This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
Investigating the Chemistry of Binuclear Chromium and Uranium Pacman Complexes

Charlotte J. Stevens

University of Edinburgh

Submitted for the degree of Doctor of Philosophy

2014
Declaration

The work described in this thesis is entirely my own, except where I have either acknowledged help from a named person or given reference to a published source. Text taken from another source will be enclosed in quotation marks and a reference given. This thesis has not been submitted, in whole or in part, for any other degree.

Signature:

Date:
Abstract

Drawing inspiration from nature where enzymes containing multi-metallic active sites are ubiquitous, chemists have designed various ligands to bind more than one metal in precise structural arrangements. In Chapter One, a class of binucleating Schiff base pyrrole (Pacman) macrocycles which are both straightforward to synthesise and can be varied systematically to alter the metal environment and intermetallic separation are introduced, along with the state-of-the-art in this area. Previously reported complexes of these ligands with late transition metals, lanthanides and actinides are also reviewed. The results and discussion chapters of the thesis focus on the isolation and investigation of previously unexplored early transition-metal Pacman complexes and present new advances in low oxidation state uranium Pacman chemistry.

In Chapter Two, binuclear chromium(II) complexes of two Schiff base macrocycles, H₄L²Me and H₄L²A are described. [Cr₂(L⁶)] features an ortho-phenyl spacer between the macrocycle donor compartments whereas the Cr(II) ions are separated by a larger anthracenyl spacer in [Cr₂(L⁶)]. Both compounds have been characterised in solution and the solid state. Reactivity studies were carried out for [Cr₂(L⁶)]. Reactions of [Cr₂(L⁶)] with isocyanides and triphenylphosphine oxide were investigated leading to the isolation of the contrasting co-ordination compounds [Cr₂(OPPh₃)₂(L⁶)] and [Cr₂(µ-CNR)(L⁶)] (R = xylyl, 'Bu). Oxidation of [Cr₂(L⁶)] with I₂ yields the Cr(III)/Cr(III) Pacman products [Cr₂(µ-I)(I)(THF)(L⁶)] and [Cr₂(µ-I)(py)₂(L⁶)][I] when carried out in THF or pyridine, respectively. Cr(III) alkyl compounds are obtained by reaction of [Cr₂(µ-I)(I)(THF)(L⁶)] with the non-reducing alkyl transfer reagents MgBrEt and ZnEt₂. When ZnEt₂ in toluene is employed, one zinc cation is incorporated in the molecular cleft, whereas use of MgBrEt in THF yields the simple chromium alkyl complex [{Cr(Et)}₂(endo-THF)(L⁶)]. One ethyl group may be abstracted from [{Cr(Et)}₂(endo-THF)(L⁶)] by [CPh₃][B(C₆F₅)₄] to form a cationic alkyl complex. The activity of both the neutral and cationic alkyl species towards ethylene was investigated. Conclusions are discussed at the end of the chapter.

