheting a Brownian particle enthalpically uphill.

The same approach was employed for the non-symmetrical rotaxane 96 containing one fumaramide group and one succinamide group (Scheme 1.32b). The equilibrium between these two stations is ~75:25 fum-96:suc-96. Benzoylation with (S)-catalyst reduced the population ratio to 63:37, corresponding to a transportation of approximate
15% of macrocycle from the energetically favourable fumaramide station to the less-favourable succinamide unit.

Recently, Leigh and co-workers have developed a three-compartment molecular information ratchet 97 using the similar chemical-information-ratchet concepts (Scheme 1.33). The macorocycle ends up predominantly on one of the two chemically equivalent end compartments, as determined by the handedness of the catalyst.

Scheme 1.33 Directonal transport of a macrocycle within a [2]rotaxane three-compartment chemical information ratchet 97.
1.5 Functional Molecular machines

1.5.1 Sequence-Specific Peptide Synthesis by Artificial Molecular Machines

Recently, Leigh and co-workers described a molecular machine that nominally mimics the ribosome by joining amino acids in specific sequence to produce a short oligopeptide.\(^1\) The structure of the molecular machine \(98\) is based on a rotaxane including the thread (which bears the amino acid monomers as reactive phenolic esters), and a macrocycle that features a terminal amine and a cysteine unit capable of mediating native chemical ligation (Figure 1.18). The amino acid phenolic esters act as gates that prevent the macrocycle from moving further along the track. However, the macrocycle can react with the first station, producing an intermediate thioester and transfer it to amino terminus. The removal of the amino acid from the first gate also allows the macrocycle to slip over this and onto the second phenolic ester. The process continues until the last amino acid on the thread is transferred and the macrocycle detaches from the strand. HPLC, \(^1\)H NMR spectroscopy and mass spectrometry were used to confirm the identity of desired product, in particular that the machines works processively to produce a single amino acid sequence.

A year later, the Leigh group reported a machine that was more efficient by changing the rotaxane forming strategy from “final-step-threading” to “rotaxane capping” which enables a longer amino sequence track. The new approach can join up to four amino acids in sequence featuring up to a 20-membered ring native chemical ligation transition state.\(^2\)

![Figure 1.18](image)

Figure 1.18 [2]Rotaxane based molecular machine 98.

1.5.2 Metal complexes molecular biped

A bimetallic molecular biped 99 was developed by the Leigh group recently.\(^3\) This molecular walker features a palladium and platinum complex “feet” (based on tridentate
pyridine-2,6-dicarboxamide motif used in previously described catenanes and rotaxanes) linked together using CuAAC chemistry (Scheme 1.34). The palladium foot can be selectively stepped between DMAP and Py sites via reversible protonation while the kinetically inert platinum complex foot keeps the complexes remains attached to the track. Operational control of stepping mechanisms is based upon carefully alternating the stimuli-induced with consideration of the thermodynamics and kinetics of each step.

Scheme 1.34 a) Chemical structure of bimetallic walker-track complex 99; b) Stepping of a Pd(II)/Pt(II)-complexed molecular biped.

1.5.3 Rotaxane-based switchable organocatalyst

Recently, a study of the reactivity of a rotaxane acting as an amino catalyst for the functionalisation of carbonyl compounds was published by Leigh and co-workers. The rotaxane 100 consists of a dibenzo crown ether based macrocycle trapped onto a thread containing a dibenzylamine and a triazolium ring (Scheme 1.35). The catalytic activity can be switch "off" or "on" by acid-base stimuli-induced change of the position of the macrocycle on the thread. The rotaxane 100 showed an effective performance in iminium, enamine, tandem iminium-enamine and trienamine catalysis.
Scheme 1.35 Rotaxane-based switchable organocatalyst 100/100-H⁺.

1.6 Self-assembly molecular systems

Nature uses supramolecular self-assembly strategies to generate useful functional systems, including all of the examples biomotors. The approach can be used to overcome limitations arose from multistep covalent synthesis for nanodevices. The covalent-bond based synthesis has proved successful in making molecules with useful functions, whereas the ability to make supramolecular assemblies with applications are poorly recognised. As the number of components included in a self-assembly process increases, the tendency to self-sort leads to the formation of several product arises and that obstructs the development. To achieve useful function, in particular those that involve mechanical movement any self-assembly system would need i) to exhibit high fidelity of the self-assembling interactions that will allow information-rich components to selectively assemble, ii) an ability to direct self-assembly along a kinetically preferred pathway, with the products displaying pronounced kinetic stability such that mechanical motion rather than dynamic host-guest exchange can be observed. From this perspective, coordination assemblies, and in particular those that feature multiple relatively strong metal-ligand interactions appear promising as elements of molecular machinery as they exhibit pronounced cooperative stability such that they could be considered non-equilibrium systems. There are some other examples known, based on non-interlocked coordination assemblies that undergo the molecular motion.
1.6.1 Tubular coordination complexes

Fujita and co-workers have studied a coordination approach to create discrete tubular structures. A wide range of pyridine-based molecular strands have been used to assemble tubular architectures through non-covalent metal-ligand interactions, in particular, with cis-protected square-planar building blocks such as \([(en)\text{Pd(NO}_3\text{)}_2]\) (101). By adjusting the length of strand-like ligands, they envisaged an approach to precisely control the length of self-assembled tubular objects. A family of rectangular molecular panels 102-107 was designed in order to assemble them into several tubular structures of various sizes and shapes (Figure 1.19). Oligo(3,5-pyridine) panels 102, 103 and 104 contain three, four and five binding sites, respectively. Molecular panels 105 and 106 contain six binding sites from two terpyridine linked by an alkyl chain or biphenyl unit. Molecular panel 107 featuring four terpyridine podands on a benzene-tetracarboxylate scaffold has twelve binding sites.

![Figure 1.19 Rectangular ligand 102-107.](image)

The Fujita laboratory has shown quantitative formation of coordination nanotubes from ligand 102-104 and Pd\(^{11}\) 101.\(^{90}\) In the case of pentakis(3,5-pyridine), coordination tube 110 should be assembled from four molecules of 104 and ten molecules of 101. However, this formed only in the presence of a rod-like template molecule, 4,4'-biphenylenedicarboxylate 111 (Figure 1.20). Similarly, tubes 108 and 109 were also obtained with the aid of templates and were characterised by NMR and cold-spray-ionisation mass spectrometry (CSI-MS).\(^{91}\) The inclusion of 111 inside 110 was revealed
from the highly upfield signals in 1H NMR due to shielding from the aromatic panel ligands. Moreover, other rod-like molecules such as biphenyl and p-terphenyl were effective whereas large molecules such as adamantyl carboxylate did not show any template effect and in the absence of template tubes were not formed effectively, even after a week at 60 °C. It was also found that the formation of these tubes was reversible.

The formation of two isomer 109a and 109b was observed in a ca. 1:1 ratio, NMR measurement showed a very slow interconversion between isomers. The tubular structures of 108, 109a and 110 were confirmed by X-ray crystallographic analysis. The crystal showed $\pi-\pi$ and CH-π interactions between templates and pyridine frameworks.

![Figure 1.20](image)

Figure 1.20 Self-assembly of coordination tube 108, 109 and 110. The template 111 included in the cavity of the tubes is omitted for clarity.

In 2002, Fujita and co-workers published the studies on the dynamic behaviour of the guest molecules inside the cavity of tubular assemblies. Unsymmetrical biphenyl derivative 112 was used as a template for tube 110 which desymmetrise the host framework. VT NMR experiments explained the guest molecule is trapped and unable to flip at room temperature, spin around its long axis make the four sides of the framework equivalent, it is able to escape from the tube, symmetrising the host environment at high temperature. The dynamic movements of the guest can occur via two possible pathways. If [G]/[H] <1, the guest molecule self-dissociates via an empty intermediate. When [G]/[H] > 1, the guest can be replaced by the second guest via a concerted pathway (Figure 1.21). The preferential binding of anionic guest 110 over a neutral guest, 4-methylbiphenyl was shown as it was displaced immediately upon addition of 112 which
The suggested electrostatic interaction between the tube and the template is also important for the host-guest complexation in addition to aromatic interactions.

Figure 1.21 Mechanism of guest exchange at a) [G]:[H] = 1:1 and b) [G]:[H] = 2:1.

In 2003, the assembly of a stable nanotube 113 with an empty cavity was achieved by mixing a hexapyridine ligand 105 and 101 without any template molecule. The ligand adopts a U-shape conformation due to its flexibility upon coordinating with PdII. The tubes were found to encapsulate aliphatic guests such as cyclohexane and octane.

Figure 1.22 Structure of tube 113.

To construct a long coordination nanotube, the Fujita team used ligand 106 to accomplish the self-assembly. The ligand is connected with a rigid biphenyl unit to avoid unfavourable intramolecular coordination. A 3.5 nm tube 114 was achieved using 115 as a template. The high yield was achieved when 118 was used as template for the tube. After removal of 118, in contrast to all previously described assemblies except 113 which was formed without any template molecule, the tube framework remained unchanged at room temperature. Empty tube 114 possesses considerable kinetic stability due to the twenty four cooperative PdII-pyridine interactions. Templates 116-118, which are different lengths, were shown to efficiently promote the assembly of tube
114 in high yield.95 Competitive experiments were examined for the guest binding when the templates were mixed in the assembly reaction. The result indicated the effectiveness of the guests in the order of 116 > 117 > 118. Moreover, unsymmetrical guests 119 and 120 were investigated to obtain some insight into the dynamics of guest binding by VT NMR experiments. The results suggested 120 was accommodated within the tube more tightly than 119. Redox-active guest 121 with two tetraphiafulvalene (TTF) linked by an oligo(ethyleneoxide) spacer was used to template tube 114 to examine the dynamic behaviour of the tube under redox conditions.

Figure 1.23 Self-assembly of coordination nanotube 114 and the different structures of templates molecule 115-121.

Ligand 107 was expected to assemble into the mono-end-capped coordination tube 122 upon complexation with 101 in the presence of an appropriate guest as seen in tube 113.96 In addition to the expected structure 122, the complexation of 101 and 107 also gave rise to the double open tube 123 which was observed only at higher concentrations as a minor component. Tube 123 did not convert into 122 at lower concentration which indicated that both structure are kinetic traps on the potential surface. The assembly of tube 122 was accomplished by the templating effect of guests such as 4,4'-dimethylbiphenyl 124. As expected, two methyl groups of 124 accommodated in 122 were clearly discriminated by 1H NMR spectrum. Asymmetric guest 112 was efficiently
accommodated in a unidirectional fashion. Only one isomer, in which the hydrophobic biphenyl group was included within the tube and the hydrophilic carboxylate group was exposed outside, was formed. Dicarboxylate guest 111 which was bound in open tube 108 was not included in 122, showing that the end-capped site of 122 provides an efficient hydrophobic pocket.

Figure 1.24 Self-assembly of a) mono-end-capped tube 122, and b) double open tube 123. The template molecules are omitted for clarity.

1.6.2 Self-assembled of tubes from other metal building blocks

Similar discrete coordination nanotubes were also studied by zur Loye and co-workers. A neutral tetranuclear nanotube \([\text{Hg}_4\text{Cl}_8(\text{bbimms})_4]\) (126) assembled from HgCl\(_2\) and the semirigid ditopic ligand 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene 125 which is capable of adopting either the syn or the anti conformation. When Hg\(^{II}\) (that favours bent coordination environments) was treated with bbimms, it was observed that the ligand inevitably bridges the ions in an anti conformation to form discrete tubular tetramers (Scheme 1.30). The molecular tube exhibits relatively high thermal stability and is capable of encapsulating guest molecules such as DMF or DMSO in its two rectangular compartments.
Zhang, Su and co-workers have reported the self-assembly of coordination tube Ag₆L₆ 128 based on the T-shaped 4-(3,5-bis(diphenylphosphino)phenyl)pyridine ligand 127 (Scheme 1.37). 98

Recently, Gagliardi, Cramer, Nitschke and co-workers have described the construction of M₈L₄ tubular complexes via self-assembly of Cu⁺ or Ag⁺ ions and elongated tetraamines with two 3,5-diaminophenylene moieties connected by a suitable spacer and 2-formylpyridine (Scheme 1.38). 99 The tubes were often observed as equilibrium of D₄-symmetric or D₂d/D₂-symmetric isomers. Variation in ligand length, substituents, metal ion identity, counteranion and temperature influenced the equilibria. The D₂d/D₂ isomer is stabilised by the elongation of the ligand or the introduction of an offset between tube ends while the D₄ isomer, which more stabilised in the presence of PF₆⁻ counteranions, is
the only one that exhibits guest binding properties. Substitution of Ag(CN)$_2^-$ for Au(CN)$_2^-$ resulted in the formation of Ag(Au(CN)$_2^-$) as the optimal guest through transmetalation.

![Scheme 1.38 Synthesis of M4L4 tubes.](image)

1.6.3 Self-assembled molecular shuttles

The acid-base responsive-helix-rod complexes based molecular shuttles were reported by Huc, Jiang and co-workers. This work was one of a few examples, to date that showed molecular motion in dynamically assembled systems without disassembly during operation. The shuttles consist of oligomeric aromatic amide molecular tapes that fold into very stable helices incorporating a cylindrical cavity with high affinities for complementary rod-like guests. An alkyl-chain guest terminated with bulky stoppers cannot thread into the cavity but instead slowly forms a complex with the oligoamide helical host winding around it. Increasing strand length adjusts the distance between the anchor points along the helix axis and tunes the time scale of helix unfolding-refolding dynamics. A range of different lengths of the guests were prepared to match the helix length. 1:1 stoichiometry of the host-guest complexes were assessed in the solid state (X-ray crystallography), solution (NMR spectroscopy) and the gas phase (mass spectrometry). The host-guest complexes between the shortest oligomer 136 and 137...
and their respective guests form readily at 25 °C which make them not suitable to be shuttles as refolding will be fast or may be faster than the shuttling rate. The complex $135 \supseteq 138$ forms at 25 °C over 30 min, which gave an estimated kinetic constant of dissociation slower than 2 d⁻¹. High host-guest stability and slow formation kinetics in the $135 \supseteq$ guest hint at even slower kinetics of complex dissociation encouraged further studies of the molecular shuttle.

![Scheme 1.39](image)

Figure 1.25 Host-guest components for assembly.

Rod-like guest 139 possess three hydrogen-bond acceptors and thus contains two degenerate stations, which can bind only one helix at a time because of the proximity. Exchange spectroscopy NMR experiments showed clear correlation resulting from the motion of 135 between the two stations of 139. The rate of this motion was calculated to be between 2 and 4 min⁻¹ at 25 °C, a time scale considerably smaller than that of host-guest complex dissociation, implying that 135 exchanges between the two stations of 139 via a sliding (shuttling) process and not via a dissociation (unfolding)-association (refolding) mechanism.

![Scheme 1.39](image)

Scheme 1.39 a) Degenerate helix shuttling along a symmetrical guest 137 of helix 133. The yellow dots mark hydrogen bond acceptors; b) Helix 133 sliding along a nondegenerate guest possessing a station that can be blocked or unblock upon protonation or deprotonation, respectively. The green dot symbolises the amine function of 138 where the red dot is the corresponding ammonium. Reproduced from ref. 89.
Shuttling in a non-degenerate guest 138, one with heptyl segment and the other with a diethyl amine segment, was also determined. 1H and 19F NMR indicated that 135 resides in a 58/42 proportion at the two stations. Upon titrating complex 133\rightleftharpoons 138 with an acid, only one set of signals corresponding to 135 residing only on an alkyl station was observed as it is repelled by the ammonium station. Adding a base instantly reverses the process. The time scale of this controlled motion is much faster than the rates of unfolding and refolding of 135 around 140, implying that motion is mediated by the rapid sliding of 135 along 140.

1.7 Scope of the Thesis

The present thesis explores the strategies to develop a new transition metal-complexed [2]rotaxane and its use as a stimuli-responsive molecular shuttle. Chapter II describes an investigation of the strategies to control a directional movement of submolecular components that can be utilised in molecular shuttle in particular, the exchange between “3+1” and “2+2” cyclometalated platinum complexes. Chapter III focuses on attempts to synthesis platinum(II) complexed-[2]rotaxanes using the active-metal template CuAAC strategy and transition metal template approach to be function as acid-base responsive molecular shuttles. Finally, Chapter IV is concerned self-assembly of the PdII-coordination nanotubes to be exploited as self-assembled bistable stimuli-responsive molecular shuttles.
1.8 References

Chapter II

Acid-base responsive switching between “3+1” and “2+2” platinum complexes

Acknowledgements

For their contribution to this chapter, I would like to thank Dr. Sarah Pike for her synthesis and preliminary studies of [L1Pt(DMSO)], [HL1Pt(dmbipy)]OTs, [L1Pt(py)], [L1Pt(3,5-lut)] and [L1Pt(DMAP)] and Prof. Alexandra Slawin for X-ray crystallography.
Synopsis

The acid-base induced changes to cyclometallated platinum complexes can be used to facilitate the exchange of ligands with different denticities. Acyclic and macrocyclic diphenylpyridine-based cyclometallated platinum complexes were examined using 1H NMR spectroscopy starting with the neutral monodentate ligand complexes. In the absence of acid, a bidentate ligand does not displace the monodentate ligand and remains uncoordinated. A slight excess of acid was needed to switch the coordinating preference to a bidentate complex. The amount of acid used is varied by the strength of each pyridyl monodentate ligands. The binding mode can be simply reversed by adding an excess amount of base. This metallosupramolecular switch shows excellent selectivity in both states and could be used to develop a stimuli-responsive bistable [2]rotaxane as an example of molecular machine.
2.1 Introduction

Bistable rotaxanes and catenanes have played a central role in the development of synthetic molecular machines. The strategies to control the directional movement of submolecular components in synthetic molecular machines in order to perform functions similar to those of biological ones are major challenges for chemists. As exemplified in Chapter I, section 1.3, stimuli-responsive molecular shuttles reported so far mostly employ the manipulation of non-covalent interactions including π-π interactions, hydrogen bonding, hydrophobic interactions or ion-dipole interactions to induce a reversible translational motion. The systems which utilise transition metal-ligand interactions are particularly attractive as their inherent strength have potential to be used in ratchet mechanism. In addition, a large thermodynamic bias between each state is desirable for switchable systems. Sauvage was the first to describe metal-containing rotaxanes and catenanes in which some stimuli that alternates the coordination preference can be used to achieve large-amplitude net motion of submolecular components. In this case the different preferred geometries of Cu(I) and Cu(II) were exploited to bring about motion. This system set the benchmark for metal-containing rotaxanes and catenanes for nearly twenty years.

Previous work within the Lusby group had reported the pH-switching of heteroleptic cyclometallated platinum complexes monitoring with 1H NMR spectroscopy. [L1Pt(DMAP)] (H2L1 = 2,6-diphenylpyridine) was reversibly interconverted into [L1Pt(DMAP)(OTs)] upon treatment with acid or base (Scheme 2.1). The switching process revealed or masked cis-coordinating group of the square-planar platinum complex, and this was used to create acid-base responsive assembly/disassembly of two- and three-dimensional metallosupramolecular architectures.

When the mixture of [L1Pt(DMAP)] and py or pyCF3 was treated with one equivalent of TsOH, formation of [trans-HL1Pt(DMAP)(py/pyCF3)]OTs was observed. Adding a second
equivalent of acid to $[\text{trans-}HL^1\text{Pt(DMAP)}(\text{py/pyCF}_3)]\text{OTs}$ resulted in liberation of py/pyCF$_3$ along with a solvato complex of $[HL^1\text{Pt(DMAP)}(S)]$, ($S = \text{DMF-}d_7$) (Scheme 2.2).5

Scheme 2.2 Acid-base responsive exchange between platinum coordinated DMAP and PyR.

As platinum(II) can coordinate with H_2L^1 and monodentate ligands in either η^3 C$^\wedge$N$^\wedge$C doubly anionic or η^2 C$^\wedge$N monoanionic fashion, it was envisaged that a HL1-Pt(II) complex that coordinate in C$^\wedge$N fashion could accept a bidentate ligand as well as two monodentate ligands to form a square planar complex. This led to an investigation of an acid-base stimuli responsive “3+1” and “2+2” cyclometallated platinum motifs that are able to exchange monodentate and bidentate ligands with excellent selectivity.
2.2 Results and Discussion

2.2.1 Formation of a “2+2” complex with an acyclic cyclometallated Pt complex

To probe whether a bidentate ligand could be accommodated within the primary coordination sphere of HL1Pt, initially [L1Pt(DMSO)] was first treated with p-toluenesulfonic acid (TsOH) and then 5,5′-dimethyl-2,2′-bipyridine (dmbipy) in CH2Cl2. This bidentate ligand was selected as it was felt this would give a better representation of a station, particularly in terms of steric demands, say in comparison to unfunctionalised 2,2′-bipy. It was also anticipated that the two methyl moieties could be used as a further spectroscopic handle to discriminate between each pyridyl half. We were pleased to see that the compound obtained from the this complexation presented two methyl signal (HJ), consistent the formation of an unsymmetrical complex (Figure 2.2b). The two differing halves of the coordinated dmbipy ligand are also clearly seen in the ortho protons, which appear at chemical shift 9.28 (Hk) and 7.65 (Hd) ppm. This large difference, as was observed in the methyl groups, is due to shielding effects from the non-coordinating phenyl ring which is positioned almost directly over Hk whereas for Hk these same non-covalent interactions are absent (Figure 2.2).

![Figure 2.1 Chemical structures of dmbipy and [HL1Pt(dmbipy)]+](image)
Figure 2.2 Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) dmbipy; b) [HL1Pt(dmbipy)]OTs. The assignments correspond to the lettering shown in Figure 2.1.

The structure of [HL1Pt(dmbipy)]OTs was confirmed by X-ray crystallography (Figure 2.3), using single crystals grown from slow diffusion of diisopropyl ether into a saturated chloroform solution.

Figure 2.3 Crystal structure of [HL1Pt(dmbipy)]OTs.6

The sterically congested nature of this complex creates a helical axis of asymmetry, as had previously been described by von Zelewsky.7 In the solid state, both P and M enantiomers8 are observed, in which the non-coordinating phenyl group sits either above or below the plane of the dmbipy ligand making the molecule adopted a helical geometry.9 To investigate this further, [HL1Pt(dmbipy)]CSA (CSA = camphorsulfonate) was generated using CSA to ring open [L1Pt(DMSO)] to determine whether this axis of asymmetry could be observed in solution. However, only a single set of 1H NMR resonances in CD$_2$Cl$_2$, a solvent in which tight ion pairing could be expected, was observed. Similarly, the addition of TRISPHAT to [HL1Pt(dmbipy)]OTs in CD$_2$Cl$_2$ did not show any signal splitting, which probably suggests that the interconversion between M and P diastereoisomers is fast on the NMR timescale (Scheme 2.3). This would also suggest that interconversion does not involve decoordination of dmbipy, rather just slippage of the the non-coordinating phenyl group past the bidentate ligand.
Scheme 2.3 The interconversion between the M- and the P-enantiomer of $[\text{HL}^1\text{Pt(dmbipy)}]^+$ was rapid in solution.

Figure 2.4. Partial ^1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) $[\text{HL}^1\text{Pt(dmbipy)}]\text{OTs}$, b) in situ generated $[\text{HL}^1\text{Pt(dmbipy)}](+)^{\text{CSA}}$ and c) $[\text{HL}^1\text{Pt(dmbipy)}]\text{OTs} + \text{TRISPHAT}$. The assignments correspond to the lettering shown in Figure 2.1.
2.2.2 Reversible Ligand Exchange Experiments with Acyclic Pt complexes

To explore whether more strongly coordinating neutral monodentate pyridyl-based ligands could be similarly displaced by the same bidentate ligand upon treatment with acid, the platinum complexes \([L^1\text{Pt(py)}]\), \([L^1\text{Pt(3,5-lut)}]\) and \([L^1\text{Pt(DMAP)}]\) (py = pyridine; 3,5-lut = 3,5-lutidine; DMAP = 4-dimethylaminopyridine) were prepared following established procedures. The formation of \([L^1\text{Pt(py)}]\), \([L^1\text{Pt(3,5-lut)}]\) and \([L^1\text{Pt(DMAP)}]\) were confirmed by \(^1\text{H NMR spectroscopy. Additionally, the structure of [L}^1\text{Pt(3,5-lut)]}^6 (Figure 2.5) and \([L^1\text{Pt(DMAP)}]\)^5 were confirmed by X-ray crystallography.

![Figure 2.5 Crystal structure of \([L^1\text{Pt(3,5-lut)}]\)^6](image)

The previously described pH-switching of heteroleptic cyclometallated platinum complexes \([L^1\text{PtL}']\) that can be coordinated in either \(\eta^2\) or \(\eta^3\) fashion upon a treatment with acid or base, respectively was used to reversibly assemble/disassemble metallosupramolecular complexes via the available cis coordinate. Furthermore, platinum binding preference of \([L^1\text{PtL}']\) in the presence of another ligand cannot be reversed by adding only one equivalent of TsOH. It was anticipated that addition of chelating ligand such as dmbipy to a protonated C\(^\text{N}\) complex would result in a displacement of monodentated ligand due to chelate effect and introduce a “3+1”-“2+2” switchable system.
Scheme 2.4 Acid-Base responsive switching between "3+1" and "2+2" cyclometallated Pt complexes.

In the absence of TsOH, 1H NMR spectroscopy showed that, in all cases, dmbipy does not displace the monodentate ligand and remains uncoordinated (Figure 2.6b, 2.7b and 2.8b) as the signals corresponding to $[L^1Pt(PyR_2R')]$ remained unchanged as do those of free dmbipy (Figure 2.2a).

For $[L^1Pt(py)]$, the addition of a slight excess (1.3 equivalents) of TsOH to the charge neutral complex and dmbipy resulted in the rapid displacement of the monodentate ligand and accompanying generation of $[HL^1Pt(dmbipy)]OTs$ (Figure 2.6c).

Figure 2.6 Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) $[L^1Pt(py)]$; b) $[L^1Pt(py)] + 5,5'$-dimethyl-2,2'-bipyridine; c) $[L^1Pt(py)] + 5,5'$-dimethyl-2,2'-bipyridine, 5 minutes after the addition of 1.3 eq TsOH; d) 1.5 h after the subsequent addition of 5 eq P$_3$i-Bu; e) Authentic $[HL^1Pt(dmbipy)]OTs$ (containing 3% CD$_3$OD).
When similar ligand exchange experiments were carried out with [L\text{1}Pt(3,5-lut)] and [L\text{1}Pt(DMAP)], it was found that the addition of over 2 equivalents of TsOH were required in order to generate the “2+2” complex (Figure 2.7c, 2.8c). In all the acyclic ligand exchange experiments, the minimum quantity of TsOH required to switch “3+1” to “2+2” complex was determined using titration-type experiments. When the monodentate ligand is pyridine, only a slight excess (1.3 eq) was required, however, for 3,5-lut and DMAP, 2.4 and 2.7 equivalents were needed to induce complete switching, respectively. For example, Figure 2.9 shows a selection of the NMR spectra for the [L\text{1}Pt(DMAP)]-dmbipy exchange experiment as a function of TsOH equivalents added. With a slight excess of TsOH (Figure 2.9a) both the “3+1” and “2+2” complexes are present, as well as “free” dmbipy and DMAP (protonated to various degrees), however, additional intermediate species can also be observed. For instance, the signal at 6.05 ppm is indicative of the protonated DMAP complex (the “2+1+1” species) [HL\text{1}Pt(DMAP)OTs]. As the equivalents of TsOH (Figures 2.9b and c) are increased, a reduction in both the “3+1” complex, [L\text{1}Pt(DMAP)], and the intermediate [HL\text{1}Pt(DMAP)OTs] and an increase in [HL\text{1}Pt(dmbipy)]OTs were observed.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2_7.png}
\caption{Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) [L\text{1}Pt(3,5-lut)]; b) [L\text{1}Pt(3,5-lut)] + 5,5'-dimethyl-2,2'-bipyridine; c) [L\text{1}Pt(3,5-lut)] + 5,5'-dimethyl-2,2'-bipyridine, 5 minutes after the addition of 2.4 eq TsOH; d) 2 h after the subsequent addition of 5 eq P$_{1-}$Bu; e) Authentic [HL\text{1}Pt(dmbipy)]OTs (containing 3% CD$_3$OD).}
\end{figure}
Figure 2.8 Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) [L1Pt(DMAP)]; b) [L1Pt(DMAP)] + 5,5'-dimethyl-2,2'-bipyridine; c) [L1Pt(DMAP)] + 5,5'-dimethyl-2,2'-bipyridine, 5 minutes after the addition of 2.7 eq TsOH; d) 2 h after the subsequent addition of 5 eq P$_1$-t-Bu; e) Authentic [HL1Pt(dmibipy)]OTs (containing 3% CD$_3$OD).

Figure 2.9 Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of a) [L1Pt(DMAP)] and dmibipy with a) 1.2; b) 1.8 and c) 2.7 eq TsOH.

The difference in the amount of acid required has been attributed to two principle effects. Firstly, liberated DMAP is significantly more basic than py (pK_a of DMAP-H$^+$ = 9.7, py-H$^+$ = 5.210) such that free DMAP can cause the re-cyclometallation to give the "3+1" complex. The second effect is that DMAP is also a better ligand in comparison to py. In particular, the observation of more stable "2+1+1" intermediates e.g. [HL1Pt(DMAP)OTs], suggests that the chelate effect of dmibipy is not sufficient to fully displace the strongly
coordinating monodenate DMAP. The use of excess acid almost certainly shifts the equilibrium towards the “2+2” complex, \([\text{HL}^1\text{Pt(dmbipy)}]\)OTs, through protonation of the liberated DMAP. Similar, but less pronounced, effects were observed for the exchange of \([\text{L}^1\text{Pt(3,5-lut)}]\).