Previously, investigation of low oxidation state uranium Pacman chemistry has been confined to the smaller macrocycle, H₄L⁴Me, and frequently resulted in the formation of insoluble polymeric materials that were intractable and challenging to analyse. In Chapter Three, metallation of the larger macrocycle, H₄L⁴A, with UI₃ to generate a single soluble species is described, although this product could not be isolated or characterised in the solid state. A new synthesis of [U(BH₄)₃(THF)₂] from UI₃ and NaBH₄ affords an alternative U(III)
precursor to UI_3. Metallation of $\text{H}_4\text{L}^\Lambda$ using a sodium base and $\text{U}($$\text{BH}_4$$)_3($$\text{THF}$$)_2$ yields the ionic product $[\text{Na}($$\text{THF}$$)_4][\{\text{U}($$\text{BH}_4$$)_3\}_2($$\mu$$-$\text{BH}_4$$)($$\text{THF}$$)_2(L^\Lambda)]$ which was characterised in solution and the solid state. Reaction of this compound with $\text{KO}($$\text{C}_6\text{H}_2($$t\text{Bu})_3$$)$ forms the ligand substitution product $[[\text{U}($$\text{OAr}$$)_2($$\text{endo}$$-$\text{BH}_4$$\text{K})(\text{THF})_2(L^\Lambda)]$ which undergoes selective reaction with excess S_8 or CS_2 to form $[[\text{U}($$\text{OAr}$$)_2($$\mu$$-$\text{S}_2$$)(L^\Lambda)]$ and $[[\text{U}($$\text{OAr}$$)_2($$\mu$$-$\text{S}$$)(L^\Lambda)]$ respectively. It was discovered that the $[\text{U}($$\text{BH}_4$$)_3($$\text{THF}$$)_2$ metallation strategy could be successfully extended to $\text{H}_4\text{L}^\text{Me}$ to form $[\text{Li}($$\text{THF}$$)_4][\{\text{U}($$\text{BH}_4$$)_3\}_2($$\mu$$-$\text{BH}_4$$)(L^\text{Me})]$. Protonolysis of the borohydride ligands of the complexes of the two different macrocycles was investigated using the weak acid $[\text{HNEt}_3][\text{BPh}_4]$. NMR spectroscopy indicated that both $\text{exo} \text{BH}_4^-$ groups in both complexes can be successively removed to generate neutral and cationic complexes but these were not isolated. Metallation of $\text{H}_4\text{L}^\Lambda$ with UCl_4 forms the ionic product $[\text{Li}($$\text{THF}$$)_4][\{\text{U}($$\text{Cl}$$)_2\}_2($$\mu$$-$\text{Cl}$$)_3(L^\Lambda)]$. Various ligand substitution reactions were attempted but the only structurally characterised product was $[[\text{U}($$\text{O}$$\text{Bu}$$(\text{Cl})$)$\text{U}($$\text{O}$$\text{Bu}$$(\text{py})($$\mu$$-$\text{Cl}$$)(L^\Lambda)]$, formed by reaction with $\text{KO}$$'$$\text{Bu}$. Conclusions are discussed at the end of the chapter.

Experimental and characterising data are provided in Chapter Four.
Acknowledgements

I would like to thank my supervisors Jason and Polly for their constant help, guidance and enthusiasm during my PhD. I am grateful also to the EaStCHEM School of Chemistry for funding my project.

I am indebted to Dr Alex Presciomone and Dr Carole Morrison for carrying out high pressure X-ray crystallography and computational studies, and also to Prof. Eric McInnes and Dr Floriana Tuna at the University of Manchester for their expertise in SQUID and EPR spectroscopy.

I am very grateful for all the good humoured help I have received from Dr Lorna Murray and Mr Juraj Bella with NMR spectroscopy, Dr Gary Nichol with X-ray crystallography and Mr Donald Robertson with IR spectroscopy.

Thank you to all the brilliant postdocs in the Love/Arnold group who have given me so much of their time, especially Stephen, Joy and Nicola. Thank you to Guy, Isobel, Rebecca, Markus, Jamie and all my other Lab 34 friends for helping me enjoy my time in Edinburgh.

Finally, thank you to my family and to Andy for their love and support.

“As the circle of light expands, so does the circumference of darkness.”

- Albert Einstein
Abbreviations

General
- **acac**: acetylacetonate, \(\{\text{CH}_3\text{CO}\}_2\text{CH} \)
- **Ad**: adamantyl
- **Ar**: aryl
- **B**: magnetic field strength
- **Cp**: \(\text{C}_5\text{H}_5 \)
- **Cp\(^*\)**: \(\text{C}_5\text{Me}_5 \)
- **DABCO**: 1,4-diazabicyclo[2.2.2]octane
- **DCM**: dichloromethane
- **Dipp**: 2,6-diisopropylphenyl
- **DMAP**: \(\text{N,N-} \)dimethylaminopyridine
- **DME**: dimethoxyethane
- **DMF**: dimethylformamide
- **dmpe**: dimethylphosphinoethane
- **G**: Gauss, unit of magnetic field strength
- **GPa**: Giga Pascals, unit of pressure
- **H\(_4\)L**: generic \(\text{ortho-} \)phenyl hinged Pacman macrocycle
- **H\(_4\)L\(^A\)**: anthracenyl hinged macrocycle
- **H\(_4\)L\(^{\text{Me}}\)**: \(\text{ortho-} \)phenyl hinged octamethyl macrocycle
- **H\(_4\)L\(^X\)**: any Pacman macrocycle
- **M**: metal
- **Mes**: mesityl, \(2,4,6\)-C\(_6\)H\(_3\)(Me)\(_3\)
- **N\(^n\)**: \(\text{N(SiMe}_3)_2 \)
- **[O]**: oxidant
- **OTf**: \(\text{CF}_3\text{SO}_3 \)
- **py**: pyridine
- **pyr**: pyrrole/pyrrolide
- **RT**: room temperature
- **s**: spin of individual metal ion
- **S**: total spin of complex
- **sol**: solvent
- **SQUID**: Superconducting Quantum Interference Device
- **T**: temperature
- **t**: time
- **tacn**: triazacyclononane
- **THF**: tetrahydrofuran
- **xs**: excess
- **Xyl**: xylol, \(2,6\)-C\(_6\)H\(_3\)(Me)\(_2\)
- **Δ**: heat
- **λ**: wavelength
- **ν**: frequency
- **χ**: magnetic susceptibility

NMR
- **δ**: chemical shift
- **s**: singlet
- **d**: doublet
- **t**: triplet
- **q**: quartet
- **(v) br**: (very) broad
- **J**: coupling constant
- **W\(_{0.5}\)**: width at half-height
Contents

Chapter One: Introduction to Binucleating Ligands

1.1 Inspiration ... 2
1.2 Diporphyrin ligands ... 3
 1.2.1 Reactivity of co-facial diporphyrin complexes ... 4
1.3 Pacman calixpyrroles ... 6
 1.3.1 Synthesis .. 6
 1.3.2 Metallation .. 8
 1.3.3 Metal binding modes ... 9
1.4 Transition metal Pacman complexes ... 12
 1.4.1 Oxygen reduction catalysis ... 12
 1.4.2 Anion recognition .. 14
 1.4.3 Early transition metal Pacman complexes ... 15
1.5 Uranium Pacman complexes .. 16
 1.5.1 Mono-uranyl Pacman complexes .. 16
 1.5.2 Bis-uranyl Pacman complexes .. 18
 1.5.3 Low oxidation state uranium Pacman chemistry ... 21
1.6 Aims ... 22
1.7 References ... 23

Chapter Two: Chromium Pacman Complexes

2.1 Introduction to chromium chemistry ... 28
 2.1.1 Quintuple Cr-Cr bond formation .. 28
 2.1.2 Dinitrogen binding and activation by chromium ... 31
 2.1.3 Ethylene polymerisation and oligomerisation chemistry 32
2.2 Preparation of chromium Pacman complexes ... 39
 2.2.1 Electronic characterisation of \([\text{Cr}_2(\text{L}^{\text{Me}})]\) .. 40
 2.2.2 Solid state structure of \([\text{Cr}_2(\text{L}^{\text{Me}})]\) ... 42
2.2.3 High pressure X-ray crystallography studies of [Cr₂(L₄₅)]............................... 44
2.2.4 Preparation of [Cr₂(L₄₅)].. 47
2.3 Coordination chemistry of [Cr₂(L₄₅)]... 49
 2.3.1 Reaction with triphenylphosphine oxide... 50
 2.3.2 Reaction with isocyanides... 52
 2.3.3 Attempted reactions with gases.. 57
2.4 Redox chemistry of [Cr₂(L₄₅)].. 57
 2.4.1 Attempted reduction of [Cr₂(L₄₅)]... 57
 2.4.2 Oxidation of [Cr₂(L₄₅)]... 58
2.5 Synthesis and reactivity of chromium alkyls .. 66
 2.5.1 Reactions of [Cr₂(µ-I)(I)(THF)(L₄₅)] with ZnEt₂... 67
 2.5.2 Synthesis of [{Cr(Et)}₂(endo-THF)(L₄₅)]... 70
 2.5.3 Reactivity of [{Cr(Et)}₂(endo-THF)(L₄₅)]... 74
2.6 Conclusions.. 78
2.7 References.. 80