As it was observed that monodentate ligands are not displaced by dmbipy in the absence of acid, it was envisaged that simply adding base to a mixture of \([\text{HL}^1\text{Pt(dmbipy)}]\)OTs and monodentate moiety (or protonated species in the case where excess acid had been used) would reverse the coordinative bias. Phosphazene base, \(\text{P}^1\text{-tBu}\) had previously been used to affect (re)cyclometallation of similar complexes,\(^4\) thus when \(\text{P}^1\text{-tBu}\) was added to the mixture of \([\text{HL}^1\text{Pt(dmbipy)}]\)OTs and monodentate pyridyl ligand (py, 3,5-lut or DMAP), the gradual disappearance of signals due to \([\text{HL}^1\text{Pt(dmbipy)}]\)OTs and reappearance of \([\text{L}^1\text{Pt(py)}]\), \([\text{L}^1\text{Pt(3,5-lut)}]\) and \([\text{L}^1\text{Pt(DMAP)}]\) followed 1.5-2 h at room temperature (Scheme 2.2; Figures 2.6d-2.8d).
2.2.3 Macro cyclic cyclometallated Pt complexes

To develop the system further, and with a stimuli-responsive molecular shuttle in mind, the macro cyclic C^N^C Pt complex, \([L^2Pt(DMSO)]\), has been prepared. The free macrocycle, \(H_2L^2\), was obtained in an excellent 80% yield from the Williamson-ether reaction of \(2,6\text{-di}(4\text{-hydroxyphenyl})\text{pyridine (1)}\) and the bisphenol A derived dialkylbromide (2) as shown in Scheme 2.5. Compound 1 was synthesised from the commercially available 4-hydroxyphenylboronic acid and 2,6-dibromopyridine via Suzuki coupling while compound 2 was obtained in one step by a Williamson-ether reaction between bisphenol A and a large excess 1,4-dibromobutane.

Scheme 2.5 Synthesis of macrocycle \(H_2L^2\). Reaction conditions: a) KOtBu, PEPPSI-IPr, iPrOH, rt, 48 h, 73%; b) Cs\(_2\)CO\(_3\), DMF, 60 °C, 16 h, 47%; c) Cs\(_2\)CO\(_3\), DMF, 65 °C, 80%.

The insertion of platinum also occurred in a highly respectable 80% yield (Scheme 2.6). This is perhaps surprising, as reaction of potassium tetrachloroplatinate with similar C^N^C chelates in acetic acid usually gives a cyclometallated chloride bridged dimer, and it could have been anticipated that the increased steric bulk of the macrocycle would make this process less facile.13

An unsymmetrical bidentate 2-(1-ethylphenyl-1H-1,2,3-triazol-4-yl)-5-bromopyrididine (L\(^3\)) was prepared by a CuAAC click reaction from terminal alkyne 4 and azide 5 in a good yield as shown in Scheme 2.7. Having a bidentate ligand synthesised from a CuAAC click reaction would be beneficial for expanding the system to a molecular shuttle as the rotaxane can be prepared using the active metal template CuAAC click reaction. This ligand could act as the active components for forming the interlocked structure and as one of the station in a molecular shuttle. The pyridyl alkyne 4 was synthesised from Sonogashira coupling of 5-bromo-2-iodopyridine and (tert-butyldimethylsilyl)acetylene.
first at 0°C then warmed to rt to prevent either di-coupling or 5-position coupling. The alkyne 3 was then deprotected with tetrabutylammonium fluoride (TBAF) to give terminal alkyne 4. 2-phenylethylazide, 5, was prepared according to literature procedure14.

Scheme 2.6 Synthesis of a platinum complexed macrocycle [L2Pt(DMSO)]. Reagents and conditions: a) i) K\textsubscript{2}[PtCl\textsubscript{4}], TBACl, acetic acid, 125 °C, 2d; ii) K\textsubscript{2}CO\textsubscript{3}, DMSO, H\textsubscript{2}O, 90 °C, 2 h, 80%.

![Scheme 2.6](image)

Scheme 2.7 Synthesis of ligand L3. Reagents and conditions: a) TBDMS acetylene, CuI, Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2}, Et\textsubscript{3}N, THF, 0 °C – rt, 82%; b) TBAF, CH\textsubscript{2}Cl\textsubscript{2}, rt, 3 h, 78%; c) NaN\textsubscript{3}, DMF, 80 °C, 18 h, quant.; d) Cu(CH\textsubscript{3}CN)\textsubscript{4}PF\textsubscript{6}, DCE, rt – 70 °C, 55%.

[L2Pt(3,5-lut)] was prepared from [L2Pt(DMSO)] by exchange of the coordinated DMSO for 3,5-lut (Scheme 2.8, step a). In solution, the 1H NMR spectrum of [L2Pt(3,5-lut)] (Figure 2.10a) exhibits coordinated ortho lutidine signals (H\textsubscript{a}) with characteristic 195Pt satellites, while the para site (H\textsubscript{b}) is significantly upfield shifted with respect to the free heterocycle, most likely due to shielding by the bisphenol A unit. The structure of [L2Pt(3,5-lut)] has been confirmed by X-ray crystallography using single crystals grown from slow diffusion of diethyl ether into a saturated dichloromethane solution (Figure 2.12) and from the refined X-ray diffraction data it was observed that [L2Pt(3,5-lut)] had crystallized in a P-1 (#2) space group and has a pseudo square planar geometry around the Pt(II) centre.
Scheme 2.8 Synthesis of macrocyclic cyclometallated Pt complexes. Conditions: a) CH\textsubscript{2}Cl\textsubscript{2}, 40 °C, 16 h, 37%; b) CH\textsubscript{2}Cl\textsubscript{2}, rt, 1 h, 34%.

Figure 2.10 Partial 1H NMR spectra (500 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 298 K) of a) [L\textsubscript{2}Pt(3,5-lut)]; b) [HL\textsubscript{2}Pt(L3)]OTs.

The preparation of a “2+2” macrocyclic complex from TsOH induced [L\textsubscript{2}Pt(DMSO)] using L3 was also carried out (Scheme 2.8, step b). The 1H NMR spectrum of the product revealed several interesting features (Figure 2.10b). Only one of two possible geometric isomers (Figure 2.11) was produced - trans-[HL\textsubscript{2}Pt(L3)]OTs. In the trans-isomer, the better ligand, pyridyl, is coordinated cis to nitrogen of 2,6-diphenylpyridyl as a result of the trans effect of the phenylato unit, could be considered as a kinetic product. As the NMR of this product did not change over time, it would suggest that this product is both the kinetically and thermodynamically favoured isomer, as it has been previously observed that platinum isomers which feature cyclometallated ligands undergo sluggish rearrangement.5, 15 Another trait of the 1H NMR spectrum of [HL\textsubscript{2}Pt(L3)]OTs is the
sterically congested nature of the complex around alkyl chains of the macrocycle, as the four triplets that arise from the H$_5$, H$_6$, H$_7$ and H$_8$ environments in the [L2Pt(3,5-lut)] and L3 precursors have been replaced by a complex diastereotopic pattern of signals.

![Figure 2.11](image)

Figure 2.11 Two possible isomers of [HL2Pt(L3)]OTs.

![Figure 2.12](image)

Figure 2.12 X-ray crystal structure of [L2Pt(3,5-lut)]. Colour code: C(L2), blue; C(3,5-lut), red; N, light blue; O, orange; Pt, magenta. Solvent molecules have been removed for clarity.

The absolute assignment of *trans*-[[L2Pt(L3)]OTs was made on the basis of the following observations:
(i) The presence of a strong NOESY signal between H$_E$ and H$_K$ in the acyclic “2+2” complex, [HL$_1$Pt(dmbipy)]OTs (Figure 2.13) and a clear lack of corresponding cross-peak between the signal at just below 10 ppm with H$_E$ for [HL$_2$Pt(L$_3$)]OTs (Figure 2.14).

(ii) Clear NOESY cross signals between the peak at just below 10 and signals that can be ascribed to H$_o$, H$_p$ and H$_h$ of the L$_3$ ligand.

(iii) The relative chemical shifts of the H$_c$ and H$_f$ resonances – whereas H$_f$ is deshielded with respect to the same signal for free L$_3$ (due to Pt complexation), H$_c$ is upfield shifted by ca. 0.05 ppm, a result of shielding by the non-coordinating phenoxy alkyl group of L$_2$.

Figure 2.13 1H-1H NOESY spectrum (500 MHz, CD$_2$Cl$_2$, 298 K) of [HL$_1$Pt(dmbipy)]OTs.

Figure 2.14 1H-1H NOESY spectrum (500 MHz, CD$_2$Cl$_2$, 298 K) of [L$_2$Pt(L$_3$)]OTs.
2.2.4 Ligand Exchange Experiments for Macrocyclic Pt complexes

Scheme 2.9 Acid-Base responsive switching between “3+1” and “2+2” macrocyclic cyclometallated Pt complexes.

The “3+1” to “2+2” interconversion between [L₂Pt(3,5-lut)] and [HL₂Pt(L³)]OTs was examined using ¹H NMR spectroscopy (Scheme 2.9 and Figures 2.15b-d). When L³ was mixed with [L₂Pt(3,5-lut)] in CD₂Cl₂ only signals which are correspond to those two species were apparent (Figure 2.15b). Upon the addition of 1.7 eq of TsOH, the NMR spectrum changed to give a set of signals that were indistinguishable from those of trans-[HL₂Pt(L³)]OTs (Figure 2.15c). The lesser amount of TsOH used to exchange the coordination of the platinum II centre from monodentate lutidine to bidentate pyridyltriazole L³ than that of the acyclic system suggests that L³ is a better ligand than dmbipy. As with the acyclic system, this change occurred within the time taken to record a subsequent spectrum. This rapid generation coupled to the lack of observation of another isomer further supports that trans-[HL₂Pt(L³)]OTs is the kinetic (and thermodynamic) product, irrespective of the identity of the neutral monodentate ligand in the starting “3+1” complex. When five equivalents of P₁-tBu was added to the NMR sample containing [HL₂Pt(L³)]OTs and free lutidine, the signals due to the “2+2” complex and monodentate ligand started to disappear, accompanied by the appearance of signals due to [L₂Pt(3,5-lut)] and free L³. After 48 h, only signals due to [L₂Pt(3,5-lut)] and free L³ could be observed (Figure 2.15d). The lethargy of this reaction in comparison to the same process for the acyclic complexes is almost certainly due to an increased steric barrier.
2.3 Conclusion

The acid-base responsive switching between “3+1” and “2+2” cyclometallated platinum complexes have been investigated. The acyclic C^N^C platinum motifs with pyridyl monodentate ligands including py, 3,5-lut and DMAP can be displaced with bidentate dmbipy ligand induced by acid addition. Furthermore, the “2+2” complex with the presence of monodentate ligand could be reversed to corresponding “3+1” complex after treated with base. The macrocyclic form of C^N^C platinum complexes gave similar results. These types of externally addressable coordination complexes could be developed to be useful molecular machines.

2.4 Experimental Section

2.4.1 General Experimental Procedure

Unless stated otherwise, all reagents and solvents were purchased from commercial sources and used without further purification. H_2L^1, H_2L^11 [L^1Pt(DMSO)], L^13, L^16 [L^1Pt(DMAP)], L^5 [L^1Pt(py)], L^5 [L^1Pt(3,5-lut)], L^6 [HL^1Pt(dmbipy)] OTs, L^6 were synthesised by Dr. Sarah J. Pike according to reported in literature. 1,1’-propane-2,2-diylbis[4-(4-bromobutoxy)benzene] (2) L^12 and 2-phenylethylazide (5) L^14 were prepared according to literature procedures.
2.4.2 Synthesis

To a yellow solution of \([L^1\text{Pt}(\text{DMSO})]\) (0.093 g, 0.19 mmol) in \(\text{CH}_2\text{Cl}_2\) (10 mL) was added 3,5-lutidine (0.040 g, 0.37 mmol), which resulted in a darkening of the solution to orange. The reaction was stirred for 18 h at rt and the excess solvent was removed under reduced pressure. Purification of the crude product using column chromatography (1:1:0.01; \(\text{CH}_2\text{Cl}_2\):hexane:NEt\(_3\)) gave the compound as an orange solid (0.052 g, 53 %). Bright orange crystals suitable for X-ray crystallography were grown via slow diffusion of diisopropyl ether into a saturated \(\text{CH}_2\text{Cl}_2\) solution of the desired complex. m.p. 205-210 °C (dec); \(^1\text{H} \text{NMR} (500 MHz, \text{CD}_2\text{Cl}_2)\): 8.68 (s, \(J^{195\text{Pt}} = 45.2\) Hz, 2H, \(H_a\)), 7.56 (t, \(J = 8.0\) Hz, 1H, \(H_b\)), 7.51 (s, 1H, \(H_c\)), 7.45 (dd, \(J = 7.6, 0.6\) Hz, 2H, \(H_d\)), 7.29-7.24 (m, 2H, \(H_e\)), 7.20-7.14 (m, 2H, \(H_f\)), 7.07-7.01 (m, 2H, \(H_g\)), 6.95 – 6.87 (m, 2H, \(H_h\)), 2.39 (s, 6H, \(H_i\)).
To a solution of \([L1Pt(DMSO)]\) (0.50 g, 10.0 mmol) in CH\(_2\)Cl\(_2\) (30 mL) was added 5,5′-dimethyl-2,2′-bipyridyl.TsOH (0.37 g, 10.0 mmol) and the reaction mixture stirred at rt for 5 minutes. After this time, the solution was concentrated to ~ 3 mL under reduced pressure and upon the slow addition of hexane, the desired product precipitated from solution as a bright yellow solid. The crude solid was filtered off and collected. Crystals suitable for X-ray crystallography were grown via slow diffusion of diisopropyl ether into a saturated chloroform solution (0.48 g, 78%); \(^1\)H NMR (500 MHz, CD\(_2\)Cl\(_2\)); δ = 9.28 (s, \(J^{\text{195Pt}} = 35.6\) Hz, 1H, H\(_d\)), 8.46 (d, \(J = 8.2\) Hz, 1H, H\(_i\)), 8.34 (br, 2H, H\(_{A+i}\)), 8.27 (d, \(J = 8.2\) Hz, 1H, H\(_b\)), 8.20-8.13 (m, 2H, H\(_{A+i}\)), 7.96 (d, \(J = 8.0\) Hz, 1H, H\(_d\)), 7.77-7.68 (m, 5H, H\(_{B+J+f+S}\)), 7.65 (s, 1H, H\(_d\)), 7.44 (d, \(J = 7.6\) Hz, 1H, H\(_c\)), 7.34 (td, \(J = 7.6, 1.5\) Hz, 1H, H\(_b\)), 7.32-7.19 (m, 4H, H\(_{C+D+i}\)), 7.11 (d, \(J = 8.0\) Hz, 2H, H\(_f\)), 2.62 (s, 3H, H\(_j\)), 2.32 (s, 3H, H\(_b\)), 2.21 (s, 3H, H\(_e\)).

2,6-(bis-4-hydroxyphenyl)pyridine, 1

Adapted from a procedure by Aucagne et al.\(^{11}\) Isopropanol (50 mL) was purged with nitrogen for 5 minutes then potassium tert-butoxide (2.24 g, 20 mmol), PEPPSI-IPr (0.27 g, 0.40 mmol, 5 mol%), 4-hydroxyphenylboronic acid (2.43 g, 17.6 mmol) and 2,6-dibromopyridine (1.89 g, 8 mmol) were added and the reaction flask was resealed and purged with nitrogen. The reaction mixture was stirred at rt for 48 h, then quenched with saturated NH\(_4\)Cl solution (100 mL) and extracted with EtOAc (3×100 mL). The combined organic layers were dried over MgSO\(_4\) filtered, concentrated under reduced pressure, then purified by column chromatography (0-30% Et\(_2\)O in CH\(_2\)Cl\(_2\)) providing the desired product as a pale yellow solid (1.53 g, 73%). m.p. 222-226 °C; \(^1\)H NMR (500 MHz, CD\(_3\)OD); 7.97 (d, \(J = 8.8\) Hz, 4H, H\(_d\)), 7.77 (t, \(J = 7.8\) Hz, 1H, H\(_d\)), 7.59 (d, \(J = 7.8\) Hz, 2H, H\(_b\)), 6.90 (d, \(J = 8.8\) Hz, 4H, H\(_d\)); \(^13\)C NMR (125 MHz, CD\(_3\)OD); 160.0, 158.1, 138.8, 132.3, 129.4, 118.2,
116.4; LR-FABMS (3-NOBA matrix): m/z = 263 [M]+; HR-FABMS (3-NOBA matrix): m/z = 263.09510 (calc. for C_{17}H_{13}O_{2}N, 263.09518).

Adapted from a procedure by Durola et al.12 To a stirred mixture of Cs_{2}CO_{3} (19.68 g, 60 mmol) and 2,6-(bis-4-hydroxyphenyl)pyridine (0.27 g, 1.0 mmol) in 600 mL of degassed DMF at 65 °C was added dropwise, using a pressure equalising funnel, over a period of 24 h a solution of 1,1′-propane-2,2-diylbis[4-(4-bromobutoxy)benzene] (0.51 g, 1.0 mmol) in 200 mL of degassed DMF. When addition was complete, the reaction was stirred at 65 °C for a further 30 h. After this time, the reaction mixture was cooled to rt, the solvent removed under reduced pressure, and the residue partitioned between CH_{2}Cl_{2} and H_{2}O. The organic phase was separated, and the aqueous phase extracted twice with CH_{2}Cl_{2}. The combined organic phases were washed with brine, H_{2}O and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue purified by column chromatography (25-50% CH_{2}Cl_{2}:Petroleum ether) to give a colourless solid as the product (0.70 g, 80%) m.p. 203-206 °C; 1H NMR (500 MHz, CDCl_{3}); 8.01 (d, J = 8.1 Hz, 4H, H_c), 7.73 (t, J = 7.4 Hz, 1H, H_a), 7.54 (d, J = 7.4 Hz, 2H, H_b), 7.16 (d, J = 8.1 Hz, 4H, H_i), 6.99 (d, J = 8.1 Hz, 4H, H_d), 6.82 (d, J = 8.1 Hz, 4H, H_I), 4.24 (t, J = 6.8 Hz, 4H, H_E), 4.01 (t, J = 5.7 Hz, 4H, H_H), 2.05-1.98 (m, 4H, H_F), 1.98-1.92 (m, 4H, H_G), 1.63 (s, 6H, H_K); ^{13}C NMR (125 MHz, CDCl_{3}); 159.5, 156.8, 156.5, 143.1, 137.4, 132.5, 128.4, 127.8, 117.0, 115.2, 113.8, 67.8, 67.3, 41.8, 31.3, 25.8, 25.5; LR-FABMS (3-NOBA matrix) m/z = 600 [MH]+; HR-FABMS (3-NOBA matrix) m/z = 600.31179 (calc. for C_{40}H_{42}NO_{4}, 600.31084).
To a solution of H$_2$L$_2$ (0.24 g, 0.40 mmol) in acetic acid (12 mL) was added K$_2$[PtCl$_4$] (0.17 g, 0.40 mmol) and tetrabutylammonium chloride (0.13 g, 0.40 mmol). The mixture was heated at 125 °C for 2 days over which time the suspension turned green-yellow with some unconsumed red Pt salt. The entire solids were filtered off and then washed with water (5 mL) to remove the red starting Pt salt. The resultant green-yellow precipitate was washed with acetone (5 mL) and Et$_2$O (5 mL). The green-yellow solid was then dissolved in hot DMSO (6 mL) and K$_2$CO$_3$ (0.57 g, 4.1 mmol) and H$_2$O (2 mL) were added. The mixture was heated to 90 °C for 2 h. Upon the addition of more water (10 mL) the product precipitated as a bright yellow solid. Flash column chromatography (CH$_2$Cl$_2$) and crystallization from Et$_2$O and CH$_2$Cl$_2$ gave the product as a bright yellow solid. (0.28 g, 80%). m.p. >270 °C (dec); 1H NMR (500 MHz, CDCl$_3$); δ 7.48 (t, $J = 8.0$ Hz, 1H, H$_A$), 7.36 (d, $J = 8.5$ Hz, 2H, H$_E$), 7.34 (d, $J = 2.5$ Hz, 2H, H$_B$), 7.14 (d, $J = 8.8$ Hz, 4H, H$_C$), 7.05 (d, $J = 8.0$ Hz, 2H, H$_G$), 6.84 (d, $J = 8.8$ Hz, 4H, H$_D$), 6.58 (dd, $J = 8.5$, 2.5 Hz, 2H, H$_F$), 4.17 (t, $J = 6.4$ Hz, 4H, H$_I$), 4.07 (t, $J = 6.2$ Hz, 4H, H$_J$), 3.14 (s, 6H, J$^{(195}$Pt) = 25.4 Hz, H$_M$), 2.02-1.90 (m, 8H, H$_{J+K}$), 1.62 (s, 6H, H$_L$); 13C NMR (125 MHz, CDCl$_3$); δ 168.4, 166.5, 160.7, 157.1, 143.3, 142.5, 141.0, 127.8, 126.1, 121.5, 114.2, 113.2, 112.0, 68.01, 67.99, 48.0, 41.7, 31.1, 26.5, 26.0; LR-ESIMS m/z = 871 [MH]$^+$; HR-ESIMS m/z = 871.27380 (calc. for C$_{42}$H$_{46}$NO$_5^{195}$Pt$_{32}$S).
To a yellow solution of \([L^2Pt(DMSO)]\) (0.032 g, 0.037 mmol) in CH$_2$Cl$_2$ (5 mL) was added 3,5-lutidine (0.004 g, 0.037 mmol), which resulted in a darkening of the solution to orange. The reaction was stirred at 40 °C overnight and the excess solvent was removed under reduced pressure. The crude residue was purified by Et$_2$O diffusion into a saturated CH$_2$Cl$_2$ solution, yielding the product as bright orange crystals (0.012 g, 37%).

1H NMR (500 MHz, CD$_2$Cl$_2$); δ 8.45 (s, 2H, $J^{(195Pt)} = 43.4$ Hz, H$_a$), 7.43 (t, $J = 8.0$ Hz, 1H, H$_b$), 7.36 (d, $J = 8.4$ Hz, 2H, H$_c$), 7.18 (d, $J = 8.7$ Hz, 4H, H$_d$), 7.03 (d, $J = 8.0$ Hz, 2H, H$_a$), 6.72 (s, 1H, H$_b$), 6.65 (d, $J = 8.7$ Hz, 4H, H$_d$), 6.54 (dd, $J = 8.4$, 2.5 Hz, 2H, H$_a$), 6.41 (d, $J = 2.5$ Hz, 2H, $J^{(195Pt)} = 27.3$ Hz, H$_b$), 3.98 (t, $J = 6.5$ Hz, 4H, H$_d$), 3.78 (t, $J = 6.5$ Hz, 4H, H$_d$), 1.88-1.78 (m, 14H, H$_{J,K,c}$), 1.67 (s, 6H, H$_b$); 13C NMR (125 MHz, CD$_2$Cl$_2$); δ 175.3, 167.5, 160.8, 157.0, 150.7, 143.2, 141.8, 139.2, 137.9, 135.4, 127.5, 125.4, 117.2, 114.3, 112.4, 111.6, 67.9, 1.88-1.78 (m, 14H, H$_{J,K,c}$), 1.67 (s, 6H, H$_b$); LR-FABMS (3-NOBA matrix) $m/z = 900$ [MH]$^+$; HR-FABMS (3-NOBA matrix) $m/z = 900.33538$ (calc. for C$_{47}$H$_{49}$N$_2$O$_4^{195}$Pt 900.33346).

2-tert-butyldimethylsilylethynyl-5-bromopyridine, 3

To a suspension of 5-bromo-2-iodopyridine (0.85 g, 3 mmol), CuI (0.06 g, 0.31 mmol, 10 mol%), Pd(PPh$_3$)$_2$Cl$_2$ (0.10 g, 0.14 mmol, 5 mol%) in dry THF (20 mL) and Et$_3$N (15 mL) at 0 °C was charged tert-butyldimethylsilylacetylene (0.58 mL, 3 mmol). The colour changed from yellow to dark brown. The reaction mixture was stirred at 0 °C for 1 h before being warmed to rt and then left stirring overnight. A white precipitate formed and the solution had turned yellow. The mixture was filtered through celite and washed
with Et,O. The filtrate was concentrated under reduced pressure. The resulting residue was dissolved in CH₂Cl₂, washed with brine and dried over MgSO₄. Following filtration and removal of the solvent under reduced pressure, the residue was purified by column chromatography (0-50% CH₂Cl₂/hexane) to give a colourless solid (0.73 g, 82%). m.p. 89-92 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.63 (d, J = 2.0 Hz, 1H, H₄), 7.77 (dd, J = 8.3, 2.4 Hz, 1H, H₂), 7.34 (dd, J = 8.3, 0.5 Hz, 1H, H₃), 1.00 (s, 9H, H₅), 0.20 (s, 6H, H₆); ¹³C NMR (125 MHz, CDCl₃); 151.2, 141.6, 138.9, 128.6, 120.4, 103.5, 95.1, 26.3, 16.8, -4.7; LRESI-MS: m/z = 296 [MH]+; HRESI-MS: m/z = 296.046565 (calc. for C₁₃H₁₉NSiBr 296.04647)

2-ethyl-5-bromopyridine, 4

To a solution of 2-tert-butylidimethylsilyl-ethyl-5-bromopyridine (0.15 g, 0.50 mmol) in CH₂Cl₂ (3 mL) was added TBAF (1M in THF, 0.5 mL, 0.50 mmol), which resulted in the colourless solution turning yellow. The solution was stirred at rt for 3 h and then the solvent was removed under reduced pressure. The residue was purified by column chromatography (0-50% CH₂Cl₂/hexane) to get the product as an off white solid (0.07 g, 78%). m.p. 80-83 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.65 (d, J = 2.1 Hz, 1H, H₄), 3.22 (s, 1H, H₂); ¹³C NMR (125 MHz, CDCl₃); 151.3, 140.4, 138.9, 128.4, 120.8, 81.8, 78.5; LRESI-MS: m/z = 182 [MH]+; HRESI-MS: m/z = 181.960374 (calc. for C₇H₅NBr 181.95999)

L³

To a colourless solution of 2-ethyl-5-bromopyridine (0.018 g, 0.10 mmol) and 2-phenylethylazide (0.025 g, 0.10 mmol) in TCE (10 mL) was added Cu(CH₃CN)₄PF₆ (0.042 g, 0.11 mmol). The resultant yellow solution was then stirred at rt for 1 h before being heated at 70 °C for 18 h. After cooling to rt, the mixture was filtered through celite and washed with TCE. The filtrate was concentrated under reduced pressure. The resulting residue was dissolved in CH₂Cl₂ washed with 0.1 M Sodium EDTA, dried over MgSO₄. The product was obtained as a colourless solid following purification by from column
chromatography (CH$_2$Cl$_2$) (0.018 g, 55%). 1H NMR (500 MHz, CDCl$_3$); δ 8.60 (d, $J = 2.2$ Hz, 1H, H$_c$), 8.06 (d, $J = 8.4$ Hz, 1H, H$_e$), 7.92 (s, 1H, H$_f$), 7.89 (dd, $J = 4.2$ Hz, 2H, H$_d$), 7.33-7.28 (m, 2H, H$_j$), 7.26-7.24 (m, 1H, H$_k$), 7.15 (d, $J = 7.1$ Hz, 2H, H$_i$), 4.65 (t, $J = 7.4$ Hz, 2H, H$_g$), 3.27 (t, $J = 7.4$ Hz, 2H, H$_h$); 13C NMR (125 MHz, CDCl$_3$); δ 150.6, 148.8, 147.4, 139.7, 136.9, 129.1, 128.8, 127.4, 122.5, 119.6, 52.0, 36.8; LR-FABMS (3-NOBA matrix) $m/z = 329$ [MH]$^+$; HR-FABMS (3-NOBA matrix) $m/z = 329.03933$ (calc. for C$_{15}$H$_{14}$BrN$_4$ 329.03964)

trans-[L$_2$Pt(L$_3$)]OTs

To a yellow solution of [L$_2$Pt(DMSO)] (0.012 g, 0.013 mmol) in CH$_2$Cl$_2$ (5 mL) was added L$_3$ (0.004 g, 0.013 mmol) and TsOH (0.002 g, 0.013 mmol), which resulted in a changing of the solution to greenish yellow. The solution was stirred at rt for 1 h and the excess solvent was removed under reduced pressure. The yellow solid was recrystallized in CH$_2$Cl$_2$ and Et$_2$O (0.005 g, 34 %). For the 1H-1H NOESY assisted assignment of trans-[L$_2$Pt(L$_3$)]OTs, see pages 11-12. 1H NMR (500 MHz, CD$_2$Cl$_2$); δ 9.94 (s, 1H, H$_f$), 8.29 (d, $J = 8.4$ Hz, 1H, H$_e$), 7.97 (d, $J = 7.8$ Hz, 1H, H$_d$), 7.88 (d, $J = 1.9$ Hz, 1H, H$_c$), 7.71 (d, $J = 7.9$ Hz, 2H, H$_w$), 7.67 (d, $J = 8.0$ Hz, 1H, H$_o$), 7.57-7.52 (m, 2H, H$_{jo}$), 7.30-7.25 (m, 2H, H$_i$), 7.24-7.16 (m, 3H, H$_{k+i}$), 7.14-7.07 (m, 4H, H$_{W+O}$), 7.04 (d, $J = 8.2$ Hz, 2H, H$_{o/\alpha}$), 6.80 (dd, $J = 8.5$, 2.4, 1H, H$_o$), 6.75-6.69 (m, 4H, H$_{M+P}$), 4.61-4.53 (m, 1H, H$_g$), 4.52-4.43 (m, 1H, H$_d$), 4.42-4.34 (m, 1H, H$_F$), 4.19-4.04 (m, 3H, H$_{r-o}$), 4.04-3.89 (m, 4H, H$_{brw}$), 3.28 (m, 2H, H$_a$), 2.31 (s, 3H, H$_r$), 2.20-1.93 (m, 5H, H$_{Q+R+S'}$), 1.92-1.82 (m, 1H, H$_X$), 1.82-1.70 (m, 2H, H$_T$), 1.60 (s, 3H, H$_V$), 1.57 (s, 3H, H$_U$); 13C NMR (125 MHz, CD$_2$Cl$_2$); δ 168.0, 161.2, 159.8, 159.3, 157.4, 157.3, 150.0, 149.9, 146.1, 143.8, 143.5, 142.8, 140.0, 139.6, 139.2, 136.8, 130.4, 129.4, 129.3, 129.0, 128.6, 128.21, 128.19, 127.7, 126.4, 126.1, 123.7, 122.1, 120.6, 119.0, 116.8, 114.4, 114.3, 113.9, 68.3, 68.0, 67.95, 67.9, 53.7, 42.0, 36.2, 31.5, 30.3, 26.2, 26.0, 25.8, 25.5, 21.5; LR-FABMS
(3-NOBA matrix) $m/z = 1122$ [MH]+; HR-FABMS (3-NOBA matrix) $m/z = 1122.30287$
(calc. for $C_{55}H_{54}BrN_5O_4^{195}Pt$ 1122.30014).