Chapter Three: Uranium Pacman Complexes... 85
3.1 Introduction to uranium chemistry.. 86
 3.1.1 Uranium(III) precursors... 87
 3.1.2 Small molecule activation by uranium(III)... 89
 3.1.3 Binuclear uranium(III) complexes... 96
3.2 Metallation reactions using UI₃.. 98
 3.2.1 Reaction of K₂L₅ with UI₃... 98
 3.2.2 Structure of U(IV)/U(IV) decomposition product ... 100
 3.2.3 Attempted in situ reactions with 12 .. 103
3.3 Metallation reactions using U(BH₄)₃.. 104
 3.3.1 Synthesis of [U(BH₄)₃(THF)₂]... 104
 3.3.2 Solid state structures of [U(BH₄)₃(I)₃(sol)₂]... 107
 3.3.3 Reactions of [U(BH₄)₃(THF)₂] with H₄L₅.. 110
3.3.4 Reactions of \([\text{U(BH}_4\text{)}_2\text{(THF)}_2]\) with \(\text{H}_4\text{L}^{\text{Me}}\) .. 114

3.4 Reactivity of uranium(III) Pacman complexes.. 118

3.4.1 Ligand substitution: synthesis of \([\{\text{U(OAr)}\}_2(\text{endo-BH}_4\text{K})(\text{L}^A)\]} 118

3.4.2 Further reactivity of \([\{\text{U(OAr)}\}_2(\text{endo-BH}_4\text{K})(\text{L}^A)\)} .. 122

3.4.3 Protonolysis reactions.. 138

3.5 Metallation reactions using \(\text{UCl}_4\).. 142

3.5.1 Synthesis of \([\text{Li(THF)}_2][\{\text{UCl}_2(\mu-\text{Cl})_3(\text{L}^A)\]} .. 142

3.5.2 Reactivity of \([\text{Li(THF)}_2][\{\text{UCl}_2(\mu-\text{Cl})_3(\text{L}^A)\]} .. 144

3.6 Conclusions.. 149

3.7 References.. 152

Chapter Four: Experimental Procedures.. 157

4.1 General methods and instrumentation... 158

4.2 Synthetic procedures for Chapter Two: Chromium Pacman Complexes............ 159

4.3 Synthetic procedures for Chapter Three: Uranium Pacman Complexes.......... 168

4.4 Evans’ method determination of magnetic moments.. 185

4.5 NMR quenching experiments... 186

4.6 X-ray crystallography... 187

4.7 References... 211

Appendix I Publications based on the work presented in this thesis....................... 213
Chapter One

Introduction to Binucleating Ligands
1.1 Inspiration

In nature, enzymes catalyse an enormous array of chemical reactions. From the reduction of N₂ to ammonia in leguminous plants, to the oxidation of water to O₂ during photosynthesis, biology achieves numerous selective redox transformations of small molecules under ambient conditions. This far surpasses the achievements of laboratory chemists; the Haber Bosch process for industrial ammonia production consumes roughly 1% of annual global energy output.¹ Advances in biochemistry and protein crystallography have revealed that metalloproteins are responsible for catalysing many of these biological transformations. Though metalloproteins typically have complex extended structures, substrate activation often occurs at a relatively small, precisely ordered multi-metallic active site. One such metalloprotein is cytochrome c oxidase which mediates the 4 e⁻ reduction of O₂ to water during respiration. The X-ray crystal structure reveals that the active site is bimetallic and consists of a porphyrin-supported iron centre at a separation of 4.5 Å from a histidine-bound copper ion (Figure 1.1).² O₂ reduction is achieved co-operatively between the metal centres.