2.4.3 Ligand exchange experiment

General procedure for acyclic cyclometallated Pt complexes

To a solution of [L^1Pt(PyR_2R')] (4.0 μmol) in CD_2Cl_2 (0.30 mL) at 298 K was added dmbipy (4.0 μmol). The subsequent addition TsOH in 97:3 CD_2Cl_2:CD_3OD (5.2, 9.6 and 10.8 μmol of TsOH for the experiments with [L^1Pt(py)], [L^1Pt(3,5-lut)] and [L^1Pt(DMAP)], respectively), followed by agitation for 1 minute, caused the solution to lighten. A 1H NMR spectrum was then recorded immediately, confirming quantitative conversion to [HL^1Pt(dmbipy)]OTs. P_1-tBu in CD_2Cl_2 (20 μmol) was added directly to the NMR tube and the solution agitated for one minute. 1H NMR spectra were recorded at regular intervals until no further change was observed. The backward reaction of “2+2” to “3+1” complex was complete in 1.5 h for [L^1Pt(py)] and 2 h for [L^1Pt(3,5-lut)] and [L^1Pt(DMAP)].

Procedure for macrocyclic cyclometallated Pt complexes

To a solution of [L^4Pt(3,5-lut)] (1.7 mg, 1.9 μmol) in CD_2Cl_2 (0.30 mL) at 298 K was added L^3 (0.62 mg, 1.9 μmol). The subsequent addition TsOH in 97:3 CD_2Cl_2:CD_3OD (3.2 μmol) followed by agitation for 1 minute, caused the solution to lighten. A 1H NMR spectrum was then recorded immediately, confirming complete conversion to [HL^2Pt(L^3)]OTs. P_1-tBu in CD_2Cl_2 (9.5 μmol) was added directly to the NMR tube and the solution agitated for one minute. 1H NMR spectra were recorded at regular intervals until no further change was observed, indicating that at 298 K, the backward reaction of macrocyclic “2+2” to “3+1” complex was complete after 48 h.

2.4.4 Crystal data and structure refinement for [L^2Pt(3,5-Lut)]

Figure 2.16 X-ray crystal structure of $[L_2\text{Pt}(3,5-\text{Lut})]$. The carbon atoms of a macrocycle are shown in blue, Lut in orange, platinum in pink, nitrogen in pale blue, and oxygen in red.

Table 2.1 Crystal data and structure refinement for $[L_2\text{Pt}(3,5-\text{Lut})]$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>$[L_2\text{Pt}(3,5-\text{Lut})]$</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>$C_{47}H_{48}N_2O_4\text{Pt}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>900.00</td>
</tr>
<tr>
<td>Temperature</td>
<td>93(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71075 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1 (#2)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 10.3265(10) \text{ Å}$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = 110.841(6)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$b = 13.6884(13) \text{ Å}$</td>
</tr>
<tr>
<td></td>
<td>$\beta = 107.420(5)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$c = 15.3966(12) \text{ Å}$</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 95.035(5)^\circ$</td>
</tr>
<tr>
<td>Volume</td>
<td>$1894.1(3) \text{ Å}^3$</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.578 g/cm3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>3.7379 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>908.00</td>
</tr>
<tr>
<td>Crystal size</td>
<td>$0.10 \times 0.03 \times 0.03 \text{ mm}^3$</td>
</tr>
</tbody>
</table>
Theta range for data collection 2.38 to 25.35°
Index ranges -12<=h<=12, -16<=k<=16, -18<=l<=18
Reflections collected 18722
Independent reflections 6861 [R(int) = 0.0261]
Completeness to theta = 25.00° 98.5%
Absorption correction Multiscan
Max. and min. transmission 0.894 and 0.760
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 6861/ 0 / 487
Goodness-of-fit on F^2 1.199
Final R indices [I>2sigma(I)] R1 = 0.0234
R indices (all data) wR2 = 0.0771
Largest diff. peak and hole 1.050 and -1.030 e. Å^-3

Table 2.2 Selected Bond lengths [Å], angles [°] and torsion angles [°] for [L^2Pt(3,5-Lut)].
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)-N(8)</td>
<td>1.956(4)</td>
<td>C(23)-O(24)</td>
<td>1.434(5)</td>
</tr>
<tr>
<td>Pt(1)-C(14)</td>
<td>2.046(6)</td>
<td>O(24)-C(25)</td>
<td>1.383(6)</td>
</tr>
<tr>
<td>Pt(1)-C(1)</td>
<td>2.063(6)</td>
<td>C(25)-C(26)</td>
<td>1.398(8)</td>
</tr>
<tr>
<td>Pt(1)-N(46)</td>
<td>2.010(4)</td>
<td>C(26)-C(27)</td>
<td>1.390(7)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.401(8)</td>
<td>C(27)-C(28)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.405(7)</td>
<td>C(28)-C(29)</td>
<td>1.398(8)</td>
</tr>
<tr>
<td>C(5)-C(4)</td>
<td>1.393(8)</td>
<td>C(30)-C(25)</td>
<td>1.373(6)</td>
</tr>
<tr>
<td>C(4)-C(3)</td>
<td>1.382(7)</td>
<td>C(28)-C(31)</td>
<td>1.538(7)</td>
</tr>
<tr>
<td>C(3)-C(2)</td>
<td>1.39(1)</td>
<td>C(31)-C(32)</td>
<td>1.55(1)</td>
</tr>
<tr>
<td>C(2)-C(7)</td>
<td>1.473(7)</td>
<td>C(31)-C(44)</td>
<td>1.544(9)</td>
</tr>
<tr>
<td>C(7)-C(12)</td>
<td>1.381(8)</td>
<td>C(31)-C(45)</td>
<td>1.536(6)</td>
</tr>
<tr>
<td>C(12)-C(11)</td>
<td>1.385(8)</td>
<td>C(32)-C(33)</td>
<td>1.380(8)</td>
</tr>
<tr>
<td>C(11)-C(10)</td>
<td>1.40(1)</td>
<td>C(32)-C(37)</td>
<td>1.389(9)</td>
</tr>
<tr>
<td>C(10)-C(9)</td>
<td>1.382(8)</td>
<td>C(37)-C(36)</td>
<td>1.39(1)</td>
</tr>
<tr>
<td>N(8)-C(9)</td>
<td>1.359(7)</td>
<td>C(36)-C(35)</td>
<td>1.386(8)</td>
</tr>
<tr>
<td>N(8)-C(7)</td>
<td>1.376(9)</td>
<td>C(35)-C(34)</td>
<td>1.387(9)</td>
</tr>
<tr>
<td>C(9)-C(13)</td>
<td>1.468(9)</td>
<td>C(34)-C(33)</td>
<td>1.40(1)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.417(6)</td>
<td>C(35)-O(38)</td>
<td>1.377(8)</td>
</tr>
<tr>
<td>C(13)-C(18)</td>
<td>1.401(8)</td>
<td>O(38)-C(39)</td>
<td>1.438(8)</td>
</tr>
<tr>
<td>C(18)-C(17)</td>
<td>1.38(1)</td>
<td>C(39)-C(40)</td>
<td>1.511(9)</td>
</tr>
<tr>
<td>C(17)-C(16)</td>
<td>1.392(7)</td>
<td>C(40)-C(41)</td>
<td>1.525(9)</td>
</tr>
<tr>
<td>C(16)-C(15)</td>
<td>1.389(8)</td>
<td>C(41)-C(42)</td>
<td>1.514(9)</td>
</tr>
<tr>
<td>C(15)-C(14)</td>
<td>1.410(9)</td>
<td>O(43)-C(5)</td>
<td>1.391(6)</td>
</tr>
<tr>
<td>N(46)-C(47)</td>
<td>1.354(7)</td>
<td>O(43)-C(42)</td>
<td>1.450(6)</td>
</tr>
<tr>
<td>N(46)-C(51)</td>
<td>1.348(7)</td>
<td>C(28)-C(52)</td>
<td>4.105(8)</td>
</tr>
<tr>
<td>C(51)-C(50)</td>
<td>1.366(8)</td>
<td>C(52)-C(25)</td>
<td>3.783(9)</td>
</tr>
<tr>
<td>C(50)-C(49)</td>
<td>1.404(8)</td>
<td>C(53)-C(32)</td>
<td>4.755(7)</td>
</tr>
<tr>
<td>C(49)-C(48)</td>
<td>1.392(8)</td>
<td>C(35)-C(53)</td>
<td>3.600(6)</td>
</tr>
<tr>
<td>C(48)-C(47)</td>
<td>1.379(8)</td>
<td>C(48)-C(27)</td>
<td>4.507(9)</td>
</tr>
<tr>
<td>H(53B)-C(53)</td>
<td>0.980(5)</td>
<td>C(48)-C(26)</td>
<td>4.39(1)</td>
</tr>
<tr>
<td>C(52)-C(48)</td>
<td>1.506(8)</td>
<td>C(48)-C(30)</td>
<td>4.546(9)</td>
</tr>
<tr>
<td>C(16)-O(19)</td>
<td>1.378(8)</td>
<td>C(48)-C(29)</td>
<td>4.668(9)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.524(9)</td>
<td>C(53)-C(37)</td>
<td>4.893(6)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.520(7)</td>
<td>C(36)-C(53)</td>
<td>4.392(6)</td>
</tr>
<tr>
<td>Bond/Distance</td>
<td>Value 1</td>
<td>Bond/Distance</td>
<td>Value 2</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>C(33)-C(53)</td>
<td>4.054(7)</td>
<td>C(15)-C(16)-O(19)</td>
<td>123.7(5)</td>
</tr>
<tr>
<td>C(34)-C(53)</td>
<td>3.402(6)</td>
<td>C(20)-C(21)-C(22)</td>
<td>112.7(5)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.499(9)</td>
<td>C(22)-C(23)-O(24)</td>
<td>108.8(5)</td>
</tr>
<tr>
<td>C(20)-O(19)</td>
<td>1.437(7)</td>
<td>C(23)-O(24)C(25)</td>
<td>117.7(4)</td>
</tr>
<tr>
<td>N(46)-Pt(1)-C(14)</td>
<td>99.0(2)</td>
<td>O(24)-C(25)C(30)</td>
<td>116.9(5)</td>
</tr>
<tr>
<td>N(46)-Pt(1)-C(1)</td>
<td>98.5(2)</td>
<td>C(29)-C(28)-C(31)</td>
<td>123.2(5)</td>
</tr>
<tr>
<td>Pt(1)-C(14)-C(13)</td>
<td>111.9(4)</td>
<td>C(37)-C(32)-C(31)</td>
<td>119.8(5)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(9)</td>
<td>115.4(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-C(7)</td>
<td>123.1(5)</td>
<td>C(14)-Pt(1)-N(46)-C(47)</td>
<td>-51.7(4)</td>
</tr>
<tr>
<td>C(9)-N(8)-Pt(1)</td>
<td>118.9(4)</td>
<td>C(12)-C(7)-C(2)-C(3)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(7)-N(8)-Pt(1)</td>
<td>118.0(4)</td>
<td>C(10)-C(9)-C(13)-C(18)</td>
<td>-1.0(9)</td>
</tr>
<tr>
<td>C(7)-C(2)-C(1)</td>
<td>116.1(5)</td>
<td>C(6)-C(1)-Pt(1)-N(46)</td>
<td>-3.6(6)</td>
</tr>
<tr>
<td>C(6)-C(5)-O(43)</td>
<td>120.2(5)</td>
<td>C(15)-C(16)-O(19)-C(20)</td>
<td>-24.7(8)</td>
</tr>
<tr>
<td>C(5)-O(43)-C(42)</td>
<td>114.9(4)</td>
<td>C(16)-O(19)-C(20)-H(21B)</td>
<td>147.6(4)</td>
</tr>
<tr>
<td>O(43)-C(42)-C(41)</td>
<td>113.8(5)</td>
<td>C(20)-C(21)-C(22)-O(24)</td>
<td>82.3(5)</td>
</tr>
<tr>
<td>C(42)-C(41)-C(40)</td>
<td>113.7(5)</td>
<td>Pt(1)-N(46)-C(51)-C(1)</td>
<td>33.1(2)</td>
</tr>
<tr>
<td>C(40)-C(39)-O(38)</td>
<td>108.4(5)</td>
<td>C(33)-C(32)-C(31)-C(28)</td>
<td>-105.1(6)</td>
</tr>
<tr>
<td>C(39)-O(38)-C(35)</td>
<td>117.6(4)</td>
<td>C(31)-C(28)-C(27)-C(37)</td>
<td>-61.2(4)</td>
</tr>
<tr>
<td>C(52)-C(48)-C(47)</td>
<td>120.4(5)</td>
<td>C(26)-C(25)-O(24)-C(23)</td>
<td>-1.6(8)</td>
</tr>
<tr>
<td>C(47)-N(46)-C(51)</td>
<td>117.4(5)</td>
<td>C(34)-C(35)-O(38)-C(39)</td>
<td>164.6(5)</td>
</tr>
<tr>
<td>C(51)-C(50)-H(39B)</td>
<td>93.3(3)</td>
<td>O(38)-C(39)-C(40)-C(41)</td>
<td>177.1(5)</td>
</tr>
<tr>
<td>C(16)-O(19)-C(20)</td>
<td>117.5(4)</td>
<td>C(6)-C(5)C(42)-C(41)</td>
<td>1.0(6)</td>
</tr>
</tbody>
</table>
2.5 References

Chapter III

Towards a stimuli-responsive platinum complexed [2]rotaxane

Acknowledgements

Dr. Paul Lusby, Dr. Paul Symmers and Michael Burke are gratefully thanked for their proofreading of this chapter.
Synopsis

Having established the occurrence of acid-base activated switching between “3+1” and “2+2” square planar platinum coordination modes in model cyclometalated C^N^C complexes in the previous chapter, the task now became to extend this chemistry for use in a molecular machine system.

The synthesis towards a rotaxane using an active metal template, CuAAC “click” strategy initially showed promised as [2]rotaxane R^{2b} was obtained. However, as the incorporation of the platinum(II) centre into the macrocycle of R^{2b} to generate [R^{2b}Pt]Cl was unsuccessful, a redesign was necessary. A series of 3,5-pyridine functionalized axle molecules (unsaturated/saturated hydrocarbon chain adjacent to pyridine) were developed and submitted to exchange with DMSO in a platinum-complexed macrocycle under various conditions in a threading-followed-by-stoppering methodology. Upon the attachment of stopper units to a pseudorotaxane, the rotaxane product was synthesised but failed to purify from the reaction mixture. The preformed clicked pyridine thread was synthesised and underwent a ligand exchange reaction. Even though the ^1H NMR spectrum and mass spectrum were encouraging, the appropriate separation conditions remained elusive. The attempt to exchange an unsymmetrical half-thread was undertaken but encountered the same purification problem as with other designs.
3.1 Introduction

Rotaxanes can be synthesised using various strategies and several effective ways to make complexes have been developed utilising metal template effects. At first, metal ions were used for their coordination chemistry to gather and organize ligands in the proper positions and orientations to encourage the formation of an interlocked assembly. Metal ions with tetrahedral, trigonal bipyramidal or octahedral coordination geometries have all been used for such architectures (as detailed in Chapter I, section 1.2.2).

As the synthesis of rotaxanes has been well-established, useful properties or functions of the interlocked systems are the next goal for further development. After the successful redox-responsive CuI/CuII catenane\(^1\) and rotaxane\(^2\) systems first described by Sauvage and co-workers nearly twenty years ago, only the switchable palladium-complexed molecular shuttles developed by Leigh and co-workers\(^3\) stand as examples of stimuli-responsive molecular shuttles based on the manipulation of metal-ligand interactions between components. The acid-base induced changes to cyclometallated platinum complexes described in Chapter II could be used to develop a stimuli-responsive bistable [2]rotaxane as an example of molecular machine.
3.2 Results and Discussion

3.2.1 Basis of the Design

In Chapter II, the "3+1" to "2+2" interconversion of non-interlocked platinum C^N^C macrocyclic compounds was discussed. The results suggested that a platinum-complexed [2]rotaxane featuring a C^N^C macrocycle, 3,5-disubstituted monodentate pyridine† and bidentate pyridyl triazole stations in the thread would act as an acid-base responsive molecular shuttle (Scheme 3.1). Under neutral conditions, the cyclometallated platinum macrocycle would coordinate to the monodentate pyridine site (py-R1Pt).‡ Upon addition of TsOH, the intermediate "2+1+1" where the Pt-macrocycle coordinated with Py and OTs would be generated, before an excess amount of acid would protonate py to induce a change in the coordination mode at the metal centre, generating the 2+2 rotaxane ([2-tripy-R1Pt]OTs). When P\textsubscript{1}-tBu is added, recurrence of the 3+1 rotaxane would be expected (Scheme 3.1).

Scheme 3.1 Acid-base interconversion between "3+1" and "2+2" platinum complexed-[2]rotaxanes. Conditions: a) TsOH; b) P\textsubscript{1}-tBu.

†Pt(II) complex of 3,5-disubstituted pyridines are thermodynamically preferred to 2,6-disubstituted analogues.¶
‡ The italicized prefixes py- and 2-tripy- denote that the Pt-complexed macrocycle is coordinated to the ligand.
3.2.2 Prototype one-station-[2]rotaxane

It has been reported that an active-metal template strategy using copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) “click” reaction is a highly effective procedure for rotaxane synthesis.\(^5\) A [2]rotaxane with a bidentate station generated by the click reaction has not been studied. A prototype [2]rotaxane with one station ([R\(^2\)a-Pt]\(X\)) was designed to assess the potential for rotaxane formation by CuAAC reaction (Scheme 3.2).

A very similar pyridine macrocycle without a bisphenol A unit has been successfully carried out by click reaction to produce a rotaxane.\(^{5b}\) Pyridyl-azide half-thread 4 was proposed to click with alkyne 2 and macrocycle H\(_2\)L\(^2\) to afford the first clicked bidentate rotaxane. Insertion of the platinum(II) centre into the macrocycle after the click reaction would be carried out to furnish the desired rotaxane. There were only few reports on the dual use of a triazole unit as a component to complete the mechanically interlocked structure and also a fundamental element of the system (*i.e.* a station).\(^{5b, 6}\)

![Scheme 3.2 Prototype 1-station-[2]rotaxane, [R\(^2\)a-Pt]\(X\)](image_url)
3.2.2.1 Retrosynthesis of rotaxane $[\text{R}^{2a}\text{Pt}]X$

The components required for the formation of active-metal template CuAAC click rotaxane include a macrocycle, terminal alkyne and azide unit. Alkyne 2, 1-(prop-3-ynoxy)-4-(tris-(4-tert-butyl-phenyl)-methyl)-benzene, is a known compound that was synthesised as described in the literature. The synthesis of macrocycle H_2L^2 has been described in previous chapter. Azidopyridine compound 4 could be obtained from Sonogashira coupling of pyridine with alkyne 2 followed by introduction of the azido group. Once the rotaxane is produced, it was anticipated that complexation with platinum(II) would be carried out using a modification of Rouke’s procedure.

![Scheme 3.3 Retrosynthesis of prototype 1-station-[2]rotaxane $[\text{R}^{2a}\text{Pt}]X$.](image-url)
3.2.2.2 Synthesis of rotaxane [R2aPt]X

The first route towards the half-thread precursor 3 was developed by Dr. Sarah Pike starting from the commercially available 2-chloro-5-iodopyridine (Scheme 3.4a-c). Pyridine was treated first with propargyl alcohol under standard Sonogashira conditions before the alcohol moiety was then converted into the alkynylbromide using the Appel reaction followed by Williamson-ether reaction with stopper 1 to afford compound 3.

\[
\begin{align*}
\text{Cl} & \quad \text{I} \\
\text{N} & \quad \text{Br} \\
\text{Br} & \quad \text{O-R} \\
\text{N} & \quad \text{O-R} \\
\end{align*}
\]

Scheme 3.4 Synthetic route of 2-azidopyridine half-thread 4. Reagents and conditions: a) propargyl alcohol, Pd(PPh\textsubscript{3})\textsubscript{4}, CuI, Et\textsubscript{3}N, 25 °C, absence of light, 20 h, 91%; b) CBr\textsubscript{4}, CH\textsubscript{2}Cl\textsubscript{2}, PPh\textsubscript{3}, 25 °C, 18 h, 23%; c) stopper 1, K\textsubscript{2}CO\textsubscript{3}, butanone, reflux, 36 h, 79%; d) NaN\textsubscript{3}, DMF, 120 °C, 18 h, 34%; e) stopper 1, K\textsubscript{2}CO\textsubscript{3}, butanone, reflux, 92%; f) Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2}, PPh\textsubscript{3}, CuI, DEA, THF, rt, 86%.

Another shorter, parallel synthetic pathway was studied to improve the overall yield (Scheme 3.4e-f). A Sonogashira coupling of 2-chloro-5-iodopyridine with preformed alkynyl stopper 2, from Williamson ether synthesis of propargyl bromide and stopper 1, under standard conditions gave 3 in 86% yield. Interconversion of the chloride group of 3 for an azide moiety was accomplished in 34% yield.

CuAAC reaction was carried out to construct a rotaxane R2a using a modified literature procedure.5b A solution of macrocycle H\textsubscript{2}L\textsubscript{2}, azide 4, alkyne 2 (each one eq), and [Cu(CH\textsubscript{3}CN)\textsubscript{4}]PF\textsubscript{6} (1.1 eq) in dry CH\textsubscript{2}Cl\textsubscript{2} was stirred at rt for 24 h then the mixture was demetallated with KCN. The 1H NMR spectrum of the crude product showed no reaction occurred, only peaks corresponding to the starting material were present. Conventional heating to reflux in ClCH\textsubscript{2}CH\textsubscript{2}Cl (DCE) for 43 h still gave no evidence of product. Further attempts were made to elucidate the conditions needed to produce a non-interlocked
thread. Both conventional heating for 5 d and microwave-assisted synthesis in various conditions failed to yield the desired product however.

It has been reported that 2-azidopyridine exist in an equilibrium between closed form (tetrazole) and open form (azide) in solution (Scheme 3.5). In the solid state, only the tetrazole form was previously obtained. The presence of the tetrazole form of 2-azidopyridine may explain the harsh conditions and reactive CuI catalyst generally required for formation of the pyridyl-triazole product. Those conditions used might not suitable for the product formation.

![Scheme 3.5 Predominant tetrazolic form of 2-azidopyridine.](image)

There was a report on the click reaction of 2-ethynlypyridine and 2-azidopyridine and their corresponding azide and alkyne reactants. The ethynlypyridine gave very good yield of triazole product in mild conditions whereas the azidopyridine needed to be refluxed for five days. These results suggested a potential change in the design of a prototype rotaxane. Therefore, ethynlypyridine half-thread and azido propyl half-thread became the preferred reactants to alleviate some of the synthetic problem.

3.2.2.3 Retrosynthesis of rotaxane \([R^{2b}\text{Pt}]X\)

Similar to the first design of rotaxane \([R^{2a}\text{Pt}]X\), the reactants for CuAAC reaction consist of alkyne, azide and macrocycle as shown in Scheme 3.6. It was envisaged that the ethynlypyridine half-thread \(10\) could be prepared from a Sonogashira coupling reaction of precursor \(3\) with commercial silyl-protected acetylene followed by deprotection. Synthesis of azido propyl half-thread \(12\) could be derived from 1,3-dibromopropane using two Williamson reactions.
Scheme 3.6 Retrosynthesis of prototype 1-station-[2]rotaxane [R^{2b}Pt]X.

3.2.2.4 Synthesis of rotaxane [R^{2b}Pt]Cl

Pyridine 3 was coupled with trimethylsilylethylene under Sonogashira reaction conditions (Scheme 3.7), either by conventional heating or microwave irradiation. Chromatographic purification of the crude product failed to yield the desired product giving uncharacterizable compounds.
Scheme 3.7 Synthesis of ethynylpyridine half-thread 5. Reagents and conditions: a) TMSacetylene, Pd(PPh₃)₂Cl₂, PPh₃, CuI, DEA, THF (conventional heating)/DMF (microwave).

A revised synthetic pathway was undertaken starting from 5-bromo-2-iodopyridine (Scheme 3.8). A Sonogashira coupling with trimethylsilylacetylene was carried out to afford 6 in 45% yield. A second Sonogashira reaction of the meta-bromo position was also undertaken. However following reaction at 70 °C for 3 days, no desired product could be obtained even though TLC showed consumption of starting materials. This unsuccessful reaction was attributed to a low stability of the TMS-acetylene group, which could be cleaved under the reaction conditions resulting in decomposition of the reactants or possibly oligomerization. Changing the silyl protecting group to a TBDMS unit was considered as it has been reported to be ca. 10⁴ times more stable than TMS. This new substrate 8 was produced in a good yield as described in Chapter II.

Scheme 3.8 Synthesis of ethynylpyridine half-thread 10. Reagents and conditions: a) TMSacetylene, Pd(PPh₃)₂Cl₂, PPh₃, CuI, Et₃N, THF, rt, 20 h, 45%; b) alkyne 2, Pd(PPh₃)₂Cl₂, PPh₃, CuI, Et₃N, THF rt-70 °C; c) TBDMS acetylene, CuI, Pd(PPh₃)₂Cl₂, Et₃N, THF, 0 °C–rt, 82%; d) alkyne 2, Pd(PPh₃)₄, CuI, Et₃N, THF, 60 °C, 87%; e) TBAF, THF, rt, 18 h, 35%.
A new synthesis of ethynylpyridine half-thread 10 was developed (Scheme 3.8c-e) starting from previously prepared 2-tert-butyldimethylsilylethynyl-5-bromopyridine 8 and subjecting it to a Sonogashira coupling conditions with alkyne 2. This reaction afforded 9 in good yield (87%). The alkyne 9 was then deprotected with tetrabutylammonium fluoride (TBAF) to give terminal alkyne 10.

Scheme 3.9 Synthesis of alkyl azide half-thread 12. Reagents and conditions: a) K₂CO₃, NaI, butanone, reflux, 18 h, 92%; b) NaN₃, DMF, 100 °C, 18 h, 84%.

Azide functionalised stopper 12 was derived from a Williamson-ether reaction starting from 1,3-dibromopropane following by azidation reaction with a high 84% final yield (Scheme 3.9).

Scheme 3.10 Synthesis of rotaxane R²b. Reagents and conditions: a) i)Cu(CH₃CN)₄PF₆, DCE, 70 °C; II) 0.1 M Na₄EDTA, 16%.
Synthesis of rotaxane R^{2b} was adapted from a procedure by Leigh et al (Scheme 3.10). Azide 12 (1 eq), alkyne 10 (1 eq), macrocycle H_2L^2 (1 eq) and [Cu(CH$_3$CN)$_4$]PF$_6$ (1.1 eq) were added to a flask under N_2 atmosphere. 1,2-Dichloroethane (DCE) was injected as a solvent. The mixture was purged with N_2 and left stirring at rt for 24 h then the reaction flask was heated at 70 °C for 3 d. The rotaxane formed was demetallated using 0.1 M Sodium EDTA. The product was obtained as a white solid following purification from column chromatography. Along with rotaxane R^{2b}, noninterlocked thread 13 was generated during click reactions as well as unreacted macrocycle.

![Figure 3.1](image)

Figure 3.1 Partial 1H NMR spectra (500 MHz, CDCl$_3$, 298 K) of a) macrocycle H_2L^2; b) rotaxane R^{2b}; c) noninterlocked thread 13. The assignments correspond to the lettering shown in Scheme 3.10.

The 1H NMR spectrum of rotaxane R^{2b} shows the upfield shifts of several signals with respect to the signals of the noninterlocked components (thread, Figure 3.1c and macrocycle, Figure 3.1a). Such shielding is typical of interlocked structures in which the aromatic rings of the macrocycle are positioned face on with the thread. The shielding is observed for resonances of the axle from one edge of the stopper to the other indicating that the macrocycle can access the full length of the thread. This is as expected as there should be no strong interaction between the thread and the macrocycle in the metal-free rotaxane.

Complexation of platinum(II) with the C^N^C unit and the pyridyl triazole moiety was carried out using a modified Rourke’s procedure (Scheme 3.11). Rotaxane R^{2b}, K$_2$[PtCl$_4$] and TBACl were added to a flask under nitrogen flow, glacial acetic acid was then added and the mixture was purged with N_2 for 15 min. The reaction mixture was heated to reflux at 125 °C for 50 h. However, the 1H NMR of the crude compound showed decomposition of the rotaxane (Figure 3.2). There was no signal corresponding to a
pyridyl triazole of the thread (signal \(a-d\)) nor the multiplet due to sterically congested nature of the complex around alkyl chains of the macrocycle (signal \(G, H\)) as seen in [HL\(\text{II}\text{Pt(L3)}\)]OTs (Chapter II). Therefore, a new strategy for constructing a platinum-complexed rotaxane was sought.

Scheme 3.1. Complexation of platinum(II) with rotaxane \(R^{2b}\). Reagents and conditions: a) \(K_2[\text{PtCl}_4]\), TBACl, \(\text{CH}_3\text{COOH}\), 125 °C, 50h.

Figure 3.2. Partial \(^1\text{H}\) NMR spectra (500 MHz, \(\text{CDCl}_3\), 298 K) of a) rotaxane \(R^{2b}\); b) crude product of the complexation of platinum(II) with rotaxane \(R^{2b}\). The assignments correspond to the lettering shown in Scheme 3.10.

This result indicated that introducing platinum(II) to a final complicated rotaxane structure might not be straightforward as would be expected for a non-rotaxane. Usually,
metallation of 2,6-diphenylpyridine and similar derivatives by potassium tetrachloroplatinate in acetic acid gives monocyclometallated chloride-bridged dimers\(^7,13\) which can be further reacted to form dicyclopplatinated C^N^C complexes via an electrophilic attack by platinum on the adjacent aromatic ring.\(^7\) In the case of rotaxane \(\text{R}^{2b}\) however, a first cyclometallation might not occur due to steric crowding of the rotaxane structure or the conditions for the second cyclometallation by pyridyl triazole were not appropriate, given unsuccessful formation of \([\text{R}^{2b}\text{Pt}]\text{Cl}\). Other side reactions such as a C-coordination of a triazole ring due to rotation of the pyridyl triazole bond, a complexation of platinum to the acetylene moiety or a cleavage of a stopper unit adjacent to the alkyne could also result in a failure of a product formation.