![Figure 1.1 Crystal structure of the O₂ reduction site in cytochrome c oxidase (bovine heart) reproduced from Tsukihara et al.² (left) and ChemDraw representation (right).](image)

The development of efficient redox transformations of small molecules such as N₂, CO, CO₂ and CH₄ will become increasingly important if we are to meet growing global demands for energy and materials. Drawing inspiration from nature’s metalloenzymes, chemists are developing novel multi-metallic systems which they hope will mimic the remarkable activity of biological systems,³ though this introduction will focus solely on the synthesis and reactivity of bimetallic complexes. A wide range of different ligand classes can promote the aggregation of two metal ions and these have been reviewed extensively.⁴ The majority of binucleating ligands consist of a bridging group which spans the metal centres
and auxiliary chelate groups that stabilise the complex. Figure 1.2 shows examples of binuclear complexes of ligands with formamidinate, triazole and carboxylate bridging groups and auxiliary phosphine, pyridine and cyclic ammine chelators.

![Figure 1.2 Examples of bimetallic complexes supported by different ligand sets.](image)

This class of binucleating ligands has certain disadvantages. The presence of a direct metal bridging group can result in steric congestion of the metal centres, reducing their potential to effect co-operative substrate activation. Furthermore, the intermetallic separation in such complexes is in large part determined by the identity of the bridging ligand. Changing the bridging group to achieve systematic variation of the intermetallic separation without significantly altering the rest of the complex is not straightforward. Diporphyrins belong to a separate and much smaller class of binucleating ligands which do not feature a direct metal bridging group but combine well-defined metal binding sites with good control of the intermetallic separation.

1.2 Diporphyrin ligands

Diporphyrin ligands were developed in the 1970s.\(^8\)-\(^{11}\) The first generation diporphyrins consisted of two porphyrin macrocycles strapped together by two to four linking chains in either the meso- or β-positions of the porphyrins (Figure 1.3, left). Due to the flexibility of the linking groups, most of these multiply strapped diporphyrins adopt a conformation where the two rings have slipped laterally with respect to each other (typically by ca. 3.5 Å) in order to maximise off-set π-π interactions between the macrocycles. This means that the metals do not sit directly above one another in the pockets and increases the M···M separation. A second generation of diporphyrin ligands was developed in the 1980s in which the two macrocycles were linked by a single rigid aromatic spacer (Figure 1.3, right and bottom).\(^{12\text{-}14}\) In these single-pillared ligands, hereafter designated “co-facial diporphyrins”, the slipping of the macrocycles is limited and the metals are kept reasonably vertically aligned. By changing the aromatic linker of a co-facial diporphyrin, the intermetallic separation and the angle between the porphyrin rings may be altered. The single
strap also imparts a degree of bite angle flexibility meaning the macrocycles can tilt inwards or outwards with respect to each other thus incorporating various different intermediates within the molecular cleft. This ability to “bite” on substrates is termed the “Pacman effect”.

![Diagram of diporphyrin complexes](image)

Figure 1.3 First (left) and second (right) generation diporphyrin complexes. FTF4 denotes a “face to face” diporphyrin with 4 atoms in the bridging straps. DPY refers to a generic singly strapped diporphyrin.

1.2.1 Reactivity of co-facial diporphyrin complexes

Numerous bimetallic complexes of co-facial diporphyrins have been prepared, mostly containing mid-to-late transition metals. Several of these metallated diporphyrins have been shown to be effective in a range of stoichiometric and catalytic transformations of small molecules.

For example, Collman and co-workers reported the successful electrocatalytic proton-coupled 4 e⁻ reduction of O₂ to water by a binuclear cobalt diporphyrin, [Co₂(FTF4)], absorbed on a graphite electrode.

No hydrogen peroxide was produced during catalysis, mirroring the activity of the enzyme cytochrome c oxidase. The binuclear Rh(II)/Rh(II) diporphyrin complex 1A investigated by the Wayland group was found to co-operatively achieve the 2 e⁻ oxidative cleavage of alkyl C-H bonds within the intermetallic cleft to yield the Rh(III)/Rh(III) alkyl hydride complex 1B (Scheme 1.1, left).

The reaction displayed remarkable selectivity for alkyl C-H bonds over aryl C-H or O-H
bonds, and the rate was significantly enhanced compared to similar reactions of mononuclear Rh(II) complexes.

Scheme 1.1 Activation of alkyl C-H bonds (left)18 and dinitrogen (right)19 by binuclear co-facial diporphyrin complexes.