3.2.3 Rotaxane synthesis via threading-followed-by-stoppering strategy

An alternative approach was proposed that involved a threading-followed-by-stoppering strategy. In this strategy, the platinum-complexed macrocycle would undergo a ligand exchange reaction with a functionalised pyridine to generate a threaded pseudorotaxane before being capped with stopper molecules to interlock the macrocycle and furnish a [2]rotaxane. It was envisaged that a 3,5-functionalised pyridine would replace DMSO in \([\text{L}^2\text{Pt(DMSO)}]\) and thread through a macrocycle as the two methyl groups (C52, C53) of 3,5-lutidine in \([\text{L}^2\text{Pt(3,5-lut)}]\) point nearly perpendicular to the C^N^C plane according to the crystal structure (Figure 3.3).

![Figure 3.3 X-ray crystal structure of \([\text{L}^2\text{Pt(3,5-lut)}]\). Colour code: C, grey; N, blue; O, red; Pt, white. Solvent molecules and hydrogen atoms have been removed for clarity.](image-url)
3.2.3.1 Design of platinum-complexed [2]rotaxane

An alternative design for a suitable [2]rotaxane is shown in Figure 3.4. This consists of a three-station thread, two of which are the same pyridyl tirazole bidentate ligand site and the other is a 3,5-pyridine monodentate station and a C^N^C Pt macrocycle that can bind to those stations. The CuAAC or click reaction of 2-ethynyl pyridine and terminal azide has proved to be successful to generate rotaxane R^{2b}. Therefore, a double “click” capping of two azide ends of the threaded pseudo-rotaxane complex with ethynyl pyridine stoppered was envisaged.

![Figure 3.4](image-url) **Figure 3.4** Structure of platinum(II)-complexed [2]rotaxane *py-R^3Pt*.

3.2.3.2 Retrosynthesis of rotaxane *py-R^3Pt*

The proposed retrosynthesis of the molecular shuttle *py-R^3Pt* is shown in Scheme 3.12. Here a double click reaction of the threaded pseudo-rotaxane platinum complex and two complementary stoppers should afford [2]rotaxane. The monodentate macrocycle complex 17 can be obtained via a ligand exchange reaction of the premetallated [L^2Pt(DMSO)] with the 3,5-disubstituted pyridine monodentate ligand. Sonogashira coupling reaction of 3,5-dihalopyridine and pentynol following tosylation and azidation would achieve 3,5-bisazidopyridine 16.
Scheme 3.12 Retrosynthesis of platinum-complexed rotaxane py-R₃Pt.
3.2.3.3 Synthesis of rotaxane py-R³Pt

The route towards the monodentate ligand 16 starts from the commercially available 3,5-dibromopyridine and 4-pentyn-1-ol (Scheme 3.13). 3,5-Dibromopyridine was treated with an excess amount of 4-pentyn-1-ol under a standard Sonogashira coupling reaction, forming alkynylpyridine diol 14 in excellent yield. Subsequent conversion of the alcohol groups into tosylates using p-toluenesulfonyl chloride and Et₃N in CH₂Cl₂ affords bistosylate 15, which was then further reacted with NaN₃ to form the bisazido compound 16 in good yield.

![Scheme 3.13 Synthesis of bisazido compound 16. Reagents and conditions: a) CuI, Pd(PPh₃)₂Cl₂, PPh₃, Et₃N, DMF, 80 °C, 16 h, 94%; b) TsCl, Et₃N, CH₂Cl₂, 0 °C-rt, 16 h, 82%; c) NaN₃, DMF, 80 °C, 16 h, 62%.](image)

The premetalated macrocycle was subjected to a ligand exchange reaction, where the labile dimethylsulfoxide was expected to be displaced by monodentate ligand 16 to afford the desired product 17. The reaction was carried out in THF-d₈ and CDCl₃ at 55 °C for five days. The ¹H NMR spectrum showed no reaction had occurred as the peaks corresponding to both starting materials remained (Figure 3.5). There were some new peaks possibly from the product (Figure 3.5b, pink labelled) but the amount was low. In addition, the signal corresponding to coordinated DMSO at 3.19 ppm, remained unchanged with no observation of free DMSO signal at around 2.45 ppm.

According to the crystal structure of [L²Pt(3,5-lut)] (Figure 3.3), the distance from the lutidine methyl carbon atom to the closest carbons of bisphenol A moiety in the macrocycle, C52-C30 and C53-C33, are 3.53 and 3.40 Å respectively. It was therefore concluded that the steric hindrance and rigidity of the monodentate ligand, in particular
the 3,5-dialkyne groups, hampers the ligand exchange reaction. It was therefore decided that a new version of the ligand featuring saturated alkyl linkages should be explored.

3.2.3.4 Saturated 3,5-substituted pyridine ligand for rotaxane formation

The structure of the revised rotaxane is shown in Figure 3.6 featuring a saturated ligand. The monodentate ligand 16 and 20 differ only in two triple bonds close to pyridine ring. Synthetic routes of ligand 20 are proposed in Scheme 3.14.

Direct hydrogenation of ligand 16 would also reduce the azide group to amines, hence this step needed to be done prior to the introduction of azide moieties. The hydrogenation reaction, which utilises palladium on carbon (Pd/C) to catalyse the addition of hydrogen to C–C multiple bonds could be employed with diol 14 or
bistosylate 15 (Scheme 3.14a, c). The reactions were near quantitative and clean enough that the saturated diol 18 and bistosylate 19 could be used without further purification. Diol 14 was hydrogenated and gave diol 18 in almost quantitative yield (97%). Subsequent transformation of the alcohol to tosyl using standard reagents and condition for tosylation produced the desired product 19 in moderate 33%, whereas direct hydrogen addition to bistosylate 15 afforded 19 in a relatively high yield (93%). Finally, NaN₃ was reacted with 19 to finish the saturated bisazido compound 20 in good yield.

Scheme 3.14 Synthesis of bisazido 20. Reagents and conditions: a) H₂, Pd/C, CH₂Cl₂, MeOH, rt, 48 h, 97%; b) TsCl, Et₃N, CH₂Cl₂, 0 °C-rt, 16 h, 33%; c) H₂, Pd/C, CH₂Cl₂, MeOH, rt, 16 h, 93%; d) NaN₃, DMF, 80°C, 16 h, 78%.

As had been observed in the previous chapter, and is common for Pd²⁺ and Pt²⁺ ligand substitution,¹⁴ an increase in steric bulk often results in a significant retardation in the rate. Therefore it was expected that even harsher conditions would be necessary for the exchange of ligand 20 for DMSO to afford 21, Scheme 3.15, in comparison to the similar reactions reported in Chapter II. The reaction was first set up in chloroform (rather the dichloromethane) to allow higher temperature. Refluxing the reaction mixture at 70 °C for 16 h revealed 50% product conversion according to ¹H NMR spectroscopy (Figure 3.7). Prolonged heating for 22 h and 40 h resulted in formation of other species and a decrease of the desired product (Figure 3.7d-e). Slower conversion rates were found using DCE and TCE at 85 °C. Furthermore, by-products from these solvents at higher temperature were more pronounced than those obtained in CHCl₃. It should be noted that ligand 20 was prepared in a CHCl₃ stock solution and was used in every experiment and NMR samples of the reactions performed in DCE and TCE were prepared in CDCl₃.
The \(^1\)H NMR signals of intermediate species (green peaks) were observed at similar chemical shifts to the \(^2+1+1\) species.\(^{15}\) The formation of the extra species was attributed to the acidity of CHCl\(_3\)/CDCl\(_3\) that can cleave a Pt-C bond.

Scheme 3.15 Ligand exchange reaction of [L\(^2\)Pt(DMSO)] and 20.

The \(^1\)H NMR spectra (500 MHz, CDCl\(_3\), 298 K) of a) [L\(^2\)Pt(DMSO)]; b) bisazido ligand 20; c) a mixture of [L\(^2\)Pt(DMSO)] and 20 at 70 °C for 16 h; d) a mixture of [L\(^2\)Pt(DMSO)] and 20 at 70 °C for 22 h; e) a mixture of [L\(^2\)Pt(DMSO)] and 20 at 70 °C for 40 h.

The reactions were also carried out in CD\(_2\)Cl\(_2\), THF-\(d_8\) and DMF-\(d_7\) at 50 °C to screen for a suitable solvent. The progress was monitored by \(^1\)H NMR spectroscopy. The desired product started to form in all three solvents upon heating for 1 h. In THF-\(d_8\), the amount of the exchanged product was decreased as the reaction continued heating for 16 h, 40 h.
and 72 h. The equilibrium was shifted to the left where coordinated DMSO was the major species. In contrast, the reactions in CD₂Cl₂ and DMF-d⁷ were gradually moved to the right side of the equilibrium. No significant change was observed after heating longer than 72 h in DMF where the reaction did not go to completion. The reaction in CD₂Cl₂ also did not reach a point where only the product remained in the solution, however, it gave the highest conversion of all studied solvents. The ¹H NMR spectra in Figure 3.8 shows the set of signals of the product (pink labelled) increasing over time for the reaction in CD₂Cl₂. In addition, the coordinated DMSO peak at chemical shift 3.15 ppm is decreasing to be replaced as free DMSO at 2.55 ppm (orange labelled) as the reaction progress. Increasing the amount of the ligand 20 to 1.3-2 eq, did not drive the reaction to completion either.

![Figure 3.8 Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 298 K) of a) [L²Pt(DMSO)]; b) saturated bisazido ligand 20; c) a mixture of [L²Pt(DMSO)] and 20 at rt for 1 h; d) a mixture of [L²Pt(DMSO)] and 20 at 50 °C for 40 h; e) a mixture of [L²Pt(DMSO)] and 20 at 50 °C for 6 d.](image)

While it was thought that the desired product was present in solution, several attempts to separate the product using silica gel chromatography (with and without Et₃N deactivation), preparative alumina TLC or size exclusion chromatography over Sephadex LH-20 all failed to purify the reaction mixture and the product also decomposed on the columns. Only a stopper unit was obtained from the columns.
As bisazido complex 21 would not tolerate chromatographic purification methods, it was carried on to the last step click reaction without further purification. A reaction of a mixture of 21 and unreacted \([L^2\text{Pt(DMSO)}]\) and 20 with alkyne stopper 2 by a Cu\(^{1}\)-catalysed azide-alkyne 1,3-cycloaddition (CuAAC)\(^{16}\) in the presence of tris(benzyltriazolylmethyl)amine (TBTA)\(^{6,17}\) and diisopropylamine (DIPEA) was carried out as shown in Scheme 3.16 in an attempt to generate rotaxane py-Pt which, it was hoped, would be more stable, in particular to purification by a chromatographic procedure. The reaction mixture was stirred at rt using \([\text{Cu(CH}_3\text{CN})_4]\)PF\(_6\) as a Cu\(^{1}\) source. However, no target rotaxane could be determined by \(^1\)H NMR of the crude product and all fractions from column chromatography. Exactly the same procedure was employed using ligand 20 in place of platinum complex 21 to obtain a thread molecule for the purpose of comparison by NMR spectroscopy (Scheme 3.17). The thread was obtained as an off-white solid in 59% yield following purification by column chromatography. Longer chain alkyne stopper 29 was used as a replacement for alkyne 2 to ensure steric congestion was not retarding the reaction (Scheme 3.18). The resonance of
pseudorotaxane 21 was noticeably diminished when the alkyne stopper was introduced. Column chromatography of the crude product recovered only the stopper.

Adding a catalytic amount of acetic acid to the reaction has been known to increase the product yield and decrease reaction time significantly, as it protonates the C-Cu bond in the intermediate which then accelerates product formation. This reaction conditions gave the desired rotaxane when it was adopted for compound 21 and longer alkyne as evidenced from ESI(+) MS of rotaxane \({\text{py-R}}^\text{6Pt} \) showing \([M+H]^+ (m/z \ 2235.87)\) and noninterlocked thread \(22 \) \([M+H]^+ (m/z \ 1442.95)\) along with mono-clicked pseudorotaxane \([\text{M+H}^+] \), \(m/z \ 1665.65 \). Column chromatography failed to give any of the products.

Heterogeneous copper-on-charcoal has been utilised to catalyse click cycloaddition of various types of alkyne and azides. The reaction between 2-ethylpyridine and phenylethylazide at 60 °C using 5 mol% Cu/C and one equivalent Et₃N gave corresponding triazole product as high as 98% yield after filtration of the catalyst and removal of the volatiles. Similar conditions were employed for the reaction of complex 21 and pyridylalkyne 10. The crude NMR spectrum showed only the signals of compound 10 and other impurities. The same result was obtained when longer chain alkyne 29 was used.
Another common catalytic system for the CuAAC rather than the combination of CuI/NR₃ is the combination of CuSO₄/NaAsc.¹⁶a This condition was used to successfully generate the thread molecule 23 (Scheme 3.19a). A mixture of bisazido compound 20, ethynylpyridine stopper 10 and CuSO₄ in 1:1 t-butanol/water was stirred at rt followed by adding of (+)-Sodium L-ascorbate. The reaction mixture was stirred at 60 °C overnight. After working up and silica gel column purification, the thread was obtained as a pale yellow solid in 69% yield. When the same conditions were applied to form the rotaxane, there was no evidence of its formation by ¹H NMR spectroscopy. Column chromatography of the crude product only gave the thread molecule 23. However, the ESI(+)-MS of the reaction mixture showed evidence for the formation of the rotaxane with a peak at \(m/z \) 2382.28 which corresponds to [M+H]⁺ for py-R⁷Pt (Scheme 3.19b) and non-interlocked thread 23 [M+H+Cu]²⁺ (\(m/z \) 1651.93). Despite this evidence for its formation, it was concluded that this was generated on a very small scale and no product could be isolated following column chromatography.

Scheme 3.18 Click reaction of complex 21 with alkyne stopper 29. Reagents and conditions: a) DIPEA, TBTA, \([\text{Cu(CH₃CN)}₄]\)PF₆, CH₂Cl₂, rt, 16 h; b) DIPEA, HOAc, TBTA, \([\text{Cu(CH₃CN)}₄]\)PF₆, DCE, rt, 16 h; c) Cu/C, Et₃N, DEC, 60 °C, 16 h.
Another approach towards rotaxane formation was proposed. The click reaction of bisazido compound and ethynylpyridine stopper was not successful in all conditions of rotaxane fabrication but the corresponding threads were achieved in good yield. This indicated that the conditions for click reaction were suitable. What presumably hampered the formation of a rotaxane was the instability of its starting azide complex which most likely led to its decomposition. A new design of thread was suggested in which the click reaction would be done prior to threading to the platinum macrocycle. Once the axle molecule was threaded, stoppering with a bulky component was to be performed to furnish the [2]rotaxane.

3.2.3.5 Retrosynthesis of rotaxane py-\(R^8\)Pt

The main features of the rotaxane remained unchanged, the thread molecule consisting of three binding sites: one monodentate and two degenerate bidentate sites. The retrosynthetic analysis (Scheme 3.20) showed the first disconnections are at the stopper that could be achieved from reaction of the diol thread and isocyanate stopper as it has been described in the literature using the same type of stopper to achieve the corresponding rotaxane as high as 96% yield after chromatographic purification.\(^6a,23\) The ligand exchange reaction of the three-station-thread and \([L^2Pt(DMSO)]\) would yield
pseudorotaxane 31. The full thread 26 would be obtained from the click reaction used to achieve thread 23. Compound 25 would be obtained in the same manner of synthesis as 10; by two Sonogashira couplings starting from 8.

Scheme 3.20 Retrosynthesis of platinum-complexed rotaxane py-R^8Pt.
3.2.3.6 Synthesis of rotaxane $\text{py-R}^8\text{Pt}$

The synthesis of ethynyl pyridine 25 started with a Sonogashira coupling of TBDMS-protected pyridine compound 8 with propargyl alcohol to yield 24 in 82%. The silyl group was cleaved with TBAF to give 25.

Scheme 3.21 Synthesis of pyridyl alkyne 25. Reagents and conditions: a) Cul, Pd(PPh$_3$)$_4$, Et$_3$N, THF, 60 °C, 5 d, 82%; b) TBAF, THF, rt, 16 h, 63%.

Thread compound 26 was obtained from a double click reaction of the bisazido pyridine 20 and pyridyl alkyne 25 using CuSO$_4$/NaAsc (Scheme 3.22).

Scheme 3.22 Synthesis of axle molecule 26. Reagents and condition: 30 mol% CuSO$_4$, 40 mol% NaAsc, 1:1 r-butanol/water, 60 °C, 16 h, 42%.

The ligand exchange reaction to produce pseudорotaxane 31 was investigated in CD$_2$Cl$_2$ and TCE-d_2. It took 7 h of heating at 80 °C to displace DMSO (Scheme 3.23a). However, the 1H NMR spectrum of this reaction showed multiple species. (Figure 3.9). The reaction was continued at high temperature for 15 d with no significant signal change. A DOSY spectrum (Figure 3.10) confirmed more than one species was in solution. It was complicated to assign all the peaks since many of the resonances overlapped.

Adding a slight excess of TsOH to the mixture of macrocycle and thread (Scheme 3.23b) should shift the coordination site to a bidentate ligand and that made the system more complicated as it was no longer symmetric. Although the thread was present in the same ratio as the macrocycle and the coordinated DMSO peak disappeared after acid was
introduced, the resulting complexes were not the only expected species. The 1H NMR spectra was taken regularly for a week until no change was observed (Figure 3.11). The spectra showed overlapping signals in many regions however a DOSY spectrum suggested two main species in the solution (Figure 3.12). TLC of the reaction solution did not show good separation between each species (in a range of eluents).

Scheme 3.23 Ligand exchange reaction of thread 26 and [L2Pt(DMSO)] to form pseudorotaxane 31. Reagents and conditions: a) TCE-d_2, 80 °C, 4 d; b) 2 eq TsOH, CD$_2$Cl$_2$, rt, 30 h.
Figure 3.9 Partial \(^1\)H NMR spectra (500 MHz, C\(_2\)D\(_2\)Cl\(_4\), 298 K) of: a) [L\(_2^2\)Pt(DMSO)]; b) thread molecule 26 in CD\(_2\)Cl\(_2\); c) The reaction mixture after 15 d at 80 °C; d) The reaction mixture c) after adding isocyanate stopper 28 and dibutyltin dilaurate (DBTDL) 24 h at rt.

Figure 3.10 \(^1\)H DOSY spectrum of the reaction mixture of [L\(_2^2\)Pt(DMSO)] and 26 after 15 d at 80°C.
Figure 3.11 Partial 1H NMR spectra (500 MHz, CD$_2$Cl$_2$, 298 K) of: a) [L$_2$Pt(DMSO)]; b) thread molecule 26; c) The reaction mixture after added excess TsOH at 40 °C for 8 d; d) The reaction mixture c) after adding 28 and DBTDL 24 h at rt.

Figure 3.12 1H DOSY spectrum of the reaction mixture after added excess TsOH at 40 °C for 8 d

The reaction mixtures, both of with acid and without acid, were further reacted with stoppers to attempt to furnish rotaxane py-R$_8^\text{Pt}$. The precursor pseudorotaxane was stoppered by reaction of bulky isocyanate units 28 with the terminal hydroxyl groups of the thread in the presence of di-n-butyltin dilaurate (DBTDL) in dichloromethane at room temperature for 24 h.21 The reaction with TsOH was promising as the DOSY spectrum of the reaction with the stopper indicated a large hydrodynamic radius than the one with only macrocycle, thread and acid present (Figure 3.13). The appropriate conditions for separation of the potential product could not be found. In the case of
reaction of macrocycle and thread and stoppers, the NMR was less conclusive and the mixture was stuck to the baseline of TLC even in a highly polar eluent system *i.e.* 5% MeOH/CH₂Cl₂. The crude products of both reactions with/without acid were determined by ESI(+)-MS. The mass spectrum showed [M+H]⁺ (m/z 2468.30) corresponded to a rotaxane 2-*tripy*-R⁰Pt for the reaction that added TsOH and [M+3H]³⁺ (m/z 2469.24) for a rotaxane *py*-R⁰Pt for the reaction in the absence of acid.

![Figure 3.13](image1.png) \[\text{Figure 3.13} \text{ } ^1\text{H DOSY spectrum of the reaction mixture with acid after adding 28 and DBTDL 24 h at rt.}\]

![Figure 3.14](image2.png) \[\text{Figure 3.14} \text{ } ^1\text{H DOSY spectrum of the reaction mixture without acid after adding 28 and DBTDL 24 h at rt.}\]
3.2.3.7 Non-symmetric half-thread in rotaxane \(py\text{-}R^9\text{Pt} \)

Another attempt at rotaxane formation was undertaken. The new design of rotaxane, \(py\text{-}R^9\text{Pt} \), incorporates only two different binding sites. This non-symmetric rotaxane would be achieved from a click reaction of an alkyne half-thread 10 with pseudorotaxane featuring terminal azide 35. Similar rotaxane construction has been successfully achieved in a palladium complexed-[2]rotaxane.3a Palladium containing macrocycle was complexed with one of the stations before the thread was capped with a stopper molecule. The synthetic pathway of asymmetric half-thread 34 did not differ from the earlier symmetric ones.
Scheme 3.24 Retrosynthesis of rotaxane py-R⁹Pt
3.2.3.8 Synthesis of non-symmetric pseudorotaxane

The Synthesis towards a non-symmetric half-thread 35 (Scheme 3.25) started with desymmetrising Sonogashira coupling reaction of 3,5-dibromopyridine and the known pentynyl stopper 29 under standard conditions. Another Sonogashira coupling was done under the same conditions with ethynyltosylate 30 to afford 33 in a moderate 44% yield. Hydrogenation using Pd/C as catalyst afforded 34 in quantitative yield. Azidation was carried out to give 35 in 45%.

Scheme 3.25 Synthesis of asymmetric thread 35. Reagents and conditions: a) CuI, Pd(PPh$_3$)$_2$Cl$_2$, DIPEA, THF, 60 °C, 67%; b) CuI, Pd(PPh$_3$)$_2$Cl$_2$, DIPEA, THF, 60 °C, 44%; c) H$_2$, Pd/C, CH$_2$Cl$_2$, MeOH, rt, quantitative; d) NaN$_3$, DMF, 80 °C, 16 h, 45%.

The ligand exchange reaction of 35 was subjected to displacement of DMSO in [L$_2$Pt(DMSO)] in TCE-d_2 (Scheme 3.26). Consistent with other ligand exchange experiments of the platinum macrocycle with 3,5-disubstituted pyridine thread, the reaction proceeded slowly and remained incomplete after heating for several days. The 1H NMR spectrum became broad as the reaction was heated. The reaction was worked up when the coordinating DMSO peak had disappeared. The 1H NMR of the crude product was inconclusive thus it was also examined by ESI(+) - MS which revealed the existence of the product showing [M+2H]$_2^+$ (m/z 1556.80). Again column chromatography failed to purify the desired pseudorotaxane 36.
Attempts to synthesise a platinum complexed-[2]rotaxane have been investigated. Rotaxane formation using an active metal template copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) “click” reaction was successful. Insertion of platinum(II) into the rotaxane using the modified known procedure did not afford the desired product which led to redesigns of the rotaxanes. Utilisation of a platinum complexed-macrocycle to undergo ligand exchange reactions with series of 3,5-disubstituted pyridine based-thread were studied. The instability of the rotaxane precursor with azide moiety discouraged the final click reaction step and purification process. Once the full threads with all binding stations were determined to avoid stability problems, a difficulty in separation was encountered.

It is hoped that conditions that overcome the reactivity problems without disturbing the macrocycle-thread interactions may be found. If such conditions are not found, a redesign will be required to finish the rotaxane.

The preliminary results from this chapter are encouraging, however. It is hoped that either the design presented here or one very similar may soon be made to overcome the purification problems and realise the desired rotaxanes. Once the rotaxane is realised, studies of acid-base stimuli-responsive bistable platinum-complexed [2]rotaxane will be explored, as suggested from the positive results of the “3+1” to “2+2” interconversion of non-interlocked platinum C^N^C macrocyclic compounds in Chapter II.
3.4 Experimental Section

3.4.1 General Experimental Procedure

Unless stated otherwise, all reagents and solvents were purchased from commercial sources and used without further purification. tris-(p-tert-butylphenyl)(4-hydroxyphenyl)methane (1), 1-(prop-3-ynoxy)-4-(tris-(4-tert-butyl-phenyl)-methyl)-benzene (2), compound 27, 28, 29 and 30 were prepared according to literature procedures.
3.4.2 Synthesis

A two-necked flask was charged with [Pd(PPh₃)₂]Cl₂ (35 mg, 0.05 mmol, 5 mol%) and PPh₃ (26 mg, 0.10 mmol, 10 mol%) and was purged with nitrogen. Contents were suspended in Et₃N (3 mL) and the solution was allowed to stir under N₂ for 10 min. 2-Chloro-5-iodopyridine (0.24 g, 1 mmol) and CuI (19 mg, 0.10 mmol, 10 mol%) were added as solids. After an additional 10 min, 2 (0.54 g, 1 mmol) and degassed THF (8 mL) were added and the mixture was allowed to stir overnight. All the volatile organic substances were removed under vacuum, dissolved with CH₂Cl₂ and filtered through celite. The residue was washed with H₂O (3×20 mL) and the aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The combined organic phases were dried over Na₂SO₄. The white solid product was obtained after purification by column chromatography (20-40% CH₂Cl₂/hexane), (0.56 g, 86%). m.p. 216-219°C; ¹H NMR (400 MHz, CDCl₃); ²¹C NMR (100 MHz, CDCl₃); 8.45 (d, J = 2.2 Hz, 1H, H₁), 7.67 (dd, J = 8.3, 2.2 Hz, 1H, H₈), 7.29 (d, J = 8.3 Hz, 1H, H₇), 7.23 (d, J = 8.6 Hz, 6H, H₆), 7.13 (d, J = 8.9 Hz, 2H, H₉), 7.07 (d, J = 8.6 Hz, 6H, H₅), 6.87 (d, J = 8.9 Hz, 2H, H₆), 4.89 (s, 2H, H₂), 1.30 (s, 27H, H₃); ¹³C NMR (100 MHz, CDCl₃); 155.5, 152.3, 151.0, 148.4, 144.0, 141.2, 140.7, 132.4, 130.7, 124.1, 123.9, 118.4, 113.4, 88.8, 82.5, 63.1, 56.4, 34.3, 31.4; HR-ESIMS m/z = 653.34222 [M-H]⁻ (calc. for C₁₅H₁₄NOCl, 653.34189).
To a solution of 3 (0.22 g, 0.34 mmol) in dry DMF (5 mL) was added NaN₃ (65 mg, 1 mmol) and the reaction mixture was stirred at 120°C for 18 h. The solution was cooled down to rt and H₂O (15 mL) was added to the reaction mixture and the aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The organic phases were combined, dried over MgSO₄ and then filtered off. The excess solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography (0-2% MeOH in CH₂Cl₂) to give desired product as a white solid (0.08 g, 34%). ¹H NMR (400 MHz, CDCl₃); 8.88 (d, J = 2.3 Hz, 1H, H₄), 8.14 (dd, J = 8.3, 2.3 Hz, 1H, H₆), 7.42 (d, J = 8.3 Hz, 1H, H₃), 7.24 (d, J = 8.6 Hz, 6H, H₅), 7.12 (d, J = 8.9 Hz, 2H, H₇), 7.08 (d, J = 8.6 Hz, 6H, H₈), 6.88 (d, J = 8.9 Hz, 2H, H₉), 5.23 (s, 2H, H₁₀), 1.30 (s, 27H, H_I); ¹³C NMR (100 MHz, CDCl₃); 171.2, 155.6, 151.6, 145.8, 148.5, 143.9, 140.8, 137.7, 134.9, 130.7, 126.9, 124.1, 112.5, 110.0, 95.9, 85.7, 63.1, 55.8, 34.3, 31.4; HR-ESIMS m/z = 697.33342 [M+K]⁺ (calc. for C₄₅H₄₆O₄N₄K, 697.33142).

To a round bottom flask with a septum under nitrogen, 5-bromo-2-iodopyridine (0.28 g, 1 mmol) in degassed THF (15 mL) were successively added ethynyltrimethylsilane (0.295 g, 0.43 mL, 3 mmol), Pd(PPh₃)₂Cl₂ (0.035 g, 0.05 mmol, 5 mol%), PPh₃ (0.026 g, 0.10 mmol, 10 mol%), Cul (0.019 g, 0.10 mmol, 10 mol%) and finally Et₃N (8 mL). The solution was stirred at rt. The colour of the solution turned black with the formation of white solid. After the starting materials were consumed (TLC, NMR, ~48 h), the mixture was treated with activated carbon (ca. 200 mg) and filtered through celite. The solvent was evaporated and the product was obtained by column chromatography (0-20%
CH$_2$Cl$_2$/hexane) as a white solid (0.12 g, 45.2%). 1H NMR (500 MHz, CDCl$_3$): 8.55 (d, $J = 2.2$ Hz, 1H, H$_A$), 7.70 (dd, $J = 8.3, 2.2$ Hz, 1H, H$_B$), 7.27 (d, $J = 8.3$, 1H, H$_C$), 0.20 (s, 9H, H$_D$); 13C NMR (125 MHz, CDCl$_3$): 151.0, 141.3, 138.7, 128.2, 120.3, 102.6, 96.4, -0.4.

A Schlenk tube was evacuated and backfilled with N$_2$ (3x) before 2-tert-butyldimethylsilylethynyl-5-bromopyridine, 8 (Chapter II) (0.40 g, 1.35 mmol, 1 eq), Cul (0.016 g, 0.084 mmol, 6 mol%) and Pd(PPh$_3$)$_4$ (0.047 g, 0.041 mmol, 3 mol%) were added under positive flow of nitrogen. A solution of 1-(prop-3-ynoxy)-4-(tris-(4-tert-butylphenyl)-methyl)-benzene, 2 (0.88 g, 1.62 mmol, 1.2 eq) in 1:1 dry THF/ Et$_3$N (12 mL) was injected. The solution was heated at 60°C for 24 h. The reaction was quenched with saturated aqueous ammonium chloride and then filtered through celite and washed with THF. The crude product was extracted with CH$_2$Cl$_2$, dried over MgSO$_4$, filtered, concentrated in vacuo and purified by flash column chromatography (SiO$_2$, 0-40% CH$_2$Cl$_2$/hexane) to get an off-white solid (0.90 g, 87%). 1H NMR (500 MHz, CDCl$_3$); δ 8.70 (d, $J = 1.4$ Hz, 1H, H$_A$), 7.70 (dd, $J = 8.1, 2.1$ Hz, 1H, H$_B$), 7.45 (dd, $J = 8.1$, 0.6 Hz, 1H, H$_C$), 7.34 – 7.28 (m, 6H, H$_D$), 7.24 – 7.21 (m, 2H, H$_E$), 7.21 – 7.15 (m, 6H, H$_G$), 6.97 – 6.90 (m, 2H, H$_D$), 4.93 (s, 2H, H$_I$), 4.85 (s, 2H, H$_J$), 1.38 (s, 27H, H$_I$), 1.11 (s, 9H, H$_F$), 0.31 (s, 6H, H$_J$); 13C NMR (125 MHz, CDCl$_3$); δ 155.6, 152.6, 148.4, 144.1, 142.2, 140.7, 138.8, 132.4, 130.8, 126.7, 124.2, 118.8, 113.6, 104.2, 95.7, 89.4, 83.6, 63.2, 56.5, 34.4, 31.5, 26.2, 16.8, -4.7; HR-ESIMS $m/z = 758.47230$ [M+H]$^+$ (calc. for C$_{53}$H$_{64}$NOSi 758.47517).
To a solution of 9 (0.96 g, 1.27 mmol) in dry THF (12 mL) was added TBAF (1 M in THF, 2.5 mL, 2.50 mmol) which resulted in the pale yellow solution turning brown. The stirring was continued for 18 h at room temperature until TLC indicated that no starting materials remained. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO$_2$, 0-50% CH$_2$Cl$_2$/hexane) to get 4 as an off white solid (0.19 g, 35%) m.p. 188 °C (dec.); 1H NMR (500 MHz, CDCl$_3$): δ 8.64 (s, 1H, H$_A$), 7.69 (dd, $J = 8.1$, 2.1 Hz, 1H, H$_B$), 7.42 (dd, $J = 8.1$, 0.7 Hz, 1H, H$_C$), 7.24 (d, $J = 8.7$ Hz, 6H, H$_H$), 7.13 (d, $J = 9.0$ Hz, 2H, H$_F$), 7.08 (d, $J = 8.7$ Hz, 6H, H$_D$), 6.88 (d, $J = 9.0$ Hz, 2H, H$_E$), 4.90 (s, 2H, H$_I$), 3.24 (s, 1H, H$_J$), 1.30 (s, 27H, H$_K$); 13C NMR (125 MHz, CDCl$_3$): δ 155.7, 152.8, 148.6, 144.2, 141.5, 140.9, 139.0, 132.5, 130.9, 126.8, 124.2, 119.4, 113.6, 89.7, 83.5, 82.5, 79.2, 63.2, 56.6, 34.4, 31.5; HR-ESIMS m/z = 644.38620 [M+H]$^+$ (calc. for C$_{47}$H$_{50}$NO 644.38869).

To a flame-dried round bottom flask with K$_2$CO$_3$ (2.77 g, 20 mmol) and NaI (0.03 g, 0.2 mmol) in it, was added 1,3-dibromopropane (4.05 g, 20 mmol) and tris-(p-tert-butylphenyl)(4-hydroxyphenyl)methane, 1 (1.01 g, 2 mmol). Degassed butanone (100 mL) was added and the resulting mixture was stirred at reflux temperature overnight. The solvent was removed and the residue was partitioned in CH$_2$Cl$_2$/H$_2$O. The aqueous phase was extracted with CH$_2$Cl$_2$ (3×20 mL), the organic phases were washed with H$_2$O,
dried over MgSO₄. The solvent was evaporated and the residue was purified by flash column chromatography (10% CH₂Cl₂/hexane) to give a white solid as a product (1.15 g, 92%). m.p. 249-250 °C; ¹H NMR (400 MHz, CDCl₃); 7.23 (d, J = 8.7 Hz, 6H, H₃), 7.09 (d, J = 8.9 Hz, 2H, H₃), 7.08 (d, J = 8.9 Hz, 6H, H₃), 6.77 (d, J = 8.9 Hz, 2H, H₃), 4.08 (t, J = 5.8 Hz, 2H, H₃), 3.60 (t, J = 6.5 Hz, 2H, H₃), 2.36-2.25 (m, 2H, H₃), 1.30 (s, 27H, H₃); ¹³C NMR (100 MHz, CDCl₃); 155.5, 148.4, 144.0, 140.5, 132.3, 130.7, 124.1, 113.0, 64.2, 63.1, 48.3, 34.3, 31.4, 28.9; HR-ESIMS m/z = 647.28560 [M+Na]⁺ (calc. for C₄₀H₄₉O₇9BrNa 647.28590).

To a solution of 11 (0.62 g, 1 mmol) in dry DMF (25 mL) was added NaN₃ (0.20 g, 3 mmol) and the reaction mixture was stirred at 100°C overnight. The mixture was cooled to rt and H₂O (25 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (3×40 mL). The organic phases were combined, dried over MgSO₄ and filtered off. The solvent was removed and the residue was purified by flash column chromatography (2-20% CH₂Cl₂/hexane). The product was a white solid (0.49 g, 84%). m.p. 220-222 °C; ¹H NMR (400 MHz, CDCl₃); 7.23 (d, J = 8.7 Hz, 6H, H₃), 7.11-7.05 (m, 8H, H₃), 6.76 (d, J = 9.0 Hz, 2H, H₃), 4.02 (t, J = 5.9 Hz, 2H, H₃), 3.51 (t, J = 6.7 Hz, 2H, H₃), 2.09-1.98 (m, 2H, H₃), 1.30 (s, 27H, H₃); ¹³C NMR (100 MHz, CDCl₃); 155.5, 148.3, 144.1, 140.5, 132.3, 130.7, 124.1, 113.0, 64.3, 63.1, 48.3, 34.3, 31.4, 28; HR-ESIMS m/z = 610.37590 [M+Na]⁺ (calc. for C₄₀H₄₉N₃ONa 610.37678).
Azide 12 (0.018 g, 31 µmol, 1 eq), alkyne 10 (0.02 g, 31 µmol, 1 eq) and [Cu(CH₃CN)₄]PF₆ (0.014 g, 37 µmol, 1.1 eq) were added to a flask under N₂. Degassed 1,2-dichloroethane (6 mL) was injected. The mixture was purged with N₂ and left stirring at rt for 24 h. The reaction flask was heated at 70 °C for 3 d. The mixture was cooled to rt and diluted with CH₂Cl₂ (10 mL), filtered through celite. The filtrate was evaporated under vacuum. The residue was dissolved in CH₂Cl₂, washed with 0.1 M Sodium EDTA and brine, dried over Na₂SO₄. The product was obtained as a white solid following purification from column chromatography (CH₂Cl₂) (0.01 g, 28%). m.p. 190-192 °C; ¹H NMR (600 MHz, CDCl₃); δ 8.64 (d, J = 1.1 Hz, 1H, Hₐ), 8.18 (s, 1H, Hₖ), 8.13 (d, J = 8.2 Hz, 1H, Hₗ), 7.81 (dd, J = 8.2, 2.0 Hz, 1H, Hₜ), 7.27 – 7.22 (m, 12H, Hᵣ₊ₒ), 7.15 (d, J = 8.9 Hz, 2H, Hᵯ), 7.13 – 7.08 (m, 16H, Hᵱ₊ᵢ₊ₒ₊ᵦ), 6.90 (d, J = 8.9 Hz, 2H, Hᵱ), 6.76 (d, J = 8.9 Hz, 2H, Hᵱ), 4.91 (s, 2H, Hᵱ), 4.66 (t, J = 6.9 Hz, 2H, Hᵱ), 4.00 (t, J = 5.6 Hz, 2H, Hᵱ), 2.50 – 2.38 (m, 2H, Hᵱ), 1.32 (s, 54H, Hᵱᵳ₊ᵠᵳ), ¹³C NMR (150 MHz, CDCl₃); δ 156.3, 155.8, 152.3, 151.4, 149.5, 148.5×2, 147.8, 144.2×2, 140.8, 140.3, 139.9, 132.5×2, 130.9×2, 124.2, 123.0, 119.6, 118.6, 113.6, 113.1, 88.2, 84.0, 63.9, 63.2×2, 56.7, 34.4, 31.5, 30.1; HR-ESIMS m/z = 1253.75370 [M+Na]⁺ (calc. for C₈₇H₉₈N₄O₂Na 1253.75820).
Adapted from a procedure by Leigh and co-workers. Azide 6 (41.1 mg, 70 µmol), alkyne 4 (45.1 mg, 70 µmol), macrocycle H$_2$L2 (Chapter II) (42.0 mg, 70 µmol) and [Cu(CH$_3$CN)$_4$]PF$_6$ (28.7 mg, 77 µmol) were added to a flask under N$_2$ atmosphere. Degassed 1,2-dichloroethane (12 mL) was injected. The mixture was purged with N$_2$ and left stirring at rt for 24 h. The reaction flask was heated at 70 °C for 3 d. The mixture was cooled to rt and diluted with CH$_2$Cl$_2$ (10 mL), filtered through celite. The filtrate was evaporated under vacuum. The residue was dissolved in CH$_2$Cl$_2$, washed with 0.1 M Sodium EDTA and brine, dried over Na$_2$SO$_4$. The product was obtained as a white solid following purification from column chromatography (1% MeOH/CH$_2$Cl$_2$) (21.2 mg, 16%). Along with rotaxane, non-interlocked thread 13 (50.6 mg) was generated during click reactions as well as unreacted macrocycle (8.9 mg). 1H NMR (500 MHz, CDCl$_3$); δ 8.48 (d, $J = 1.4$ Hz, 1H, H$_a$), 7.92 (d, $J = 8.8$ Hz, 4H, H$_d$), 7.82 (d, $J = 8.2$ Hz, 1H, H$_c$), 7.65 (t, $J = 7.8$ Hz, 1H, H$_b$), 7.51 (dd, $J = 8.2$, 2.1 Hz, 1H, H$_d$), 7.48 – 7.42 (m, 2H, H$_h$), 7.31 (s, 1H, H$_d$), 7.24 – 7.18 (m, 12H, H$_{11q}$), 7.09 – 7.02 (m, 14H, H$_{p+k+p}$), 6.97 (dd, $J = 8.8$, 3.7 Hz, 6H, H$_{ov+r}$), 6.81 (d, $J = 8.8$ Hz, 4H, H$_d$), 6.76 (d, $J = 9.0$ Hz, 2H, H$_i$), 6.61 (d, $J = 8.8$ Hz, 4H, H$_d$), 6.42 (d, $J = 8.9$ Hz, 2H, H$_a$), 4.71 (s, 2H, H$_c$), 4.04 (t, $J = 6.7$ Hz, 6H, H$_{ov+q}$), 3.82 (t, $J = 5.6$ Hz, 4H, H$_d$), 3.35 (t, $J = 5.6$ Hz, 2H, H$_g$), 1.92 – 1.78 (m, 10H, H$_{7j+7j+7i}$), 1.56 (s, 6H, H$_d$), 1.30 (s, 27H, H$_{m/r}$), 1.29 (s, 27H, H$_{m/r}$); 13C NMR (125 MHz, CDCl$_3$); δ 159.4, 156.8, 156.5×2, 155.9, 152.1, 149.5, 148.5×2, 147.5, 144.2×2, 143.2, 140.5, 139.8, 139.6, 137.3, 132.5, 132.4, 132.9×2, 128.8, 127.7, 124.2, 122.9, 119.2, 118.2, 116.9, 115.1, 114.0, 113.4, 112.9, 88.0, 84.0, 67.5, 67.3, 64.0, 63.2×2, 56.6, 47.4, 41.4, 34.4, 31.5, 31.2, 29.8×2, 25.3, 22.8, 14.3; HR-ESIMS $m/z = 1831.07940$ [M+H]$^+$ (calc. for C$_{127}$H$_{140}$N$_5$O$_6$ 1831.07981).

135
To a mixture of 3,5-dibromopyridine (0.71 g, 3 mmol), Cul (60.9 mg, 0.32 mmol, 10 mol%), Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2} (0.10 g, 0.14 mmol, 5 mol%) and PPh\textsubscript{3} (79.1 mg, 0.30 mmol, 10 mol%) in dry DMF (10 mL) under N\textsubscript{2} flow were injected 4-pentyn-1-ol (2.80 mL, 30 mmol) and Et\textsubscript{3}N (6 mL). The solution was stirred at rt for 30 min and then heated to 80 °C overnight. The reaction mixture was cooled down, white precipitate was filtered off through celite. The filtrate was concentrated under reduced pressure. The residue was dissolved in CH\textsubscript{2}Cl\textsubscript{2}, washed with saturated NH\textsubscript{4}Cl, brine. Combined organic phases were dried over MgSO\textsubscript{4}, filtered, evaporated off the solvent. The pale yellow oil that solidified after several days (0.69 g, 94%) was obtained by flash column chromatography (SiO\textsubscript{2}, 0-5% MeOH/CH\textsubscript{2}Cl\textsubscript{2}). 1H NMR (400 MHz, MeOD-d\textsubscript{4}); δ 8.36 (s, 2H, H\textsubscript{B}), 7.65 (t, J = 1.9 Hz, 1H, H\textsubscript{A}), 3.67 (t, J = 6.2 Hz, 4H, H\textsubscript{E}), 2.51 (t, J = 7.1 Hz, 4H, H\textsubscript{C}), 1.83 – 1.74 (m, 4H, H\textsubscript{D}); 13C NMR (100 MHz, MeOD-d\textsubscript{4}); δ 150.7, 142.1, 122.2, 95.4, 77.4, 61.4, 32.3, 16.6; HR-ESIMS m/z = 244.13470 [M+H]+ (calc. for C\textsubscript{15}H\textsubscript{18}NO\textsubscript{2} 244.13321).

The solution of diol 14 (0.40 g, 1.6 mmol) in dry CH\textsubscript{2}Cl\textsubscript{2} (5 mL) was cooled in an ice bath at 0 °C. A cold solution of p-toluenesulfonyl chloride, TsCl (1.30 g, 6.8 mmol) in dry CH\textsubscript{2}Cl\textsubscript{2} (5 mL) was added and the solution mixture was stirred for 10 min followed by adding of Et\textsubscript{3}N (10 mL). The reaction was stirred at 0 °C for 1 h then warmed to rt and kept stirring overnight. The mixture was filtered through celite. The filtrate was washed with saturated NaHCO\textsubscript{3}. Combined organic layers were dried over MgSO\textsubscript{4}, filtered and concentrated. The crude was purified by flash column chromatography (SiO\textsubscript{2}, 50-100% CH\textsubscript{2}Cl\textsubscript{2}/hexane) to obtain a pale yellow oil (0.74 g, 82%). 1H NMR (500 MHz, CDCl\textsubscript{3}); δ 8.37 (d, J = 1.4 Hz, 2H, H\textsubscript{D}), 7.80 (d, J = 8.2 Hz, 4H, H\textsubscript{G}), 7.49 (t, J = 1.9 Hz, 1H, H\textsubscript{A}), 7.31 (d, J = 8.2 Hz, 4H, H\textsubscript{H}), 4.18 (t, J = 6.0 Hz, 4H, H\textsubscript{E}), 2.51 (t, J = 6.8 Hz, 4H, H\textsubscript{C}), 2.39 (s, 6H, H\textsubscript{B}),
To a solution of bistosylate 15 (0.22 g, 0.4 mmol) in DMF (8 mL) under N₂ atmosphere was added an aqueous solution of NaN₃ (0.12 g in 1 mL, 1.8 mmol). The reaction was heated at 80 °C overnight. After the reaction was cooled down, water (8 mL) and Et₂O (15 mL) were added. Organic phase was collected and washed with water (3×10 mL). The combined Et₂O layers were dried over MgSO₄ and concentrated under reduced pressure to yield a brown residue. Purification by flash column chromatography (SiO₂, 0 – 3% MeOH/CH₂Cl₂) gave 16 (73 mg, 62%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃); δ 8.53 (s, 2H, Hᵦ), 7.65 (s, 1H, Hᵦ), 3.44 (t, J = 6.6 Hz, 4H, Hₑ), 2.52 (t, J = 6.9 Hz, 4H, Hₑ), 1.85 (tt, appearing as apparent pentet, J = 6.8 Hz, 4H, Hₑ). ¹³C NMR (125 MHz, CDCl₃); δ 150.5, 140.8, 120.5, 92.5, 50.2, 27.7, 16.8; HR-ESIMS m/z = 294.14640 [M+H]⁺ (calc. for C₁₅H₁₆N₇ 294.14617).

A Schlenk tube was evacuated and backfilled with N₂ (3×). Pd on activated carbon (10% Pd, 0.47 g, excess) was added under an inert atmosphere. A small amount of CH₂Cl₂ was injected to wash down any Pd/C stuck to the walls. A solution of unsaturated diol 14 (0.58 g, 2.4 mmol) in a mixture of CH₂Cl₂ and MeOH (6 mL) was charged carefully. The reaction mixture was stirred and the flask was evacuated just until the solvent begins to bubble, then carefully backfilled with nitrogen (3×). A balloon of H₂ was attached with a valve closed. The flask was evacuated (3×) and then the valve was opened. The reaction mixture was stirred at rt for 2 d when TLC showed no starting material remained. The balloon was taken off and the flask was refilled with nitrogen. The catalyst was filtered.
off through celite, washed with CH$_2$Cl$_2$. The solvent was removed under vacuum to afford a pale yellow oil (0.57 g, 97%). 1H NMR (500 MHz, CDCl$_3$); δ 8.26 (s, 2H, H$_B$), 7.31 (s, 1H, H$_A$), 3.64 (t, J = 6.5 Hz, 4H, H$_G$), 2.60 (m, 4H, H$_C$), 1.69-1.62 (m, 4H, H$_D$), 1.62 – 1.56 (m, 4H, H$_E$), 1.47 – 1.33 (m, 4H, H$_F$); 13C NMR (100 MHz, CDCl$_3$); δ 145.0, 136.5, 120.9, 62.9, 33.0, 32.6, 31.0, 25.4.

The title compound 19 could be obtained either from tosylation of diol 18 or hydrogenation of bistosylate 15.

a) To a solution of diol 18 (0.40 g, 1.6 mmol) in dry CH$_2$Cl$_2$ (5 mL) was charged a solution of TsCl in dry CH$_2$Cl$_2$ (5 mL) at 0°C. The solution was stirred for 10 min then Et$_3$N was charged. The reaction was stirred at 0°C for 1 h, warmed to rt and kept stirring overnight. A saturated NaHCO$_3$ was added. The organic layer was collected and washed with water. The combined organic phases were dried (MgSO$_4$), filtered. The solvent was removed under reduced pressure. Flash column chromatography (SiO$_2$, 0 – 2% MeOH/CH$_2$Cl$_2$) gave pale yellow oil (0.30 g, 33%) as a product.

b) Saturated bistosylate 19 was synthesised following the same procedure as for diol 18 starting from 15 (0.74 g, 1.3 mmol). The reaction was stirred overnight, using Pd/C (10% Pd, 0.14 g). A pale yellow oil (0.70 g, 93%) was obtained. 1H NMR (400 MHz, CDCl$_3$); δ 8.22 (d, J = 1.8 Hz, 2H, H$_D$), 7.77 (d, J = 8.3 Hz, 4H, H$_B$), 7.35 (d, J = 8.0 Hz, 4H, H$_A$), 7.26 (s, 1H, H$_C$), 4.02 (t, J = 6.4 Hz, 4H, H$_D$), 2.54 (t, J = 7.7 Hz, 4H, H$_C$), 2.44 (s, 6H, H$_J$), 1.72 – 1.61 (m, 4H, H$_G$), 1.61 - 1.51 (m, 4H, H$_E$), 1.42 – 1.30 (m, 4H, H$_F$); 13C NMR (100 MHz, CDCl$_3$); δ 147.2, 144.6, 136.8, 135.5, 132.9, 129.7, 127.6, 70.3, 32.4, 30.2, 28.4, 24.8, 21.4; HR-ESIMS m/z = 560.2140 [M+H]$^+$ (calc. for C$_{29}$H$_{38}$NO$_6$S$_2$ 560.21351).
The title compound 20 was synthesised following the same procedure as for 16 starting from 19 (0.30 g, 0.5 mmol). Using NaN₃ (0.11 g, 1.7 mmol), brown oil (0.12 g, 78%) was obtained following flash column chromatography (SiO₂, 0–3% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃); δ 8.27 (d, J = 2.1 Hz, 2H, H₆), 7.31-7.29 (m, 1H, H₇), 3.27 (t, J = 6.9 Hz, 4H, H₈); ¹³C NMR (150 MHz, CDCl₃); δ 147.5, 137.0, 135.7, 51.4, 32.8, 30.7, 28.7, 26.3; HR-ESIMS m/z = 302.20890 [M+H]+ (calc. for C₁₅H₂₄N₃ 302.20877).

To a solution of 1-(prop-3-ynoxy)-4-(tris-(4-tert-butyl-phenyl)-methyl)-benzene, 2 (0.19 g, 0.3 mmol, 4 eq) in CH₂Cl₂ (3 mL) was added a solution of 20 (25.8 mg, 0.08 mmol, 1 eq) in CH₂Cl₂ (3 mL) and the solution was stirred for 10 min. DIPEA (15 µL, 0.08 mmol, 1 eq), TBTA (67.9 mg, 0.1 mmol, 1.5 eq) and tetrakis(acetonitrile)copper(I) hexafluorophosphate (32.1 mg, 0.08 mmol, 1 eq) were charged. The reaction mixture was stirred at rt for 24 h. The reaction was washed with 0.1 M Sodium EDTA (3×12 mL). The organic layer was dried over MgSO₄ and filtered. The solvent was removed under reduced pressure. The product was purified using flash column chromatography (SiO₂, 0–3% MeOH/CH₂Cl₂) to yield an off white solid. m.p. 219 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 2H, H₉), 7.32 (bs, 2H, H₈), 7.25 – 7.19 (m, 12H, H₇), 7.13 – 7.09 (m, 5H, H₆+H₇), 7.08 (d, J = 8.6 Hz, 2H, H₅), 6.85 (d, J = 8.9 Hz, 4H, H₄), 5.17 (s, 4H, H₃), 4.35 (t, J = 7.1 Hz, 4H, H₂), 2.68 – 2.51 (m, 4H, H₁), 2.01 – 1.89 (m, 4H, H₀), 1.72 – 1.59 (m, 4H, H₀), 1.42 – 1.34
A mixture of 20 (18 mg, 0.06 mmol), 10 (76.9 mg, 0.1 mmol) and CuSO₄ (2.8 mg, 0.018 mmol, 30 mol%) in 1:1 t-butanol/water (5 mL) was stirred at rt. (+)-Sodium L-ascorbate (6.5 mg, 0.033 mmol, 40 mol%) was then charged as solid. The reaction mixture was stirred at 60 °C overnight. The mixture was partition by adding CH₂Cl₂. The organic layer was washed with 0.1 M Sodium EDTA (3×20 mL). The combined organic phases were dried (MgSO₄), filtered, concentrated and purified by flash column chromatography (SiO₂, 0–2% MeOH/CH₂Cl₂) to obtained a pale yellow solid (65.8 mg, 69%).<ref>

1H NMR (600 MHz, CDCl₃; δ 8.62 (dd, <i>J</i> = 2.1, 0.9 Hz, 2H, H_D), 8.25 (s, 2H, H_B), 8.14 (s, 2H, H_C), 8.12 (d, <i>J</i> = 0.9 Hz, 2H, H_F), 7.80 (dd, <i>J</i> = 8.2, 2.1 Hz, 2H, H_E), 7.25 – 7.21 (m, 13H, H_P+A), 7.14 (d, <i>J</i> = 9.0 Hz, 4H, H_N), 7.09 (d, <i>J</i> = 8.7 Hz, 12H, H_O), 6.89 (d, <i>J</i> = 9.0 Hz, 4H, H_M), 4.90 (s, 4H, H_L), 4.42 (t, <i>J</i> = 7.1 Hz, 4H, H_I), 2.57 (t, <i>J</i> = 7.7 Hz, 4H, H_K), 2.03 – 1.94 (m, 4H, H_J), 1.71 – 1.62 (m, 4H, H_H), 1.45 – 1.37 (m, 4H, H_I), 1.30 (s, <i>J</i> = 2.2 Hz, 54H, H_P); 13C NMR (150 MHz, CDCl₃; δ 155.7, 152.2, 149.6, 148.5, 147.9, 147.5, 144.2, 140.7, 139.8, 137.0, 135.8, 132.4, 130.8, 124.2, 122.4, 119.5, 118.5, 113.6, 88.1, 84.0, 63.2, 56.7, 53.5, 50.4, 34.4, 32.7, 31.5, 30.6, 30.1, 26.1; HR-ESIMS <i>m/z</i> = 1588.97520 [M+H]⁺ (calc. for C₁₀₉H₁₂₂O₂N₉ 1588.97160)
A Schlenk tube was evacuated and backfilled with N_2 (3x) before 2-tert-butyl(dimethyl)silylethynyl-5-bromopyridine $\mathbf{8}$ (0.80 g, 2.7 mmol, 1 eq), CuI (31.1 mg, 0.16 mmol, 6 mol%) and Pd(PPh$_3$)$_4$ (93.4 mg, 0.08 mmol, 3 mol%) were added under nitrogen flow. A solution of propargyl alcohol (0.2 mL, 3.4 mmol, 1.2 eq) in dry 2:1 THF/Et$_3$N (15 mL) was added. The solution was heated at 60°C for 5 d. The reaction was quenched with saturated NH$_4$Cl, filtered through celite and washed with THF. The crude product was extracted with CH$_2$Cl$_2$, dried over MgSO$_4$, filtered, concentrated in vacuo and purified by flash column chromatography (SiO$_2$, 0-100% CH$_2$Cl$_2$/hexane) to obtain an off-white solid (0.60 g, 82%). 1H NMR (600 MHz, CDCl$_3$); δ 8.61 (dd, $J = 2.2$, 0.9 Hz, 1H, H_A), 7.62 (dd, $J = 8.1$, 2.2 Hz, 1H, H_B), 7.37 (dd, $J = 8.1$, 0.9 Hz, 1H, H_C), 4.49 (s, 2H, H_D), 0.97 (s, 9H, H_F), 0.18 (s, $J = 3.4$ Hz, 6H, H_E); 13C NMR (125 MHz, CDCl$_3$); δ 152.3, 141.6, 138.9, 126.9, 119.4, 103.8, 96.2, 93.6, 81.5, 51.1, 26.2, 16.7, 14.8; HR-ESIMS $m/z = 272.14720$ [M+H]$^+$ (calc. for C$_{16}$H$_{22}$NOSi 272.14652).

To a solution of $\mathbf{24}$ (0.23 g, 0.8 mmol, 1 eq) in dry THF (5 mL) was added TBAF (1 M in THF, 1.2 mL, 1.50 eq). The reaction was stirred overnight at room temperature until TLC indicated that no starting material remained. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (SiO$_2$, 50 - 100% CH$_2$Cl$_2$/hexane) to get brown solid (80.4 mg, 63%). m.p. 173 °C; 1H NMR (500 MHz, CDCl$_3$); δ 8.65 (dd, $J = 2.2$, 0.9 Hz, 1H, H_A), 7.69 (dd, $J = 8.1$, 2.2 Hz, 1H, H_B), 7.44 (dd, $J = 8.1$, 0.9 Hz, 1H, H_C), 4.53 (s, 2H, H_D), 3.25 (s, 1H, H_E); 13C NMR (125 MHz, CDCl$_3$); δ 152.6, 141.3, 138.9, 126.9, 119.7, 92.8, 82.4, 82.1, 79.3, 51.6; HR-ESIMS $m/z = 158.05860$ [M+H]$^+$ (calc. for C$_{10}$H$_{18}$NO 158.06004).
A mixture of 25 (31.1 mg, 0.2 mmol), 20 (29.8 mg, 0.1 mmol) and CuSO₄ (5.5 mg, 0.03 mmol, 30 mol%) in 1:1 t-butanol/water (6 mL) was stirred at rt under nitrogen atmosphere. A solution of (+)-sodium L-ascorbate (1 M, 40 µL, 0.04 mmol, 40 mol%) was then charged. The reaction mixture was stirred at 60 °C overnight. The mixture was partition by adding CH₂Cl₂. The organic layer was washed with 0.1 M Sodium EDTA (3×15 mL). The combined organic phases were dried (MgSO₄), filtered, concentrated. The residue was recrystallised in a mixture of MeOH/CH₂Cl₂ to obtain yellow solid (25.7 g, 42%). ¹H NMR (500 MHz, CD₂Cl₂); δ 8.60 (dd, J = 2.2, 0.9 Hz, 2H, H₆), 8.20 (d, J = 2.1 Hz, 2H, H₆), 8.14 (s, 2H, H₆), 8.09 (dd, J = 8.2, 0.9 Hz, 2H, H₆), 7.80 (dd, J = 8.2, 2.2 Hz, 2H, H₆), 7.21 (t, J = 2.1 Hz, 1H, H₅), 4.51 (s, 4H, H₇), 4.39 (t, J = 7.1 Hz, 4H, H₇), 3.76 (s, 2H, H₇), 2.57 – 2.50 (m, 4H, H₇), 2.00 – 1.91 (m, 4H, H₇), 1.66 – 1.58 (m, 4H, H₇), 1.40 - 1.31 (m, 4H, H₇); ¹³C NMR (125 MHz, CDCl₃); δ 152.1, 149.4, 147.9, 145.2 (br), 139.8, 138.2, 122.5, 119.7, 118.9, 91.6, 82.5, 51.5, 50.5, 32.6, 30.3, 30.0, 26.0; HR-ESIMS m/z = 616.31520 [M+H]⁺ (calc. for C₃₅H₃₇N₉O₂ 616.31430).

To a suspension of 3,5-dibromopyridine (0.22 g, 0.9 mmol, 1 eq), Cul (27.3 mg, 0.14 mmol, 10 mol%) and Pd(PPh₃)₂Cl₂ (32.3 mg, 0.046 mmol, 5 mol%) in dry THF (10 mL) was added a solution of 29 (0.57 g, 1 mmol, 1.1 eq) in THF followed by diisopropylamine (0.3 mL, 2 mmol, 2 eq). The reaction mixture was heated at 60 °C and left stirring overnight. The mixture was cooled down. The solvent was taken off in vacuo. The residue was dissolved in CH₂Cl₂, washed with saturated NH₄Cl and brine. Combined organic layers were dried over MgSO₄, filtered. The off white solid product (0.44 g, 67%) was
obtained by flash column chromatography (SiO₂, 0–3% MeOH/CH₂Cl₂). Off white solid. m.p. 195-197 °C; ¹H NMR (500 MHz, CDCl₃); δ 8.60 (d, J = 2.2 Hz, 1H, H₈/C), 8.57 (d, J = 1.7 Hz, 1H, H₈/B/C), 7.85 (dd, appearing as apparent triplet, 1H, H₈), 7.28 (d, J = 8.7 Hz, 6H, H₉), 7.18 – 7.11 (m, 8H, H₉/H₁₀), 6.82 (d, J = 8.9 Hz, 2H, H₉), 4.11 (t, J = 6.0 Hz, 2H, H₈), 2.69 (t, J = 7.0 Hz, 2H, H₈), 2.15 - 2.07 (m, appearing as apparent pentet, 2H, H₈), 1.35 (s, 27H, H₉);

¹³C NMR (125 MHz, CDCl₃); δ 156.8, 150.5, 148.4, 144.3, 141.1, 139.9, 132.4, 130.9, 124.2, 120.7, 113.1, 93.7, 77.3, 66.2, 63.2, 34.4, 31.5, 28.6, 16.5; HR-ESIMS m/z = 726.32920 [M+H]+ (calc. for C₄₇H₅₃NO₇9Br 726.33050).