At each metal centre in a binuclear diporphyrin complex there are two vacant axial binding sites: exo and endo with respect to the intermetallic cleft. In certain cases it is necessary to block the exo axial co-ordination sites in order to direct the substrate to the endo intermetallic site. The presence of exo axial ligands can also enhance the activity of the complex by increasing the electron density at the metal centres. For example, Collman and co-workers synthesised the binuclear Ru(II) complex [Ru$_2$(DPB)] (1C) that contains a Ru=Ru bond and is unreactive towards N$_2$. Exo axial co-ordination of bulky imidazole donors resulted in cleavage of the Ru=Ru bond and in-cleft co-ordination of dinitrogen to form [(RuIm*)$_2$(µ-N$_2$)(DPB)] (1D, Scheme 1.1, right)19,20. In contrast to similar monomeric ruthenium dinitrogen complexes, complex 1D is robust; there was no evidence of dinitrogen dissociation after several freeze-pump-thaw degassing cycles.

Oxidation and alkylation of 1C yielded [(RuR)$_2$(DPB)] (1E$_{Ru}$, Scheme 1.2), a bimetallic Ru(III) diporphyrin complex with alkyl ligands blocking the exo faces of the porphyrins. The osmium analogue, 1E$_{Os}$, was prepared by an identical strategy. Both complexes were found to be moderate catalysts for the reduction of protons to H$_2$ at mercury pool electrodes in THF.21 A similar transformation is carried out by hydrogenase enzymes in biological systems. The authors suggest that the relative orientation and proximity of the endo hydride ligands favoured the elimination of dihydrogen.
Chapter One

Scheme 1.2 Electrocatalytic reduction of protons to H$_2$.21 The DPB ligand is shown in cartoon form. M = Ru, Os, R = Me, 4-C$_6$H$_4$Me, 3,5-C$_6$H$_3$(CF$_3$)$_2$.

Metallated co-facial diporphyrins have been proven to achieve a number of small molecule transformations but they have one significant disadvantage; the synthesis of the ligands is arduous and low yielding, with the original preparations of H$_4$DPA and H$_4$DPB involving 24 and 21 steps respectively.12-14 Though subsequent optimisation has reduced the synthesis to 15 steps, the overall yield (ca. 3 %) remains poor.22

1.3 Pacman calixpyrroles

1.3.1 Synthesis

To overcome these limitations Love \textit{et al.}23 and Sessler \textit{et al.}24 independently developed and reported a new class of Pacman calixpyrroles which are far easier to synthesise and can fold into a geometry similar to a single pillared co-facial diporphyrin. The synthesis of Pacman calixpyrroles uses straightforward Schiff-base condensation methodology and is high yielding. The macrocycle is built from two basic building blocks: a ketone and a diamine. Initially the ketone undergoes an acid-catalysed condensation reaction with pyrrole to form a substituted dipyrromethane which is converted to the corresponding diformyldipyrromethane in a Vilsmeier-Haack reaction. The acid-templated condensation of two equivalents of the dialdehyde with two equivalents of a chosen diamine yields the [2+2] macrocyclic product after basic work-up (Scheme 1.3).25

The resultant macrocycles contain two pyrrole/imine N$_4$ donor pockets separated by aromatic spacers which derive from the diamine used in the cyclo-condensation. The \textit{meso} substituents are determined by the ketone chosen. The macrocycle synthesis is tolerant of a
range of ketones and diamines, allowing preparation of ligands with different donor pocket separations and different meso head groups.\(^{26}\) Of the various possibilities, two macrocycles are shown in Scheme 1.3: the octamethyl macrocycle, $\text{H}_4\text{L}^{\text{Me}}$, in which the donor pockets are separated by ortho-phenyl spacers, and the anthracene macrocycle, $\text{H}_4\text{L}^\wedge$, which features longer, anthracenyl spacers. These are the two Pacman calixpyrroles used in the experimental work presented in this thesis.

Scheme 1.3 Schiff-base synthesis of Pacman calixpyrroles. Yields are based on ketone.