To a suspension of 32 (0.45 g, 0.6 mmol, 1 eq), CuI (17.1 mg, 0.09 mmol, 10 mol%) and Pd(PPh₃)₂Cl₂ (21.6 mg, 0.03 mmol, 5 mol%) in dry THF (10 mL) was added a solution of 30 (0.19 g, 0.8 mmol, 1.1 eq) in THF followed by diisopropylamine (0.2 mL, 1.4 mmol, 2 eq). The reaction mixture was heated at 60 °C and left stirring overnight. The mixture was cooled down. The solvent was taken off in vacuo. The residue was dissolved in CH₂Cl₂, washed with saturated NH₄Cl and brine. Combined organic layers were dried over MgSO₄ filtered. The pale brown solid product (0.24 g, 44%) was obtained by flash column chromatography (SiO₂, 0–3% MeOH/CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃); δ 8.49 (bs, 1H, H₈/B/C), 8.37 (bs, 1H, H₈/B/C), 7.80 (d, J = 8.2 Hz, 2H, H₉), 7.55 (dd, appearing as apparent triplet, 1H, H₉), 7.30 (d, J = 8.2 Hz, 2H, H₉), 7.23 (d, J = 8.6 Hz, 6H, H₉), 7.11 - 7.05 (m, 8H, H₉/H₁₀), 6.78 (d, J = 8.9 Hz, 2H, H₉), 4.18 (t, J = 6.0 Hz, 2H, H₈), 4.07 (t, J = 6.0 Hz, 2H, H₈), 2.64 (t, J = 7.0 Hz, 2H, H₈), 2.50 (t, J = 6.8 Hz, 2H, H₈), 2.38 (s, 3H, H₉), 2.11 - 2.04 (m, 2H, H₈), 1.97 - 1.90 (m, 2H, H₈), 1.30 (s, 27H, H₉); ¹³C NMR (125 MHz, CDCl₃); δ 156.8, 150.8, 150.5, 148.5, 145.0, 144.3, 140.9, 139.9, 133.0, 132.4, 130.9, 130.0, 128.1, 128.0, 124.2, 113.1, 93.8, 91.9, 78.0, 77.3, 68.7, 66.2, 63.2, 34.4, 31.5, 28.6, 27.8, 21.7, 16.5, 15.8; HR-ESIMS m/z = 884.46670 [M+H]+ (calc. for C₅₉H₆₆N₂O₄₂S 884.47071).
The title compound 34 was synthesised as described for hydrogenation reaction to get 19. Using 33 (0.24 g, 0.27 mmol), Pd/C (10% Pd, 52.5 mg) to afford 34 as pale brown solid (0.24 g, 100%). 1H NMR (500 MHz, CDCl₃) δ 8.32 (bs, 1H, H₆/B/C), 8.27 (bs, 1H, H₆/B/C), 7.77 (d, J = 8.3 Hz, 2H, H₇), 7.48 (bs, 1H, H₈), 7.34 (d, J = 7.9 Hz, 2H, H₉), 7.22 (d, J = 8.7 Hz, 6H, H₁₀), 7.08 (d, J = 8.7 Hz, 8H, H₁₁+₁₂), 6.74 (d, J = 9.0 Hz, 2H, H₁₃), 4.05 – 3.97 (m, 2H, H₁₄), 3.93 (t, J = 6.4 Hz, 2H, H₁₅), 3.26 (t, J = 6.9 Hz, 2H, H₁₆), 2.67 – 2.54 (m, 4H, H₁₇+₁₈), 1.85 – 1.76 (m, 2H, H₁₉), 1.75 – 1.46 (m, 8H, H₂₀+₂₁), 1.44 – 1.32 (m, 2H, H₂₂), 1.30 (s, 27H, H₂₃); HR-ESIMS m/z = 892.53170 [M+H]+ (calc. for C₅₉H₇₄NO₄S 892.53331).

To a solution of 33 (0.24 g, 0.27 mmol) in DMF (5 mL) was added an aqueous solution of NaN₃ (30.2 mg, 0.46 mmol). The reaction mixture was stirred at 80 °C overnight. The reaction was cooled to rt, water was added. The crude product was extracted with Et₂O (3×10 mL), dried (MgSO₄), and filtered. The light brown solid (95.1 mg, 45%) was obtained from flash column chromatography (SiO₂, 1% MeOH/CH₂Cl₂). m.p. 174 – 176 °C; 1H NMR (500 MHz, CDCl₃); δ 8.28 (d, J = 6.7 Hz, 2H, H₂₃+₂₄), 7.31 (bs, 1H, H₂₅), 7.23 (d, J = 8.7 Hz, 6H, H₂₆), 7.12 – 7.04 (m, 8H, H₂₇+₂₈), 6.75 (d, J = 8.9 Hz, 2H, H₂₉), 3.93 (t, J = 6.4 Hz, 2H, H₃₀), 3.26 (t, J = 6.9 Hz, 2H, H₃₁), 2.67 – 2.54 (m, 4H, H₃₂+₃₃), 1.85 – 1.75 (m, 2H, H₃₄), 1.74 – 1.58 (m, 6H, H₃₅+₃₆), 1.57 – 1.45 (m, 2H, H₃₇), 1.47 – 1.37 (m, 2H, H₃₈), 1.30 (s, 27H, H₃₉); 13C NMR (125 MHz, CDCl₃); δ 157.0, 148.4, 147.6, 147.5, 144.3, 139.6, 137.5, 137.2, 136.0,
132.4, 130.9, 124.2, 113.1, 67.7, 63.2, 51.5, 34.4, 32.9, 32.5, 31.5, 30.8, 30.6, 29.3, 28.8, 26.6, 26.4; HR-ESIMS $m/z = 763.530283 \ [M+H]^+$ (calc. for C$_{52}$H$_{67}$N$_4$O 763.530939).

3.5 References

Acknowledgements

David August is gratefully thanked for his help with nESI-MS.
Synopsis

Herein, the metal-directed self-assembly of tubular complexes were studied in order to develop self-assembled rotaxanes. The partially-protected palladium complex, [(en)Pd(NO$_3$)$_2$], was employed as a building block to successfully assemble with tris and pentakis(3,5-pyridine) ligands in the presence of biphenyl with different length of ethyleneoxide side chain template 18 (or 31) and produce tubular complexes 23, 24, 36 and 37. Some other rod-like molecules and other biphenyl derivatives showed poorer templating abilities than 18 and 31. The self-assembly of the tube components around stoppered templates 22, 28 and 35 was not successful. The attempts to synthesise benzidine derivatives to use as a station in rotaxanes failed under various reaction conditions. To extend the scope for a tube self-assembly, a more kinetically inert PtII analogue was used as an alternative building block. In addition, an assembly-followed-by oxidation protocol1 with a CoIII system was explored.
4.1 Introduction

Self-assembly relies on the simultaneous organisation of components using supramolecular interactions (ionic, hydrophobic, van der Waals, hydrogen and coordination bonds) producing patterns or structures. Self-assembly strategies have been used to overcome limitations arose by the multistep covalent synthesis. The formation of discrete metal-organic structures such as coordination cages, helicates, knots has rapidly increased in recent years. As knowledge of construction of wide range self-assemblies has been well established, the challenge is moving on to how to make a complex functional or useful systems. Applications of the assemblies are a major goal in the field of supramolecular chemistry.

Metal-directed self-assembly of discrete two- and three-dimensional structures using cis-protected PdII building block has been extensively studied by Fujita, Stang and others. Fujita’s group first demonstrated formation of a molecular square by the complexation of [(en)Pd(NO\textsubscript{3})\textsubscript{2}] (en = ethylenediamine) (1) with 4,4’-bipyridine. In 1995, the first synthesis of a three-dimensional octahedral cage using two-dimensional triangular tris(4-pyridyl)triazine “panels” was realised. Fujita and co-workers have shown the exploitation of two-dimensional organic component as molecular panelling is an efficient method for fabrication of three-dimensional molecules. Rectangular tris, tetrakis and pentakis(3,5-pyridine) ligands, 2, 3 and 4 were linked together with 1 which provides 90° angle to construct corresponding coordination nanotubes from four molecules of pyridine ligands and complimentary numbers of 1 (Figure 4.1, 4.2). Oligo(3,5-pyridine) panels 2, 3 and 4 contain three, four and five binding sites, respectively. Coordination nanotubes, however, were formed only in the presence of a rod-like template molecule such as 4,4’-biphenylenedicarboxylate (5), biphenyl (6), p-terphenyl (7) and were characterised by NMR, cold-spray-ionisation mass spectrometry (CSI-MS) and X-ray crystallography. It was found that the tube dissociated into its components upon removal of template molecule and reassemble by the addition of the guest molecule. There are two isomers of tubes 9 in a ca. 1:1 ratio but only got single crystal for one isomer.
Figure 4.1 cis-protected PdII unit 1, rectangular ligands 2, 3, 4 and template molecule 5, 6, 7.

Figure 4.2 Schematic representation of nanotubes 8, 9a, 9b and 10 reported by Fujita et al.8

The tubular frameworks hosting template molecule in their cavities for tube 8, 9b and 10 were confirmed by X-ray crystallographic analysis (Figure 4.3). The crystal structure shows π-π and CH-π interactions between the framework and the template which is a distorted square in such way that two ligands are stacked on the π-face of phenyl rings of the template and two other ligands are orthogonally interacting via CH-π interactions.
Figure 4.3 Crystal structure of a) 9b and b) 10. Left: side view, Right: top view. Colour code: C, grey; N, blue; O, red; Pt, magenta. Solvent, NO$_3^-$ counter anion and hydrogen atoms have been removed for clarity.6b

All of the tubular complexes included a template molecule in their cavity, which themselves resemble the structures of pseudo-rotaxanes. This inspired the studies to exploit a discrete nanotube as a self-assembled [2]rotaxane, which could be further developed into a self-assembled stimuli-responsive molecular shuttle.
4.2 Results and Discussion

4.2.1 Design

As the nanotubes studied by Fujita’s group can be considered pseudo-rotaxanes, it could be clearly envisaged that modifying the template molecule by lengthening and installing appropriate stoppers would make a novel functional self-assembly rotaxane. Fujita’s group has shown that range of neutral/anionic charged symmetric/asymmetric biphenyl derivatives, anthracene derivatives and p-terphenyl can be used as templates for tubes fabrication. As well as targeting a simple one-station rotaxane, however, we envisaged that the incorporation of a second station and a suitable means by which to externally address one of these stations, would produce a bistable stimuli-responsive molecular shuttle. Such devices (or mechanical switches) can be considered central to the development of more complicated molecular machines. The design in question, combines Fujita’s tube with ideas from Stoddart’s laboratory. Thus, the proposed rotaxane features a thread molecule containing both dialkoxy biphenyl (O-station) and diamine biphenyl (N-station) units linked together by an alkyl chain or oligo(ethyleneoxide) spacer and capped with two bulky, fluorescent naphthalimide-type stoppers, at both ends. It was envisaged that the tubular Pd component would initially prefer the amine station, as this would be a much stronger π-donor and thus interact much more strongly with highly electron π-deficient panels (caused by coordination to the Pd ions) of the tube. Crucially, it was also anticipated that tris and pentakis(3,5-pyridine) tubes are strong enough not to disassemble when the systems are set in motion by the cooperativity of twelve and twenty Pd-N bonds, respectively. With twelve and twenty-cationic charge, tubular rotaxanes would be expected to be capable of binding neutral and anionic guests strongly, but not cationic guests. Therefore, shuttling of the tube to the O-station was envisaged upon addition of acid, as this would be repelled by the ammonium functionality of the N-station. It was also expected therefore, that the addition of a base should instantly reverse the process (Scheme 4.1).
As part of a preliminary study, the discrete self-assembly of the tubular rotaxane with one template station was pursued as an intermediary goal.

4.2.2 Synthesis

4.2.2.1 Synthesis of oligo(3,5-pyridine) ligands

Preparation of tris and pentakis(3,5-pyridine) was documented by Fujita and co-workers8a using tributyltin compounds, which can be highly toxic. As a less-toxic alternative, we have pursued standard Suzuki coupling reactions, as shown in Scheme 4.2.
The synthesis of tris(3,5-pyridine) ligand 2 commenced from a boronic acid prepared from the commercially available 3-bromopyridine following a literature procedure.11 The 3-pyridylboronic acid 11 was then reacted with 3,5-dibromopyridine under standard Suzuki reaction conditions to afford 2 in good yield (68%). To fabricate a reagent for pentakis(3,5-pyridine) ligand, boronic acid 11 was coupled with only one equivalent of 3,5-dibromopyridine to achieve bromobipyridine 12, which was subsequently used to afford boronic acid 13.12 Bipyridyl boronic acid 13 could be subjected to a Suzuki coupling with 3,5-dibromopyridine right away or further reacted with KHF\textsubscript{2} to produce more the stable potassium trifluoroborate salt 14 and then used as a Suzuki reagent. Trifluoroborate 14 is a versatile coupling partner and gives higher product yield for Suzuki coupling with 3,5-dibromopyridine, giving pentakis(3,5-pyridine) 4 in 23%. This reaction condition is less time consuming and more efficient compared to the procedure proposed by Fujita and co-workers. However, the Suzuki coupling reaction also gave a lot of byproducts i.e. tris, tetrakis(3,5-pyridine), 3,3′:5′,3″-terpyridine-5-bromo- which lowered the yield of the desired product.

4.2.2.2 Synthesis of biphenyl template molecules

The first design of an O-station thread molecule featured a biphenyl connected to naphthalimide sulfonate stoppers through ethyleneglycol linkages. Retrosynthetic analysis of thread 22 is shown in Scheme 4.3. A nucleophilic substitution reaction between 4,4′-bis(2-bromoethoxy)-1,1′-biphenyl 19 and naphthalimide stopper 21 would afford a target thread molecule. Bromination of diol 18 would yield 19 and condensation of naphthalic anhydride 20 with ammonia solution would furnish 21.
Attempts towards the synthesis of diol 18 were examined. Firstly, a Buchwald-Hartwig homocoupling reaction of 2-(4-bromophenoxy)ethanol 17 was carried out but failed to generate the desired compound. A nucleophilic substitution of 4,4′-dihydroxybiphenyl and bromoethanol gave poor yield after purification. The last attempt, 4,4′-dihydroxybiphenyl were coupled to ethylene carbonate in the presence of K₂CO₃ to give rise to the diol derivatives 18 in 98% yield (Scheme 4.4).

Scheme 4.3 Retrosynthesis of template 22.

Compound 18 was brominated, using bromine and triphenylphosphine, which gave rise to 19 in 60% yield. Salt 20 was prepared according to literature procedure using fuming sulphuric acid and 1,8-naphthalic anhydride. Compound 21 was then refluxed with ammonia solution in ethanol to afford the corresponding naphthalimide salt.
Reacting compound 21 with 19 at 120 °C in the presence of K₂CO₃ and NaI for 2 d afforded the product 22 following recrystallisation in poor yield (Scheme 4.5).

Scheme 4.5 Synthesis of thread 22. Reagents and conditions: a) Br₂, PPh₃, CH₂Cl₂, 0°C-rt, 16 h, 60%; b) i)fuming H₂SO₄ 65%, 90 °C, 1 h ii) ice-water, NaCl, 100%; c) 16% NH₄OH, EtOH, 100 °C, 3 h, 66%; d) K₂CO₃, NaI, DMF, 120 °C, 2%.

4.2.2.3 Self-assembly of tubular rotaxanes

Before the self-assembly reaction with fully stoppered thread (e.g. 22) was undertaken, the thread precursor 18 and 19 were subjected to tube-formation conditions by suspending one equivalent of these templates with four equivalents of ligand 2 or 4 and six or ten equivalents of "Pd(II)" 1 in D₂O at 70°C for 1 h (Scheme 4.6). As Fujita had previously observed, the reaction of oligopyridine and Pd(II) complex in D₂O first results in the formation of a complex mixture (Figure 4.4c, 4.5c). Addition of template molecules 18 to the reaction mixture induced the assembly of a single product after the solution was heated at 70 °C for 1 h (Figure 4.4d, 4.5d). The ¹H NMR spectra were in accordance with the quantitative formation of complex 23 and 24, where the tube accommodated guest 18 in the cavity. The signals of guest 18 are shifted upfield as a result of shielding from face-to-face contact with two panels of the tube and six or nine proton signals which arose from half the framework 2 or 4 confirmed the high symmetry of the tubular structure. The integral ratio indicated a 1:1 host-guest complexation in the same fashion as found by Fujita. NOE correlation between the host and the guest in a NOESY spectrum supported the planar conformation of the ligand framework. The diffusion-ordered spectroscopy (DOSY) NMR spectrum also indicated the formation of a single product with a diffusion coefficient of -9.63 and -9.70 m²s⁻¹ for tube 23 and 24 respectively. Unfortunately, no intact species could be detected using nESI-MS. The template 19 did not successfully form a tubular architecture after a similar treatment. The NMR spectra were complicated.
Scheme 4.6 Self-assembly of 1, 2 or 4 in the presence of template molecule forming tube 23 and 24.

Figure 4.4 Partial ¹H NMR spectra (500 mHz, 298 K) of a) tris(3,5-pyridine), 2 in CDCl₃; b) template 18 in DMSO-d₆; c) a mixture of 2 and Pd¹I 1 in D₂O at rt; d) a mixture in c) after addition of 18 and heating at 70 °C for 1h.

Figure 4.5 Partial ¹H NMR spectra (500 mHz, 298 K) of a) pentakis(3,5-pyridine), 4 in CDCl₃; b) template 18 in DMSO-d₆; c) a mixture of 4 and Pd¹I 1 in D₂O at rt; d) a mixture in c) after addition of 18 and heating at 70 °C for 1h.
An assembly of the tube with the stoppered thread 22 was not successful as the NMR was broad and messy due to an oligomeric mixture for both tris and pentakis(3,5-pyridine) despite prolonged heating for several days. This was attributed to the thread structure not being suitable for stabilising the formation of the tube.

4.2.2.4 Other template molecules

Some other rod-like molecules apart from biphenyl derivatives were also examined as templates for the tube assembly including azobenzene, stilbene, in situ formation of imine from benzaldehyde and phenylethylamine, anthracene, 4,4’-bipyridine and 1,4-bis(6-((tert-butyldimethylsilyl)ethynyl)pyridin-3-yl)benzene† (Figure 4.6). All of the above compounds except anthracene did not show any template effect although 4,4’-bipyridine and 1,4-bispyridyl benzene resembled biphenyl and terphenyl. The host-guest interactions for this assembly required further study to rationalise the stability of the tubes. The complexation of polypyridine with an end-capped PdII 1 in the presence of anthracene showed somewhat encapsulation of anthracene in both tris and pentakispyridine tubes (Figure 4.7b, d). The signals correspond to anthracene were upfield shifted (pink labelled). The NMR spectra clearly showed the assembly of more than one product compared to the sole product spectrum where diol 18 was a template (Figure 4.7a, c). This suggested the efficient template ability of biphenyl derivatives. Therefore, new designs of template axles based on biphenyl core with longer linker unit were proposed.

†1,4-bis(6-((tert-butyldimethylsilyl)ethynyl)pyridin-3-yl)benzene was synthesised by Paul Symmers.
Figure 4.6 Other template molecules considered for tube assembly. a) azobenzene; b) stilbene; c) in situ made imine from benzaldehyde and phenylethylamine; d) anthracene and e) 4,4’-bipyridine; f) 1,4-bis(6-((tert-butyldimethylsilyl)ethynyl)pyridin-3-yl)benzene. Only anthracene, d) acted as a template for self-assembly.

Figure 4.7 Partial 1H NMR spectra (500 mHz, D$_2$O, 298 K) of a) tris(3,5-pyridine) tube 23; b) a mixture of tris(3,5-pyridine), 1 and anthracene after heating at 70 °C for 1h; c) pentakis(3,5-pyridine) tube 24; d) a mixture of pentakis(3,5-pyridine), 1 and anthracene after heating at 70 °C for 1h.

The first set of compounds contains an alkyl chain with an alkyne moiety adjacent to the biphenyl (Scheme 4.7). The π-electron in the triple bond is expected to increase host-guest π-π interactions. The synthesis of 28 started with a double Sonogashira coupling of 4,4’-diiodobiphenyl with 5-chloro-1-pentyne to afford compound 25. Dichloro compound 25 subsequently underwent an azidation reaction to give bisazido 26, followed by a reduction of the azide moiety using Zn powder and NH$_4$Cl to furnish 27. The reaction of naphthalic anhydride with primary amines was well known from the convenient synthesis of dyes.16 To bring about the naphthalimide group as a stopper, the
condensation of naphthalic anhydride salt 20 with terminal amine compound was undertaken. Diamine 27 and stopper 20 were refluxed in ethanol to afford 28 in 31%.

Scheme 4.7 Synthesis of thread 28. Reagents and conditions: a) Pd(PPh₃)₂Cl₂, PPh₃, Et₃N, THF, 65 °C, 16 h, 57%; b) NaN₃, DMF, 80 °C, 4 h, 80%; c) Zn powder, NH₄Cl, EtOH, water, reflux, 30 min, 13%; d) 20, EtOH, reflux, 2 d, 31%.

Another variety of the template thread derived from biphenol structure featured an alkyl chain connected to oxygen atom adjacent to biphenyl. The ligand-assisted Ullmann coupling reaction¹⁷ of 4,4'-diiodobiphenyl and 5-amino-1-pentanol gave 29 in 31% yield. Unfortunately, coupling two stopper molecules with diamine 29 failed. The reaction gave only monocoupled product 30 regardless of the amount of stopper added and the reaction time (Scheme 4.8).
Scheme 4.8 Synthetic pathway of O-arylation thread molecule. Reagents and conditions: a) 5- amino-1-pentanol, CuI, 3,4,7,8-tetramethyl-1-10-phenanthroline, Cs2CO3, toluene, 90 °C, 20 h, 31%; b) 20, EtOH, reflux, 2 d. The product obtained was 30.

The thread without/with stopper units from two variants; compounds 27, 29, 28 and 30 (NMR spectra are shown in Figure 4.8a-d respectively) were investigated as templates for guest-induced assembly of coordination nanotubes using both tris and pentakis(3,5-pyridine) ligands 2 and 4, and coordination building block 1. The results for tris and pentakis(3,5-pyridine) ligands were similar. It was found that 27 and 29 showed a templating effect to some extent as the peaks correlate with pyridine signals exhibit a similar chemical shift range as the tubular complex 23 (Figure 4.8e, f). Moreover, the resonances of the biphenyl unit of 29 have shifted upfield to 4.98 and 4.41 ppm. The spectra of the reaction with stoppered thread showed uncharacterised oligomer complexes and none of the naphthalimide resonances were observed (Figure 4.8g, h). The intensity of the reagent peaks decreased as the reaction was reacted. From this result, it can be inferred that oxygen atoms in the template molecule might play some important role in templating the tubular structure.
Chapter IV

Figure 4.8 Partial 1H NMR spectra (500 MHz, 298 K) of a) 27 in MeOD-d_4; b) 29 in CDCl$_3$; c) 28 in DMSO-d_6; d) 30 in DMSO-d_6; e) the mixture of 2, [([en]Pd(NO$_3$)$_2$] 1 and 27 in D$_2$O for 1 h at 70 °C; f) the mixture of 2, 1 and 29 in D$_2$O for 1 h at 70 °C; g) the mixture of 2, 1 and 28 in D$_2$O for 1 h at 70 °C; h) the mixture of 2, 1 and 30 in D$_2$O for 1 h at 70 °C; i) complex 24 assembled from treating ligand 2 with 1 in the presence of 18 in D$_2$O for 1 h at 70°C.

4.2.2.5 Longer ethyleneoxide chain O-biphenyl based template

A new thread design included an oligo(ethyleneoxide) chain next to biphenyl structure. The synthesis of thread 35 (Scheme 4.9) started from the commercially available 4,4'-dihydroxybiphenyl, which underwent a double Williamson ether reaction with (2-chloroethoxy)ethanol in the presence of K$_2$CO$_3$ and LiBr in MeCN to give 31 in 86% yield. 31 was then converted into the dibromo compound 32 using the Appel reaction with CBr$_4$ and PPh$_3$. The subsequent azidation was achieved by reacting with NaN$_3$ in DMF and produced the desired product 33 after recrystallisation in excellent yield. The bisazido ligand was then treated with LiAlH$_4$ to obtain the reduced amine species 33 in 91%. To obtain the thread 35, amine 34 was reacted with stopper 20 under reflux conditions in mixed solvent. The product was precipitated out of the solution in quantitative yield.
Scheme 4.9 Synthesis of thread template 35. Reagents and conditions: a) (2-chloroethoxy)ethanol, K$_2$CO$_3$, LiBr, 80 °C, 16 h, 86%; b) CBr$_4$, PPh$_3$, CH$_2$Cl$_2$, rt, 5 h, 78%; c) NaN$_3$, DMF, 80 °C, 2 d, 93%; d) LiAlH$_4$, THF, reflux, 1 h, 91%; e) 20, EtOH, MeOH, CH$_2$Cl$_2$, DMF, reflux, 16 h, quant.

The complexation of ligand 2 and 4 with Pd$^{	ext{II}}$ 1 in D$_2$O in the presence of 31 resulted in the quantitative self-assembly of 2 and 4 into coordination tube 36 and 37, respectively (Figure 4.9). 31 showed a similar template effect as described earlier for 18. The mixture of oligopyridine and [(en)Pd(NO$_3$)$_2$] first resulted in a complex mixture. Upon addition of 31, the conversion of the mixture into a single product was accomplished after 1 h at 70 °C. The NMR spectra were consistent with the formation of tube 36 and 37 (Figure 4.10). Six and nine proton signals that resulted from half of the framework were clearly observed. Template 31 was observed symmetrically with a marked upfield shift that indicates the accommodation of 31 within the tubes. The DOSY NMR spectrum gave a diffusion coefficient of -9.64 and -9.71 m2s$^{-1}$ for tube 36 and 37 respectively, which are comparable to those of the tube complexes with the shorter template. These two assemblies could not be detected by nESI-MS.
Figure 4.9 Schematic representations of nanotubes 36 and 37. The template included in the tube was showed to clarify the assignment.

Figure 4.10 Partial 1H NMR spectra (500 MHz, D$_2$O, 298 K) of a) template 31 in CDCl$_3$; b) complex 36 assembled from treating ligand 2 with 1 in the presence of 31 in D$_2$O for 1 h at 70°C; c) complex 37 assembled from treating ligand 4 with 1 in the presence of 31 in D$_2$O for 1 h at 70°C. The assignments correspond to the lettering shown in Figure 4.9.

The thread containing stopper units 35 was used as a template for self-assembly of coordination nanotubes. The reaction mixture for tris(3,5-pyridine) tube remained complex after 72 h at 70 °C while the pentakis(3,5-pyridine) reaction started to show some tube assembly within 18 h (Figure 4.11b). A strong H-bond donor solvent, 2,2,2-trifluoroethanol (TFE) has been used to labilise kinetically inert Pt(II)-pyridine coordination bonds, allowing the formation of Pt(II)$_{12}$L$_{24}$ spheres.18 The formation of
tris(3,5-pyridine) tube was also explored in a mixture of 6:4 TFE/D₂O as TFE might help labilise Pd-pyridine bonds in the presence of the thread with bulky ends. After reacting at 70 °C for 6 d, the resonance of the tube was revealed (Figure 4.11c). The spectra of the reaction mixture for both tris- and pentakis-tubes appeared further downfield for pyridine frameworks compared those formed with the template without stopper molecules. Furthermore, the intensities of the spectra were very low and did not reveal any resonance for the stopper unit. The extra naphthalimide unit in the thread molecule has presumably obstructed an assembly and has somehow been cleaved from the biphenyl core. Despite a DOSY spectrum of the rotaxane formation reaction with ligand 4 giving a diffusion coefficient of -9.79 m²s⁻¹, which was slightly higher than pseudorotaxane complex 37 (-9.71 m²s⁻¹), this was not sufficient evidence for successful rotaxane formation.

Figure 4.11 Partial ¹H NMR spectra (500 MHz, 298 K) of a) thread 35 in DMSO-d₆; b) the mixture of 4, [(en)Pd(NO₃)₂] 1 and 35 in D₂O for 18 h at 70 °C; c) the mixture of 2, [(en)Pd(NO₃)₂] 1 and 35 in 6:4 TFE/D₂O for 6 d at 70 °C.

4.2.2.6 N-station template

In the proposed self-assembled stimuli-responsive molecular shuttle, there were two different template stations. The O-station has been synthesised and discussed above. For the N-station, the first template to be explored was benzidine, 4,4'-diaminobiphenyl 38, which was prepared according to a literature procedure using a rearrangement reaction of 1,2-diphenylhydrazine with concentrated HCl.¹⁹ The ¹H NMR spectrum of the complexation of ligand 2 (or 4) with 1 using benzidine 38 as a template is shown in Figure 4.12b, d. Under similar conditions as that used for previous tube assembly, the mixture was stirred at 70 °C for at least 1 h to observe the formation of the tubular structure. The peaks corresponding to the tube were observed along with many other
uncharacterisable peaks including benzidine. It was concluded that 38 was too soluble in water (the signals of free 38 were readily observable in D$_2$O), which would reduce the hydrophobic effect associated with its inclusion, therefore making it a poorer template.

![Figure 4.12](image1.png)

Figure 4.12 Partial 1H NMR spectra (500 MHz, D$_2$O, 298 K) of a) tube complex 22; b) the mixture of 2, 1 and benzidine in for 1 h at 70 °C; c) tube complex 23; d) the mixture of 4, 1 and benzidine in for 1 h at 70 °C.

The attempts to synthesise other benzidine-derived threads failed using both Ullmann-type coupling and Buchwald–Hartwig amination of 4,4’-diiodobiphenyl and alkylamine (Scheme 4.10a). No desired product was found from crude 1H and DOSY NMR spectra of the reactions. Oligomerisation of amine starting materials presumably occurred as preferred side reactions. Attaching bis(ethyleneoxide) sidearms to both benzidine nitrogen atoms using an alkylation reaction of benzidine with (2-chloroethoxy)ethanol and K$_2$CO$_3$ did not progress as with the oxygen analogue (Scheme 4.10b). The two starting materials were recovered after purification of the crude product by column chromatography.
Scheme 4.10 Synthetic scheme for elongated benzidine. Reagents and conditions: a) Ullmann-type: copper source: Cul, CuBr; base: K$_3$PO$_4$, Cs$_2$CO$_3$, solvent: DMF, iPrOH, 100-120 °C; Buchwald-Hartwig: Pd$_2$dba$_3$, tBuOK, BINAP, Toluene, reflux.; b) NEt$_3$, benzene, reflux, 2 weeks; K$_2$CO$_3$, NaI, THF, reflux, 48 h.

4.2.2.7 Other metal building blocks

To extend the scope of coordination tube assembly, other metal building blocks were utilised instead of PdII 1. The first metal building block employed was a PtII analogue of [(en)Pd(NO$_3$)$_2$] which provided 90 degree coordination with a square planar geometry similar to PdII 1. As Pt(II) is more inert than Pd(II), it would need more energy to push the equilibrium forward for an assembly process compared to Pd(II). Self-assembly of ligand 2 with [(en)Pt(NO$_3$)$_2$] (41)21 and 31 was done at 100 °C for 7 d (Figure 4.13) while the reaction of ligand 4 did not progress after 40 d at 100 °C.

Figure 4.13 Schematic representation of nanotube 40. The template included in the tube is shown to assist with NMR assignment.
The 1H NMR spectrum of tube 40 is shown in Figure 4.14 with similar a pattern as observed in the former systems. The DOSY spectrum was also comparable with the other two palladium tubes 23 and 36 with a diffusion coefficient of -9.63 m2s$^{-1}$.

![Figure 4.14](image)

Figure 4.14 Partial 1H spectrum of tube complex 40 (500 mHz, D$_2$O, 298 K). The assignments correspond to the lettering shown in Figure 4.13.

The results from an assembly of Stang’s platinum dodecahedron cage indicated that the preparation requires the gradual addition of the pyridine-containing donor to the Pt acceptor which ensures that the Pt precursor is always present in excess, prohibiting the nucleophilic attack of a free strongly coordinating ligand on the Pt complex.22 The gradual addition of the pyridine ligand 4 to the solution of PtII 41 and template was undertaken. However, the 1H NMR spectrum only revealed an oligomer mixture. It was anticipated that the Pt(II)-pyridine coordination bond could be labilised in TFE.18 Thus, ligand 4 was treated with 41 in a mixed solvent of 1:1 TFE/D$_2$O. The 1H NMR spectrum of this also revealed a complex mixture after heating at 100 °C for 4 d, moreover the template was dissolved in the mixed solvent. This was the case for an assembly using the stoppered template 35. No tube rotaxane formation was observed in all of the above conditions.

Recently, cobalt(II) has been used to assemble tetrahedral capsules in an M$_4$L$_6$ structure and the capsules were then oxidised to obtain inert Co(III) architectures which are not in equilibrium with their disassembled state.1 It was envisaged that a partially protected Co(II) centre would assemble with oligopyridine panels and produce a tubular complex in the same manner as with the cis-protected square planar PdII and PtII complex, and undergo oxidation give a tube which would still exhibit the required kinetic robustness to make it useful for a stimuli-molecular shuttle system. 1,4,7,10-tetraathiacyclododecane (12ane[S$_4$]) was chosen to protect the four other coordination sites and leave two vacant positions to interact with the oligopyridine ligands. Cobalt(II) complexes were prepared by mixing the same equivalents of Co(ClO$_4$)$_2.6$H$_2$O and 12ane[S$_4$] in water. The red
solution of Co(ClO₄)₂ turned fuchsia pink once thiacrown ether was introduced and the solution was stirred at 50 °C for 1 h then the solvent was evaporated, resulting in a solid complex product which was used without further purification. The complexation of Co(II) building block, oligopyridine ligand (2 or 4) and template 31 was done in D₂O at 70 °C for 2 h then a slight excess cerium ammonium nitrate (CAN) was added to the reaction mixture. The ¹H NMR spectra of Co(II) reaction were broad as a result of paramagnetism of Co(II). After oxidation with CAN, the spectra did not correspond to anything that could be assigned as a tube structures.

4.3 Conclusion and Outlook

The self-assembly of tris and pentakis(3,5-pyridine) with [(en)Pd(NO₃)₂] in the presence of 18 and longer ethyleneoxide side chain 31 to form tubular structures 23, 24, 36 and 37 were successful by heating the reaction mixture at 70 °C for 1 h. All the compounds were characterised by ¹H, COSY, NOESY and DOSY NMR to confirm the formation of products. The initially developed naphthalimide template 22 for a self-assembled rotaxane showed no templating effect, resulting in uncharacterised spectra of an oligomeric mixture. Anthracene, some biphenyl derivatives 27, 29 and benzidine 38 were poorer templates, in each case the tubes were not formed quantitatively. The attempts to derivatise benzidine were not successful. Unfortunately, the longer version of a stoppered template 35 did not provide any evidence for rotaxane formation, presumably due to side reactions with the naphthalimide sulfonate units. Different metal building blocks such as [(en)Pt(NO₃)₂], [Co(12ane[S₄])(ClO₄)₂] were used to determine the self-assembly. Pt(II) analogue tube was only formed with tris(3,5-pyridine) and 31 template after a week at 100 °C. Cobalt-thiacrown ether complexes did not form any discrete tube.

The non-covalent interactions between template molecule and host framework need to be studied in more detail to improve the system design. Another obvious area for investigation would be the use of alternative stoppers, in particular non-anionic motifs to prevent the interactions with cationic metal building blocks.
4.4 Experimental Section

4.4.1 General experimental procedure

Unless stated otherwise, all reagents and solvents were purchased from commercial sources and used without further purification. [(en)Pd(NO$_3$)$_2$] (1)23, 3-pyridinylboronic acid (11)11, 5-bromo-3,3'-bipyridine (12)12, [3,3'-bipyridin]-5-yl-boronic acid (13)12, 2-(4-bromophenoxy)ethanol (17)24, 4,4'-bis(hydroxyethyl)biphenyl (18)13, 4,4'-bis(2-bromoethoxy)biphenyl (19)14, benzo[de]isochromene-1,3-dione-5-sulfonic acid sodium salt (20)15, benzo[de]isoquinoline-1,3-dione-5-sulfonic acid sodium salt (21)15, benzidine (38)19 and [(en)Pt(NO$_3$)$_2$] (41)21 were prepared according to literature procedures.

![Chemical structures of ligands and reagents](image)

4.4.2 General procedure for tube assembly

a) For tris(3,5-pyridine) framework, tris(3,5-pyridine) ligand (2) (0.01 mmol, 2.3 mg) and 1 (0.015 mmol, 4.4 mg) were combined in D$_2$O (0.5 mL) and stirred for 5 min at 70 °C. To this solution, a template molecule (0.0025 mmol) was added, and the texture was stirred at 70 °C for 1 h or longer until no change of resonance was observed.

b) For pentakis(3,5-pyridine) framework, pentakis(3,5-pyridine) ligand (4) (0.005 mmol, 1.9 mg) and 1 (0.0075 mmol, 3.6 mg) were combined in D$_2$O (0.5 mL) and stirred for 5 min at 70 °C. To this solution, a template molecule (0.00125 mmol) was added, and...
the texture was stirred at 70 °C for 1 h or longer until no change of resonance was observed.

4.4.3 Synthesis

![Chemical Structure](image)

Adapted from a procedure by Bryce et al. 25 3-Pyridinylboronic acid (0.15 g, 1.2 mmol, 2.4 equiv.), 3,5-dibromopyridine (0.12 g, 0.5 mmol, 1 equiv.) and Pd(PPh$_3$)$_2$Cl$_2$ (0.016 g, 0.023 mmol, 5 mol%) were sequentially added to degassed 1,4-dioxane (10 mL), and the mixture was stirred at 25 °C for 30 min. Degassed solution of Na$_2$CO$_3$ (1 M, 5 mL, 3 equiv.) was added. The reaction mixture was heated at reflux overnight. After cooling down, solvent was removed in vacuo, EtOAc was added, and the organic layer was washed with brine, separated, and dried over MgSO$_4$. An off white solid (80.1 mg, 68%) was obtained following purification by flash column chromatography (SiO$_2$, 0 – 5% MeOH/CH$_2$Cl$_2$).

m.p. 157-159 °C, 1H NMR (500 MHz, CDCl$_3$); δ 8.91 (d, $J = 2.0$ Hz, 2H, H$_B$), 8.88 (d, $J = 2.1$ Hz, 2H, H$_D$), 8.70 (dd, $J = 4.8$, 1.3 Hz, 2H, H$_E$), 8.05 (t, $J = 2.0$ Hz, 1H, H$_F$), 7.98 – 7.91 (dt, $J = 7.9$, 2.0 Hz, 2H, H$_D$), 7.45 (dd, $J = 7.9$, 4.9 Hz, 2H, H$_D$); 13C NMR (125 MHz, CDCl$_3$); δ 149.9, 148.4, 147.9, 134.7, 134.0, 133.2, 133.1, 124.0; HR-ESIMS m/z = 234.10350 [M+H]$^+$ (calc. for C$_{15}$H$_{12}$N$_3$ 234.10257).

![Chemical Structure](image)

A solution of KHF$_2$ (0.47 g, 6 mmol, 4 equiv.) in water (4 mL) was added to a stirring solution of [3,3′-bipyridin]-5-yl-boronic acid (0.30 g, 1.5 mmol, 1 equiv.) in MeOH (4 mL) resulting in white precipitate. The mixture was stirred for 2 h at room temperature and then concentrated under reduced pressure to reveal white solid. The product was extracted with 20% MeOH/acetone solution (3×10 mL). The extracts were combined and concentrate until a small amount of precipitate was observed. Et$_2$O was added to encourage precipitation. The precipitate was filtered, washed with Et$_2$O and dried in air.
to afford a white solid (0.31 g, 80%). 1H NMR (500 MHz, DMSO-d_6); δ 8.84 (dd, $J = 2.3$, 0.8 Hz, 1H, H$_D$), 8.61 (d, $J = 2.5$ Hz, 1H, H$_E$), 8.57 (dd, $J = 4.8$, 1.7 Hz, 1H, H$_B$), 8.50 (d, $J = 0.8$ Hz, 1H, H$_C$), 8.05 (ddd, $J = 7.9$, 2.3, 1.7 Hz, 1H, H$_D$), 7.87 (dd, appearing as apparent t, $J = 2.5$, 1.6 Hz, 1H, H$_E$), 7.49 (ddd, $J = 7.9$, 4.8, 0.8 Hz, 1H, H$_A$); 13C NMR (125 MHz, DMSO-d_6); δ 152.4, 152.4, 148.4, 147.5, 144.8, 136.9, 134.4, 134.2, 131.1, 124.0; 19F NMR (375 MHz, DMSO-d_6); δ -139.2.

To a degassed 1,4-dioxane (7 mL) was charged 14 (0.31 g, 1.2 mmol, 2.4 equiv.), 3,5-dibromopyridine (0.12 g, 0.5 mmol, 1 equiv.) and Pd(PPh$_3$)$_2$Cl$_2$ (0.017 g, 0.024 mmol, 5 mol%) sequentially. The mixture was stirred at rt for 30 min then a degassed Na$_2$CO$_3$ solution (1 M, 5 mL, 3 equiv.) was added. The reaction mixture was heated to reflux overnight. The mixture was concentrated under reduced pressure. The residue was extracted with CHCl$_3$ (6×20 mL). The combined extracts were dried over MgSO$_4$, filtered, concentrated and purified by flash column chromatography (SiO$_2$, 0-7% MeOH/CH$_2$Cl$_2$) to give an off white solid (44.1 mg, 23%) as a product. m.p. >300 $^\circ$C, 1H NMR (400 MHz, CDCl$_3$); δ 8.99 (d, $J = 2.1$ Hz, 2H, H$_D$), 8.97 (d, $J = 2.1$ Hz, 2H, H$_C$), 8.94 (d, $J = 2.1$ Hz, 4H, H$_A$-E), 8.72 (dd, $J = 4.8$, 1.5 Hz, 2H, H$_I$), 8.17 (t, $J = 2.1$ Hz, 1H, H$_A$), 8.13 (t, $J = 2.2$ Hz, 2H, H$_B$), 7.98 (ddd, appearing as apparent dt, $J = 7.8$, 2.1, 1.6 Hz, 2H, H$_D$), 7.48 (ddd, $J = 7.9$, 4.9, 0.5 Hz, 2H, H$_D$); 13C NMR (125 MHz, CDCl$_3$) δ 149.9, 148.4, 148.3, 149.9, 148.40, 148.3, 148.2, 147.9, 134.8, 133.5, 133.3, 133.1, 132.2, 125.5, 124.1, 123.3; HR-ESIMS m/z = 388.15560 [M+H]$^+$ (calc. for C$_{25}$H$_{18}$N$_5$ 388.15567).

Isolated as a byproduct of the pentapyridine-forming reaction. 1H NMR (500 MHz, CDCl$_3$); δ 8.95 (d, $J = 2.1$ Hz, 2H, H$_D$), 8.93 (m, 4H, H$_A$-C), 8.72 (dd, $J = 4.8$, 1.4 Hz, 2H, H$_C$), 8.11 (t, $J = 2.1$ Hz, 2H, H$_B$), 7.97 (ddd, appearing as apparent dt, $J = 7.9$, 2.4, 1.6 Hz, 2H, H$_D$),
7.47 (ddd, appearing as apparent dd, \(j = 7.9, 4.8, 0.9 \) Hz, 2H, \(H_J \)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)); \(\delta 149.9, 148.4, 148.2, 147.9, 134.8, 134.1, 133.6, 133.2, 133.2, 124.1 \); HR-ESIMS \(m/z = 311.12940 [M+H]^{+} \) (calc. for C\(_{20}\)H\(_{13}\)N\(_4\) 311.12912).

Isolated as a byproduct of the pentapyridine-forming reaction. \(^1\)H NMR (500 MHz, CDCl\(_3\)); \(\delta 8.91 (d, J = 2.2 \) Hz, 2H, \(H_D+E \)), 8.87 (d, \(J = 2.2 \) Hz, 1H, \(H_J \)), 8.82 (d, \(J = 2.0 \) Hz, 1H, \(H_B \)), 8.77 (d, \(J = 2.0 \) Hz, 1H, \(H_D \)), 8.72 (dd, \(J = 4.7, 1.7 \) Hz, 1H, \(H_D \)), 8.10 (t, \(J = 2.0 \) Hz, 1H, \(H_I \)), \(\delta 149.9, 148.4, 148.2, 147.9, 134.8, 134.2, 133.1, 133.0, 132.6, 124.1, 121.5 \); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)); \(\delta 150.8, 150.0, 148.4, 148.4, 147.8, 146.5, 137.2, 134.8, 134.8, 134.2, 133.1, 133.0, 132.6, 124.1, 121.4 \); HR-ESIMS \(m/z = 312.01230 [M+H]^{+} \) (calc. for C\(_{15}\)H\(_{11}\)N\(_3\)79Br 312.01309).

To a mixture of benzo[de]isoquinoline-1,3-dione-5-sulfonic acid sodium salt, \(\textbf{21} \) (0.11 g, 0.4 mmol), K\(_2\)CO\(_3\) (0.25 g, 1.8 mmol) and NaI (5.1 mg, 0.034 mmol, 5 mol%) in anhydrous DMF (5 mL) stirring at room temperature for 30 min, was added a solution of \(\textbf{19} \) (67.3 mg, 0.17 mmol) in DMF (2 mL) and the reaction mixture was heated to 120 °C for 2 d. The reaction mixture was cooled down, filtered through celite. The filtrate was charged acetone (3 mL) and water (3 mL) and placed in a freezer overnight. The precipitate was separated, washed with acetone, dried in air to get a brown solid (2.4 mg, 2%). m.p. >350 °C dec., \(^1\)H NMR (500 MHz, DMSO-\(d_6 \)); \(\delta 8.70 (d, J = 1.3 \) Hz, 2H, \(H_J \)), 8.66 (s, 2H, \(H_D \)), 8.56 (d, \(J = 8.1 \) Hz, 2H, \(H_D \)), 8.52 (d, \(J = 7.2 \) Hz, 2H, \(H_D \)), 7.89 (t, \(J = 7.7 \) Hz, 2H, \(H_D \)), 7.49 (d, \(J = 8.7 \) Hz, 4H, \(H_D \)), 7.00 (d, \(J = 8.7 \) Hz, 4H, \(H_D \)), 4.47 (t, \(J = 6.5 \) Hz, 4H, \(H_D \)), 4.27 (t, \(J = 6.5 \) Hz, 4H, \(H_D \)); \(^{13}\)C NMR (125 MHz, DMSO-\(d_6 \)); \(\delta 164.0, 163.9, 157.8, 147.6, 135.6, 133.0, 131.53, \)
131.49, 130.5, 129.1, 128.1, 127.8, 127.7, 122.5, 122.4, 115.3, 64.7, 39.1; HR-ESIMS m/z = 813.08670 [M-Na] (calc. for C_{40}H_{26}O_{12}N_{2}NaS_{2} 813.08304).

\[\text{HR-ESIMS m/z} = 813.08670 \]

\[\text{[M-Na]} \]

\[\text{calc. for C}_{40}\text{H}_{26}\text{O}_{12}\text{N}_{2}\text{NaS}_{2} \]

\[813.08304 \]

\[\text{1H NMR (500 MHz, D}_2\text{O)}; \] δ 9.92 (d, appearing as apparent s, \(J = 1.8\) Hz, 8H, Hc), 9.58 (d, appearing as apparent s, \(J = 1.7\) Hz, 8H, Hd), 9.14 (dd, appearing as apparent d, \(J = 5.7\), 1.2 Hz, 8H, He), 8.97 (t, appearing as apparent s, \(J = 1.8\) Hz, 4H, Hf), 8.31 (dt, appearing as apparent d, \(J = 8.0\), 1.6 Hz, 8H, Hg), 7.82 (dd, \(J = 8.1\), 5.8 Hz, 8H, Hh), 4.79 (s, appearing under a solvent peak, 4H, Hj), 4.44 (d, \(J = 8.2\) Hz, 4H, Hk), 3.85 (t, \(J = 4.6\) Hz, 4H, Hl), 3.08 – 2.96 (m, 12H, Hm), 2.97 – 2.85 (m, 12H, Hn), 2.82 – 2.70 (m, 4H, Ho); \(^{13}\text{C NMR (125 MHz, D}_2\text{O)}; \] δ 156.3, 152.4, 149.5, 149.0, 137.6, 134.5, 133.7, 132.2, 127.8, 127.4, 122.0, 113.0, 67.8, 59.5, 46.9, 46.8.

\[\text{1}^H \text{ NMR (500 MHz, D}_2\text{O); } \delta 9.92 \text{ (d, appearing as apparent s, } J = 1.8 \text{ Hz, 8H, Hc)}, 9.58 \text{ (d, appearing as apparent s, } J = 1.7 \text{ Hz, 8H, Hd)}, 9.14 \text{ (dd, appearing as apparent d, } J = 5.7\), 1.2 \text{ Hz, 8H, He)}, 8.97 \text{ (t, appearing as apparent s, } J = 1.8 \text{ Hz, 4H, Hf)}, 8.31 \text{ (dt, appearing as apparent d, } J = 8.0\), 1.6 \text{ Hz, 8H, Hg)}, 7.82 \text{ (dd, } J = 8.1\), 5.8 \text{ Hz, 8H, Hh)}, 4.79 \text{ (s, appearing under a solvent peak, 4H, Hj)}, 4.44 \text{ (d, } J = 8.2 \text{ Hz, 4H, Hk)}, 3.85 \text{ (t, } J = 4.6 \text{ Hz, 4H, Hl)}, 3.08 - 2.96 \text{ (m, 12H, Hm)}, 2.97 - 2.85 \text{ (m, 12H, Hn)}, 2.82 - 2.70 \text{ (m, 4H, Ho); } \] \(^{13}\text{C NMR (125 MHz, D}_2\text{O); } \delta 156.3, 152.4, 149.5, 149.0, 137.6, 134.5, 133.7, 132.2, 127.8, 127.4, 122.0, 113.0, 67.8, 59.5, 46.9, 46.8.\]

\[\text{Figure 4.15 } {^1\text{H DOSY NMR (500 MHz, D}_2\text{O, 298 K) spectrum for tube complex 23 with corresponding log D, m}_2^S \text{ = -9.63.}} \]
\textbf{Figure 4.16} $^1\text{H},^1\text{H}$-NOESY (500 MHz, D$_2$O, 298 K) of 23.

^1H NMR (500 MHz, D$_2$O); δ 10.32 (s, 8H, H$_B$), 10.27 (s, 8H, H$_D$), 9.79 (s, 8H, H$_E$), 9.54 (s, 8H, H$_F$), 9.25 (s, 4H, H$_A$), 9.16 (s, 8H, H$_G$), 9.09 (d, $J = 5.7$ Hz, 8H, H$_I$), 8.38 (d, $J = 7.6$ Hz, 8H, H$_C$), 7.81 (t, $J = 7.0$ Hz, 8H, H$_J$), 4.98 (br, 4H, H$_K$), 4.59 (br, 4H, H$_L$), 3.05 (m, 20H, H$_O$), 3.01 – 2.86 (m, 20H, H$_O$), 2.52 (br, 4H, H$_O$), 2.05 (br, 4H, H$_O$); ^{13}C NMR (125 MHz, D$_2$O); δ 152.21, 152.18, 150.5, 150.3, 149.4, 141.0, 139.7, 138.2, 138.1, 134.6, 134.5, 134.3, 133.1, 132.6, 132.5, 132.3, 127.2, 47.0, 46.9, 46.7, 45.8.
Figure 4.17 1H DOSY NMR (500 MHz, D$_2$O, 298 K) spectrum for tube complex 24 with corresponding log D, m2/s$^{-1}$ = -9.70.

Figure 4.18 1H,1H-NOESY (500 MHz, D$_2$O, 298 K) of 24.
To a suspension of 1,4-diiodobiphenyl (0.81 g, 2 mmol), CuI (38.9 mg, 0.20 mmol, 10 mol%), PPh₃ (52.9, 0.20 mmol, 10 mol%) and Pd(PPh₃)₂Cl₂ (70.2 mg, 0.10 mmol 5 mol%) in dry THF (12 mL) was charged 5-chloro-1-pentyne (0.63 mL, 6 mmol) and Et₃N (6 mL). The reaction mixture was stirred at rt for 30 min and heated to 65 °C overnight. The reaction was cooled, filtered through celite. The filtrate was washed with saturated NH₄Cl, water. Organic layers were dried over MgSO₄, filtered, concentrated. The residue was purified by flash column chromatography (SiO₂ 5% CH₂Cl₂/hexane) to obtain a pale yellow solid (0.40 g, 57%).

\[\text{1H NMR (600 MHz, CDCl₃) } \delta 7.52 (d, J = 8.4 Hz, 4H, Hₐ), 7.46 (d, J = 8.4 Hz, 4H, H₈), 3.73 (t, J = 6.4 Hz, 4H, Hₖ), 2.08 (p, J = 6.6 Hz, 4H, Hₜ); \text{13C NMR (150MHz, CDCl₃)} \delta 139.9, 132.2, 126.9, 123.0, 89.2, 81.5, 43.9, 31.6, 17.1. \]

To a solution of 25 (0.40 g, 1 mmol) in DMF (9 mL) was added a solution of NaN₃ (0.22 g, 3 mmol) in water (1 mL). The solution was heated at 80 °C for 4 h (TLC indicated that no starting materials remained). The reaction was cooled down, quenched by water (6 mL) resulting in precipitation. The desired product was extracted with Et₂O (3×10 mL). Combined organic layers were dried over MgSO₄, filtered and concentrated to afford an off white solid (0.33 g, 80%).

\[\text{1H NMR (600 MHz, CDCl₃) } \delta 7.51 (d, J = 8.4 Hz, 4H, Hₐ), 7.46 (d, J = 8.4 Hz, 4H, H₈), 3.49 (t, J = 6.9 Hz, 4H, Hₖ), 2.56 (t, J = 6.9 Hz, 4H, Hₜ), 1.89 (p, J = 6.8 Hz, 4H, Hₜ); \text{13C NMR (125 MHz, CDCl₃)} \delta 139.9, 132.2, 126.9, 122.9, 89.3, 81.6, 50.5, 28.1, 17.0; \text{HR-ESIMS } m/z = 369.18160 [M+H]⁺ (calc. for C₂₂H₂₁N₆ 369.18222). \]
Adapted from a procedure by Mi and co-workers26 To a mixture of 26 (0.18 g, 0.5 mmol) and NH₄Cl (0.14 g, 2 mmol) in EtOH (4 mL) and water (1 mL) was added Zn powder (90.2 mg, 1 mmol) and the mixture was stirred vigorously at refluxing temperature for 30 min. When the reaction was complete (monitored by TLC), EtOAc (6 mL) was added, followed by NH₃ solution (1 mL). The mixture was filtered. The filtrate was washed with brine, dried, solvent was evaporated to obtain a brown solid (25.5 mg, 13%).^1H NMR (400 MHz, MeOD-d₄); δ 7.59 (d, J = 8.4 Hz, 4H, H₄), 7.46 (d, J = 8.5 Hz, 4H, H₅), 3.12 (t, J = 7.3 Hz, 4H, H₆), 2.61 (t, J = 6.9 Hz, 4H, H₇).

The mixture of 27 (0.07 g, 0.18 mmol) and 20 (79.9 mg, 0.27 mmol) in EtOH (10 mL) was heated to reflux for 2 d. After the mixture was cooled, the solid was collected, washed with cold EtOH to get an off white solid (51.7 mg, 31%). m.p. >350, ^1H NMR (600 MHz, DMSO-d₆); δ 8.74 (d, J = 1.4 Hz, 2H, H₃), 8.64 (d, J = 8.3 Hz, 2H, H₄), 8.63 (d, J = 1.4 Hz, 2H, H₅), 8.51 (d, J = 7.2 Hz, 2H, H₆), 7.94 – 7.90 (m, 2H, H₇), 7.68 (d, J = 8.3 Hz, 4H, H₈), 7.48 (d, J = 8.3 Hz, 4H, H₉), 2.94 (br, 4H, H₁₀), 2.57 (t, J = 7.0 Hz, 4H, H₁₁), 1.83 (dt, J = 14.5, 7.1 Hz, 4H, H₁₂); ^13C NMR (125 MHz, DMSO-d₆); δ 161.2, 161.0, 147.8, 139.1, 136.5, 133.0, 132.4, 131.6, 131.4, 130.3, 130.0, 128.4, 127.2, 122.8, 119.6, 110.0, 90.7, 81.4, 38.6, 26.7, 16.5; HR-ESIMS m/z = 853.29770 [M-Na+2H]^+ (calc. for C₄₆H₃₈N₂O₁₀S₂Na₂ 859.13906).
Chapter IV

Adapted from a procedure by Buchwald and co-workers17 An oven-dried Schlenk tube was charged with CuI (14.1 mg, 0.075 mmol, 5 mol%), 3,4,7,8-tetramethyl-1-10-phenanthroline (36.3 mg, 0.15 mmol, 10 mol%), 4,4’diiodobiphenyl (0.61 g, 1.5 mmol), Cs$_2$CO$_3$ (1.97 g, 6 mmol) and activated 3 Å molecular sieves (200 mg). The tube was evacuated and refilled with N$_2$. Under a counterflow of N$_2$, 5-amino-1-pentanol (0.62 g, 6 mmol) was added, followed by 0.75 mL of toluene. The tube was sealed and the mixture was allowed to stir at 90 °C, for 20 h. At the end of the reaction, the mixture was diluted with CH$_2$Cl$_2$ and filtered to remove inorganic salts. The solvent was removed by rotary evaporation and the residue was purified by flash column chromatography (SiO$_2$, 0–5% MeOH/CH$_2$Cl$_2$, NH$_3$ saturated) to afford a pale yellow solid (0.17 g, 31%). m.p. 163–165 °C, 1H NMR (500 MHz, CDCl$_3$); δ 7.45 (d, $J = 8.8$ Hz, 4H, H$_A$), 6.93 (d, $J = 8.8$ Hz, 4H, H$_B$), 3.99 (t, $J = 6.5$ Hz, 4H, H$_C$), 2.76 – 2.65 (m, 4H, H$_D$), 1.90 – 1.74 (m, 4H, H$_E$), 1.61 – 1.45 (m, 8H, H$_F$+H$_G$); 13C NMR (125 MHz, CDCl$_3$); δ 133.6, 127.8, 114.9, 110.1, 68.1, 42.3, 33.7, 29.3, 23.6; HR-ESIMS $m/z = 357.253452$ [M+H]$^+$ (calc. for C$_{22}$H$_{33}$N$_2$O$_3$ 357.253655).

A flask was charged with 29 (0.05 g, 0.14 mmol) and 20 (0.08 g, 0.28 mmol) and EtOH (10 mL). The suspension was refluxed for 2 d. The resulting solid was filtered, washed with cold EtOH and dried in air to get an off white solid (0.09 g, quantitative). m.p. >300 °C dec. 1H NMR (500 MHz, DMSO-d_6); δ 8.68 (d, $J = 1.2$ Hz, 1H, H$_J$), 8.66 (d, $J = 1.6$ Hz, 1H, H$_K$), 8.55 (dd, $J = 8.3$, 1.1 Hz, 1H, H$_L$), 8.49 (dt, $J = 7.3$, 1.5 Hz, 1H, H$_M$), 7.87 (dd, appearing

29

30
as apparent \(t = 8.2, 7.3 \text{ Hz}, 1\text{H}, \text{H} \), 7.49 (m, 4H, H_{6-9}), 6.96 (m, 4H, H_{4-5}), 4.09 (t, \(J = 7.3 \text{ Hz}, 2\text{H}, \text{H} \)), 3.99 (t, \(J = 6.4 \text{ Hz}, 4\text{H}, \text{H}_{N-O} \)), 2.85 – 2.77 (m, 2H, H), 1.75 (m, 6H, H_{M-P-R}), 1.60 (ddd, \(J = 15.0, 8.6, 6.8 \text{ Hz}, 2\text{H}, \text{H} \)), 1.55 – 1.42 (m, 4H, H_{L-Q}); \(^{13}\text{C} \text{NMR} (125 \text{ MHz}, \text{DMSO-d}_{6}); \delta 163.4, 163.3, 157.7, 157.6, 147.0, 134.9, 132.3, 132.1, 131.0, 130.9, 129.9, 128.5, 127.6, 127.2, 127.1, 122.05, 121.97, 114.8, 114.8, 67.2, 67.2, 28.5, 28.4, 28.1, 27.3, 27.2, 26.7, 23.05, 22.98; \text{HR-ESIMS} m/z 617.229574 [M+2H-Na]^{+} (calc. for C\text{34}H\text{37}N\text{2}O\text{7}S 617.231599).

A flame-dried flask with K\text{2}CO\text{3} (2.80 g, 20 mmol) and LiBr (0.08 g, 0.5 mmol) was evacuated and refilled with N\text{2} (3\times) then 4,4’-dihydroxybiphenyl (0.93 g, 5 mmol) was introduced under a positive flow of N\text{2}. Dry MeCN (10 mL) was added followed with 2-(2-chloroethoxy)ethanol (6.26 g, 50 mmol). The reaction mixture was heated to dissolve all the solid and left stirring at 75 – 80 °C overnight. The solution was cooled to rt, clear precipitate formed, water was added to quenched the reaction. The product was extracted with hot CH\text{2}Cl\text{2} and recrystallised to obtain a colourless solid (1.56 g, 86%).

m.p. 152-153 °C, \(^{1}H \text{NMR} (500 \text{ MHz}, \text{CDCl}_{3}); \delta 7.47 (d, \(J = 8.8 \text{ Hz}, 4\text{H}, \text{H} \)), 6.97 (d, \(J = 8.8 \text{ Hz}, 4\text{H}, \text{H} \)), 4.18 (dd, \(J = 5.4, 4.1 \text{ Hz}, 4\text{H}, \text{H} \)), 3.90 (dd, \(J = 5.4, 4.1 \text{ Hz}, 4\text{H}, \text{H} \)), 3.82 – 3.74 (m, 4H, H_{E-D}), 3.71 – 3.67 (m, 4H, H_{C-B}), 2.12 (t, \(J = 6.2 \text{ Hz}, 2\text{H}, \text{H} \)); \(^{13}\text{C} \text{NMR} (125 \text{ MHz}, \text{CDCl}_{3}); \delta 158.0, 133.9, 127.9, 115.1, 72.7, 69.9, 67.7, 62.0; \text{HR-ESIMS} m/z 363.17950 [M+H]^{+} (calc. for C\text{20}H\text{27}O\text{6} 363.18131)

To a mixture of diol 31 (1.0 g, 2.8 mmol) and CBr\text{4} (2.57 g, 7.7 mmol) in dry CH\text{2}Cl\text{2} (20 mL) was added a solution of PPh\text{3} (2.02 g, 7.7 mmol) in CH\text{2}Cl\text{2} (7 mL) and the reaction mixture was stirred at rt for 5 h. Water was added and the aqueous layer was extracted with CH\text{2}Cl\text{2} (3\times). After drying of the organic layer and removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography.
(SiO$_2$, 50% CH$_2$Cl$_2$/hexane) to achieve a white solid (1.07 g, 78%). m.p. 116-118 °C, 1H NMR (500 MHz, CDCl$_3$); δ 7.47 (d, $J = 8.8$ Hz, 4H, H$_A$), 6.97 (d, $J = 8.8$ Hz, 4H, H$_B$), 4.22 - 4.12 (m, 4H, H$_C$), 3.95 - 3.83 (m, 8H, H$_D$+H$_E$), 3.51 (t, $J = 6.3$ Hz, 4H, H$_F$); 13C NMR (125 MHz, CDCl$_3$); δ 157.9, 133.8, 127.8, 115.0, 71.5, 69.8, 67.6, 30.4; HR-ESIMS m/z 508.99160 [M+Na]$^+$ (calc. for C$_{20}$H$_{24}$O$_7$NaBr$_2$Na 508.99335).

To a solution of dibromo 32 (0.71 g, 1.4 mmol) in DMF (9 mL) was added a solution of NaN$_3$ (0.29 g, 4.4 mmol) in water (1 mL). The reaction mixture was heated at 80 °C for 2 d. The reaction was cooled down, quenched by water (10 mL) resulting in precipitation. An off white solid (0.56 g, 93%) was filtered, washed with water and dried in air. m.p. 112-113 °C, 1H NMR (500 MHz, CDCl$_3$); δ 7.46 (d, $J = 8.8$ Hz, 4H, H$_A$), 6.97 (d, $J = 8.8$ Hz, 4H, H$_B$), 4.18 (dd, $J = 5.4$, 4.2 Hz, 4H, H$_C$), 3.89 (dd, $J = 5.4$, 4.2 Hz, 4H, H$_D$), 3.77 (dd, $J = 5.5$, 4.6 Hz, 4H, H$_E$), 3.43 (t, $J = 5.1$ Hz, 4H, H$_F$); 13C NMR (125 MHz, CDCl$_3$); δ 158.0, 133.9, 127.9, 115.1, 70.4, 70.0, 67.7, 50.9; HR-ESIMS m/z 435.17360 [M+Na]$^+$ (calc. for C$_{20}$H$_{24}$O$_7$Na$^+$/Na 435.17512).

LiAlH$_4$ (27 mg, 0.7 mmol, excess) was introduced into a flask and any residues were rinsed in with dry THF (10 mL). The suspension was heated to a gentle reflux. A solution of 33 (0.10 g, 0.24 mmol) in dry THF (10 mL) was added via syringe pump at a rate that the THF in the flask maintains the gentle reflux. The reaction mixture was refluxed for an hour, cooled in ice, and treated with a mixture of H$_2$O and THF to decompose excess LiAlH$_4$. The solution was acidified with 1 M HCl and placed in the fridge overnight to encourage precipitation. A white solid was filtered and wash with cold water, dried in air (0.08 g, 91%). 1H NMR (600 MHz, MeOD-d$_4$); δ 7.52 (d, $J = 8.8$ Hz, 4H, H$_A$), 7.03 (d, $J = 8.8$ Hz, 4H, H$_B$), 4.24-4.21 (m, 4H, H$_C$), 3.92-3.89 (m, 4H, H$_D$), 3.71 (t, $J = 5.2$ Hz, 4H, H$_E$), 2.99
To a solution of diamine 34 (72.9 mg, 0.2 mmol, 1 equiv.) in mixed solvent, EtOH, MeOH, CH₂Cl₂ and DMF (~10 mL) was added a solution of 20 (0.31 g, 1 mmol, 5 eq.) in DMF (7 mL). The reaction mixture was refluxed overnight. The mixture was cooled down, put in a freezer overnight and the solid was filtered. An off white solid was obtained (0.19 g, quantitative). m.p. >320 °C dec., ¹H NMR (600 MHz, D₂O); δ 9.92 (d, J = 2.2 Hz, 8H, H_e), 9.58 (d, J = 1.9 Hz, 8H, H_d), 9.15 (dd, J = 5.8, 1.2 Hz, 8H, H_j), 8.97 (d, J = 2.2 Hz, 4H, H_d), 8.31 (dt, J = 8.1, 1.7 Hz, 8H, H_d), 7.84 (dd, J = 8.0, 5.8 Hz, 8H, H_d), 4.79 (s, appearing under a solvent peak, 4H, H_d), 4.42
(d, J = 8.0 Hz, 4H, Hd), 4.01 (t, J = 4.6 Hz, 4H, He), 3.87 (t, J = 4.6 Hz, 4H, He), 3.85 – 3.80 (m, 4H, Hg), 3.04 – 2.96 (m, 12H, Hf), 2.96 – 2.89 (m, 12H, Hf), 2.89 – 2.85 (m, 4H, Hg);

13C NMR (125 MHz, D$_2$O); δ 156.1, 152.4, 149.5, 149.0, 137.6, 134.5, 133.7, 132.2, 127.9, 127.4, 122.1, 112.8, 72.4, 68.4, 66.1, 60.8, 46.9, 46.8.

Figure 4.19 1H DOSY NMR (500 MHz, D$_2$O, 298 K) spectrum for tube complex 36 with corresponding log D, m2s$^{-1}$ = -9.64.
Figure 4.20 1H,1H-NOESY (500 MHz, D$_2$O, 298 K) of 36.

1H NMR (600 MHz, D$_2$O); δ 10.42 (d, $J = 1.7$ Hz, 8H, H_β), 10.35 (d, $J = 1.9$ Hz, 8H, H_α), 9.90 (d, $J = 2.0$ Hz, 8H, H_α), 9.66 (d, $J = 1.7$ Hz, 8H, H_β), 9.38 (s, 4H, H_δ), 9.28 (s, 8H, H_α), 9.13 (dd, $J = 5.8$, 1.3 Hz, 8H, H_β), 8.46 (d, $J = 8.0$ Hz, 8H, H_δ), 7.84 (dd, $J = 7.9$, 6.0 Hz, 8H, H_α), 4.96 (d, $J = 8.1$ Hz, 4H, H_γ), 4.49 (d, $J = 7.7$ Hz, 4H, H_δ), 3.11 – 3.03 (m, 20H, H_θ), 3.01 – 2.91 (m, 20H, H_θ), 2.69 – 2.64 (m, 4H, H_δ), 2.53 – 2.47 (m, 4H, H_δ), 2.43 (t, $J = 4.5$ Hz, 4H, H_δ), 2.14 (t, $J = 4.5$ Hz, 4H, H_δ); 13C NMR (125 MHz, D$_2$O); δ 152.6, 152.5, 150.8, 150.7, 150.5, 150.04, 149.98, 149.4, 149.3, 147.9, 138.1, 134.3, 134.2, 132.8, 132.4, 132.2, 127.3, 71.8, 59.5, 47.2, 47.0, 46.9, 45.8.
Figure 4.21 1H DOSY NMR (500 MHz, D$_2$O, 298 K) spectrum for tube complex 37 with corresponding log D, m2s$^{-1}$ = -9.71.

Figure 4.22 1H,1H-NOESY (500 MHz, D$_2$O, 298 K) of 37.
A flask was charged with 1,4-diaminobutane (0.60 mL, 6 mmol) and 20 (1.50 g, 5 mmol) and EtOH (10 mL). The suspension was refluxed for 16 h. The resulting solid was filtered, washed with cold EtOH and dried in air to get a light yellow solid (1.53 g, 83%). m.p. >350 °C, 1H NMR (600 MHz, DMSO-\textit{d}_6) δ 8.68 (dd, \(J = 12.6\), 1.6 Hz, 2H, H\textsubscript{f}H), 8.57 (dd, \(J = 8.3\), 1.1 Hz, 1H, H\textsubscript{d}), 8.50 (dd, \(J = 7.2\), 1.1 Hz, 1H, H\textsubscript{e}), 7.91 – 7.86 (m, 1H, H\textsubscript{g}), 4.12 (t, \(J = 6.8\) Hz, 2H, H\textsubscript{d}), 2.82 (t, \(J = 7.5\) Hz, 2H, H\textsubscript{a}), 1.77 – 1.68 (m, 2H, H\textsubscript{c}), 1.63-1.53 (m, 2H, H\textsubscript{b}); 13C NMR (150 MHz, DMSO-\textit{d}_6) δ 163.5, 163.4, 147.1, 135.1, 131.0, 130.9, 129.9, 128.7, 127.6, 127.1, 122.0, 121.9, 62.8, 40.1, 24.8, 24.7; HR-ESIMS m/z 371.06820 [M+H]+ (calc. for C\textsubscript{16}H\textsubscript{16}O\textsubscript{5}N\textsubscript{2}NaS 371.06721).

\[\text{1H NMR (500 MHz, D}_2\text{O): } \delta 9.88 \text{ (d, } J = 2.4 \text{ Hz, 8H, H}_c), 9.66 \text{ (d, } J = 1.6 \text{ Hz, 8H, H}_d), 9.15 \text{ (dd, } J = 5.7, 1.4 \text{ Hz, 8H, H}_d), 9.07 \text{ (t, appearing as apparent s, } J = 1.8 \text{ Hz, 4H, H}_d), 8.34 \text{ (dt, } J = 8.2, 1.6 \text{ Hz, 8H, H}_d), 7.82 \text{ (dd, } J = 8.1, 5.9 \text{ Hz, 8H, H}_d), 4.86 \text{ (d, } J = 8.3 \text{ Hz, 4H, H}_c), 4.48 \text{ (d, } J = 8.5 \text{ Hz, 4H, H}_c), 3.99 \text{ (t, } J = 4.6 \text{ Hz, 4H, H}_c), 3.85 \text{ (t, } J = 4.6 \text{ Hz, 4H, H}_c), 3.82 \text{ (t, } J = 3.3 \text{ Hz, 4H, H}_c), 2.99 – 2.89 \text{ (m, 16H, H}_M,\text{H}_J), 2.86 \text{ (m, 12H, H}_A), 2.69 \text{ (s, } J^{(195}\text{Pt}) = 38.1 \text{ Hz, 24H, H}_o); 13C NMR (125 MHz, D}_2\text{O): } \delta 156.2, 153.3, 150.4, 150.1, 137.6, 134.6, 133.9, 132.4, 128.0, 127.9, 122.1, 112.9, 72.4, 68.4, 66.2, 60.7, 47.6, 46.8.\]
Figure 4.23 1H DOSY NMR (500 MHz, D$_2$O, 298 K) spectrum for tube complex 40 with corresponding log D, m2s$^{-1}$ = -9.63.

Figure 4.24 1H,1H-COSY (500 MHz, D$_2$O, 298 K) of 40.
4.5 References

Conclusion and Outlook

The acid-base responsive switching between "3+1" and "2+2" cyclometallated platinum complexes has been explored in Chapter II. These types of externally addressable coordination complexes have the potential to be further developed into a bistable molecular shuttle.

In Chapter III, attempts to synthesise a platinum complexed-[2]rotaxane have been investigated. The CuAAC "click" rotaxane product failed to complex to platinum(II) which necessitated redesigns of the rotaxanes. A platinum complexed-macrocycle was then used to carry out ligand exchange reactions with a series of 3,5-disubstituted pyridine based-thread. Still, the instability of the rotaxane precursor and difficulties in separation were encountered. The conditions that can overcome these reactivity problems without disturbing the macrocycle-thread interactions and the suitable separation procedure are yet to be determined and a further redesign will be required to finish the rotaxane. Once the rotaxane is realised, studies of acid-base stimuli-responsive bistable platinum-complexed [2]rotaxane can be explored as suggested from the positive results of the "3+1" to "2+2" interconversion of non-interlocked platinum C^N^C macrocyclic compounds in Chapter II.

In Chapters IV, the metal-directed self-assembly of tubular complexes were studied. The self-assembly of tris- and pentakis(3,5-pyridine) with [(en)Pd(NO_3)_2] in the presence of biphenyl with ethyleneoxide side chain was successful in forming tubular structures. The stoppered template, however, did not give any evidence of rotaxane formation. A variety of rod-like templates also showed no positive template effect, including azobenzene, stilbene, anthracene, 4,4'-bipyridine, alkyl chain functionalized biphenol, benzidine. Different metal building blocks including [(en)Pt(NO_3)_2] and [Co(12ane[S_4])(ClO_4)_2] were used to determine the self-assembly. The Pt^{II} analogue tube only formed a tris(3,5-pyridine) tube after a week at 100 °C, whereas the cobalt-thiacrown ether complexes did not form any discrete tube. More detailed studies of the non-covalent interactions between the template molecule and host framework need to be undertaken to improve the better system design. Another obvious area for investigation would be the use of alternative non-anionic stoppers. A self-assembled rotaxane would be a potential tool for molecular machines studies as the complex organic synthesis has been circumvented.
Appendix: Published paper

We report that the acid–base induced changes to a cyclometallated platinum complex can be used to drive the exchange of accompanying ligands with different denticities.

Central to the development of synthetic molecular machines is the discovery of new externally addressable, switchable molecular or supramolecular elements.1 Bistable rotaxanes and catenanes which utilise transition metal–ligand interactions are particularly attractive,2–5 not least because their inherent strength can be used for purposes such as ratcheting.6 Another desirable feature of switchable systems is that they should exhibit a large thermodynamic bias in both states. In this regard, the benchmark for systems where the metal ion remains integrated during operation4 is still Sauvage’s exploitation of the preferred coordination differences of Cu(i) and Cu(ii), which was first described nearly twenty years ago.20 Herein, we describe cyclometallated platinum motifs which are able to exchange monodentate and bidentate ligands with excellent selectivity in response to acid–base stimuli.

We recently reported that 2,6-diphenylpyridine (H2L1) can coordinate to platinum(ii) either as a doubly anionic tridentate or monooxoanionic bidentate ligand, and that this can be exploited to assemble–disassemble metallosupramolecular architectures based on cis-coordinating multitopic pyridyl ligands.7 As well as accepting two monodentate ligands, we envisaged that a platinum complex where HL1 coordinates in a η1 C=N fashion would be able to accommodate a neutral bidentate ligand. Thus, when [L1Pt(DMSO)] was treated with a mixture of p-toluene sulfonic acid (TsOH) and 5,5′-dimethyl-2,2′-bipyridine (dmbipy) in CH2Cl2, a compound was isolated which spectroscopic data indicated was the “2+2” complex, [HL1Pt(dmbipy)]OTs. For instance, the 1H NMR spectrum (see ESI†) showed that the two pyridyl “halves” of the dmbipy ligand resonate quite differently, fully consistent with the occupation of the trans-to-nitrogen and trans-to-phenylato coordination sites, the latter which experiences pronounced shielding from the non-coordinating phenyl group of HL1. The structure of [HL1Pt(dmbipy)]OTs, confirmed by X-ray crystallography (Fig. 1a) using crystals grown from diisopropyl ether and chloroform, shows that while platinum adopts a near planar geometry (the Pt ion sits just 0.078 Å above the mean N=C coordination plane) there is significant distortion and twisting of the ligands to alleviate steric clash between the non-coordinating phenyl group and the adjacent dmbipy ligand such that the complex adopts an overall helical twist.8 In the solid state, both P and M enantiomers are observed, although in solution at room temperature the interconversion appears to be rapid.9

To explore whether other neutral monodentate ligands would be similarly displaced, experiments starting with [L1Pt(py)], [L1Pt(3,5-lut)] and [L1Pt(DMAP)] (py = pyridine; 3,5-lut = 3,5-lutidine; DMAP = 4-dimethylaminopyridine) have been undertaken (Scheme 1). In the absence of TsOH, 1H NMR spectroscopy shows that, in all cases, dmbipy does not displace the monodentate ligand and remains uncoordinated (see the ESI† Fig. S1–S3). For [L1Pt(py)], the addition of a slight excess (1.3 eq.) of TsOH to the charge neutral complex and dmbipy results in the rapid displacement of the monodentate ligand and concomitant generation of [HL1Pt(dmbipy)]OTs (Scheme 1 and Fig. S1, ESI†). When similar ligand exchange experiments were carried out with [L1Pt(3,5-lut)] and [L1Pt(DMAP)], it was found that the addition of over two equivalents of TsOH was required in order to...
obtained in an excellent 80% from 2,6-di-(4-hydoxyphenyl)pyridine10 (Scheme 2, step b). The \textit{1H} NMR spectrum of the product revealed from \{H\textsubscript{2}Pt(dmbipy)\}OTs and monodentate pyridyl ligand (py, 3,5-lut or DMAP), the gradual disappearance of signals due to \{H\textsubscript{2}Pt(dmbipy)\}OTs and re-appearance of \{L\textsubscript{1}Pt\}[py], \{L\textsubscript{1}Pt(3,5-lut)\} and \{L\textsubscript{1}Pt(DMAP)\} followed 1.5–2 h at room temperature (Scheme 1 and Fig. S1–S3, ESI†).

As the pyridyl-based ligands are not replaced in the absence of acid, we predicted that simply adding base to a mixture of \{HL\textsubscript{1}Pt(dmbipy)\}OTs and monodentate moiety would reverse the coordinative bias. We have previously used the phosphazene base, P\textsubscript{1}-t\textsubscript{Bu} to affect (re)cyclo-metallation.7 Thus, when P\textsubscript{1}-t\textsubscript{Bu} was added to the mixture of \{HL\textsubscript{1}Pt(dmbipy)\}OTs and monodentate pyridyl ligand (py, 3,5-lut or DMAP), the gradual disappearance of signals due to \{HL\textsubscript{1}Pt(dmbipy)\}OTs and re-appearance of \{L\textsubscript{1}Pt\}[py], \{L\textsubscript{1}Pt(3,5-lut)\} and \{L\textsubscript{1}Pt(DMAP)\} followed 1.5–2 h at room temperature (Scheme 1 and Fig. S1–S3, ESI†).

To develop the system further, and with a stimuli-responsive molecular shuttle in mind, the macrocyclic C+N−C Pt complex, \{L\textsubscript{2}Pt(DMSO)\}, has been prepared. The free macrocycle, H\textsubscript{2}L2, was obtained in an excellent 80% from 2,6-di-(4-hydroxyphenyl)pyridine10 and a bisphenol A derived dialkylbromide,11 while insertion of platinum also occurs in an highly respectable 80% yield (see ESI†). From \{L\textsubscript{2}Pt(DMSO)\}, \{L\textsubscript{2}Pt(3,5-lut)\} was prepared by exchange of the coordinated DMSO for 3,5-lut (Scheme 2, step a). The structure of \{L\textsubscript{2}Pt(3,5-lut)\} has been confirmed by X-ray crystallography using single crystals grown from slow diffusion of diethyl ether into a saturated dichloromethane solution (Fig. 2). In solution, the \textit{1H} NMR spectrum of \{L\textsubscript{2}Pt(3,5-lut)\} (Fig. 3a) exhibits coordinated \textit{ortho} lutidine signals (H\textsubscript{2}) with characteristic \textit{195}Pt satellites, while the \textit{para} site (H\textsubscript{6}) is significantly upfield shifted with respect to the free heterocycle, most likely due to shielding by the bisphenol A unit.

The TsOH induced formation of a “2+2” complex from \{L\textsubscript{2}Pt(DMSO)\}, this time using the unsymmetrical bidentate 2-(1-ethylphenyl-1H-1,2,3-triazol-4-yl)-5-bromopyridine (L\textsubscript{3}) was also carried out (Scheme 2, step b). The \textit{1H} NMR spectrum of the product revealed several interesting features (Fig. 3c). Firstly, when it could be reasonably expected that a mixture of both geometric isomers would result, only one – \textit{trans}-\{HL\textsubscript{2}Pt(L\textsubscript{3})\}OTs (see the ESI† for details of assignment using NOESY) – is produced. As the NMR of this product did not change over time, we would suggest that this product is both the kinetically and thermodynamically favoured isomer, as it has been previously observed that platinum isomers which feature cyclometallated ligands undergo sluggish rearrangement.12 The second thing to note from the \textit{1H} NMR spectrum of \{HL\textsubscript{2}Pt(L\textsubscript{3})\}OTs (Fig. 3e) is the sterically congested nature of the complex, as the four triplets that arise from the H\textsubscript{3}, H\textsubscript{4}, H\textsubscript{5} and H\textsubscript{6} environments in the \{L\textsubscript{2}Pt(3,5-lut)\} and L\textsubscript{3} precursors have been replaced by a complex diastereotopic pattern of signals.

Finally, the “3+1” to “2+2” interconversion between \{L\textsubscript{2}Pt(3,5-lut)\} and \{HL\textsubscript{2}Pt(L\textsubscript{3})\}OTs was examined using \textit{1H} NMR spectroscopy (Scheme 2 and Fig. 3b–d). When L\textsubscript{3} was mixed with \{L\textsubscript{2}Pt(3,5-lut)\} in CD\textsubscript{2}Cl\textsubscript{2}, only signals which are attributable to those two species were apparent (Fig. 3b). Upon the addition of 1.7 eq. of TsOH, the NMR spectrum changed to give a set of signals that were virtually indistinguishable from those of \textit{trans}-\{HL\textsubscript{2}Pt(L\textsubscript{3})\}OTs (Fig. 3c). As with the acyclic system, this change occurred within the time taken to record a subsequent spectrum. This rapid generation coupled to

![Scheme 1](https://i.imgur.com/123456.png)
Scheme 1 Acid–base interconversion between “3+1” and “2+2” cyclometallated Pt complexes. Conditions: a 1.3–2.7 eq. TsOH, CD\textsubscript{2}Cl\textsubscript{2}, 298 K, 5 min; b P\textsubscript{1}-t\textsubscript{Bu}, CD\textsubscript{2}Cl\textsubscript{2}, 298 K, 1.5–2 h.

![Scheme 2](https://i.imgur.com/789012.png)
Scheme 2 Synthesis of, and acid–base responsive interconversion between, “3+1” and “2+2” macrocyclic cyclometallated Pt complexes. Conditions: a CH\textsubscript{2}Cl\textsubscript{2}, 313 K, 16 h, 37%; b CH\textsubscript{2}Cl\textsubscript{2}, 298 K, 1 h, 34%; c 1.7 eq. TsOH, CD\textsubscript{2}Cl\textsubscript{2}, 298 K, 5 min; d 5 eq. P\textsubscript{1}-t\textsubscript{Bu}, CD\textsubscript{2}Cl\textsubscript{2}, 298 K, 48 h.

![Fig. 2](https://i.imgur.com/234567.png)
Fig. 2 X-ray crystal structure of \{L\textsubscript{2}Pt(3,5-lut)\}. Colour code: Cl2−, blue; C(3,5-lut), red; N, light blue; O, orange; Pt, magenta. Solvent molecules have been removed for clarity.
the lack of observation of another isomer further supports that trans-
[HL2Pt(L3)]OTs is the kinetic (and thermodynamic) product, irre-
spective of the neutral monodentate ligand in the starting “3+1”
complex. When five eq. of PtBu was added to the NMR sample
containing [HL2Pt(L3)]OTs and free lutidine, the signals due to the
“2+2” complex and monodentate ligand started to disappear,
accompanied by the appearance of signals due to [L2Pt(3,5-lut)]
and free L1. After 48 h, only signals due to [L2Pt(3,5-lut)] and free L3
could be observed (Fig. 3d). The sluggishness of this reaction in
comparison to the same process for the acyclic complexes is almost
certainly due to an increased steric barrier. We are currently
investigating methods of lowering this by employing different
bases/anions and/or using light to accelerate ligand exchange.22

In summary, a rare example of a metallosupramolecular switch
which can be alternated with excellent selectivity between different
states using acid–base inputs has been described. We envisage that
these types of externally addressable coordination complexes will
continue to play a significant role in the development of molecular
machines.

This work was supported by the EPSRC and The Royal
Society. P.J.L. is a Royal Society University Research Fellow.

Notes and references
2 For interlocked systems which are able to switch between two transition metal-bound states, see (a) A. Livoreil, C. O. Dietrich-
(b) D. J. Cárdenas, A. Livoreil and J.-P. Sauvage, J. Am. Chem. Soc., 1996,
118, 11980; (c) A. Livoreil, J.-P. Sauvage, N. Armaroli, V. Balzani, L. Flamigni and B. Ventura, J. Am. Chem. Soc., 1997,
Leigh, P. J. Lusby, R. T. McBurney, L.-E. Perret-Aebi, C. Petzold, A. M.
(h) D. A. Leigh, P. J. Lusby, R. T. McBurney and M. D. Symes, Chem.
Commun., 2010, 46, 2382.
3 For interlocked systems which switch between a transition metal-bound state and one other state, see (a) P. Mobian, J.-M. Kern and
J.-P. Sauvage, Angew. Chem., Int. Ed., 2004, 43, 2392; (b) J.-P. Collin,
1859; (c) M. J. Barrell, D. A. Leigh, P. J. Lusby and A. M. Z. Slawin,
Angew. Chem., Int. Ed., 2008, 47, 8036; (d) Z. Xue and M. F. Mayer,
4 For interlocked systems which switch between different transition metal-bound states through transmetallation, see (a) M. C. Jiménez,
2008, 39, 3284; (f) J. D. Crowley, K. D. Hänni, D. A. Leigh and A. M. Z.
Slawin, J. Am. Chem. Soc., 2010, 132, 5306; (c) D. A. Leigh, P. J. Lusby,
5 For non-interlocked metallosupramolecular (mechanical) switches, see (a) L. Fabbrizzi, F. Gatti, P. Pallavicini and E. Zambbari, Chem.–Eur. J.,
1999, 5, 682; (b) S. Akine, S. Hotate and T. Nabeshima, J. Am. Chem. Soc.,
2011, 133, 13868; (c) G. Tsakonas, O. Johansson and R. Lomoth, Chem.
Commun., 2009, 3425; (d) K. A. McPhail, K. Parimal, A. I. Share, A. C.
Fahrenbach, E. H. Wilticki, M. Pink, D. K. Bediako, C. L. Plaisier, C. L.
Soc., 2009, 131, 1305; (e) S. U. T. F. Robbins and I. Aprahamian, Angew.
Chem., Int. Ed., 2011, 50, 1841; (f) M. Schmittel, S. De and S. Pramanik,
Angew. Chem., Int. Ed., 2012, 51, 3832; (g) C. W. Machan, M. Aderhold,
A. A. Sarjeant, C. L. Stern, J. Sutter, K. Meyer and C. A. Mirkin,
6 (a) M. N. Chatterjee, E. R. Kay and D. A. Leigh, J. Am. Chem. Soc.,
2006, 128, 4058; (b) V. Serrelli, C.-F. Lee, E. R. Kay and D. A. Leigh,
Nature, 2007, 445, 523; (c) A. Carlone, S. M. Goldup, N. Lebrasseur,
2009, 131, 16298.
8 C. Deuschel-Cornioley, H. Steockl-Evans and A. von Zelewsky, J.
9 In situ generated [HL2Pt(dmnbipy)]Cl2(CSA = camphorsulfonate)
only shows a single set of 1H NMR resonances in CD2Cl2, a solvent
in which tight ion pairing could be expected. Similarly, the addition
of TRISPHAT to [HL2Pt(dmnbipy)]OTs in CD2Cl2 does not show any
signal splitting. See the ESI for details. The low energy interconver-
sion between diastereoisomers would suggest a mechanism which
doesn’t involve coordination of dmnbipy.
10 V. Aucagne, J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni,
D. A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A. Viterisi
1439.
12 (a) S. J. Pike and P. J. Lusby, Chem. Commun., 2010, 46, 8338;
(b) O. Chepelin, J. Uijma, P. E. Barran and P. J. Lusby, Angew. Chem.,