The 1,2-diamino-substituted benzene required to prepare $\text{H}_4\text{L}^{\text{Me}}$ is commercially available but 1,8-diaminoanthracene (DAAcene), required for the synthesis of $\text{H}_4\text{L}^\wedge$ is not. DAAcene is prepared in a two-step synthesis from commercially available 1,8-dinitroanthraquinone (DNAQ, Scheme 1.4). First, DNAQ is reduced to 1,8-diaminoanthraquinone (DAAQ) using excess sodium sulphide, then DAAQ is reduced to
DAAcene by excess sodium borohydride. This latter step must be carried out in the absence of light because DAAcene is photosensitive, decomposing to intractable dark solids if exposed to light. The subsequent condensation reaction to form H₄L₄ must similarly be carried out in the dark but the macrocycle is light-stable once isolated and dried.

![Scheme 1.4 Synthesis of 1,8-diaminoanthracene spacer.](image)

The H₄L₄ macrocycle bearing meso ethyl groups is the only anthracenyl hinged macrocycle that has been prepared. However, several ortho-phenyl hinged macrocycles have been synthesised with different meso groups and different substituents on the phenyl hinges. In general, the incorporation of the ortho-phenyl spacer in large part determines the structures of the metal complexes of these ligands, with the meso and phenyl substituents exerting more subtle steric and electronic effects. Therefore, unless it is necessary to specify otherwise, H₄L will be used to denote any ortho-phenyl hinged Pacman macrocycle in the remainder of this introduction, though the specific ligand will be shown explicitly in diagrams. H₄Lₓ refers to any Pacman calixpyrrole, with ortho-phenyl or anthracenyl spacers.

1.3.2 Metallation

Deprotonation of all four pyrrole NH groups of a H₄Lₓ macrocycle yields a 2− charge on each N₄ donor pocket. Therefore the macrocycles are ideally designed to incorporate M(II) ions. Three distinct metallation strategies have been employed (Scheme 1.5). If the metal starting material MX₂ is not strongly basic, such as MCl₂ or M(OAc)₂, then two options are available: (1) reaction of MX₂ with H₄Lₓ in the presence of a neutral base which co-operatively deprotonates the macrocycle or (2) initial deprotonation of H₄Lₓ by an alkali metal base, such as an amide or hydride, to generate the alkali metal salt of the macrocycle, which then undergoes a salt elimination reaction with MX₂. If the metal starting material is strongly basic, such as M(NR₂)₂, then a transamination strategy can be effective, where M(NR₂)₂ both deprotonates the macrocycle and provides M(II) ions in a single step (3). Metal hexamethyldisilylamides, [M{N(SiMe₃)₂}]ₓ, are commonly used in transamination reactions due to their high solubility in hydrocarbon solvents and the steric protection...
Chapter One

provided by the bulky silylamide ligands to the metal centre. Hereafter the hexamethylsilylamide group will be abbreviated to N″.

\[(1) \quad H_4L^X \xrightarrow{\text{2 MX}_2, \text{4 B}} \quad H_4L^X \xrightarrow{-4 \text{[BH]X}} \]

\[(2) \quad H_4L^X \xrightarrow{\text{4 M'NR}_2, \text{4 HNR}_2} \quad M'_4L^X \xrightarrow{-4 \text{MX}} \]

\[(3) \quad H_4L^X \xrightarrow{\text{2 M(NR}_2)_2, \text{-4 HNR}_2} \]

Scheme 1.5 Metallation strategies for Pacman macrocycles. For example: \(X = \text{Cl, OAc, B = DABCO, NEt}_3, M' = \text{Li, Na, K.} \)

1.3.3 Metal binding modes

The \textit{meso} \text{sp}^3 hybridised carbon atoms impart flexibility to the \(H_4L^X \) family of macrocycles, allowing them to accommodate a variety of metals and metallic fragments in different binding modes. In the generic \([M_2\,(L)]\) complex shown in Scheme 1.5 the ligand has folded upon metallation into the classic wedged-shaped Pacman geometry, reminiscent of the structures of the co-facial diporphyrins. The \textit{ortho}-substituted aryl rings act as a pair of hinges about which the macrocycle folds, and as spacers between the two \textit{pseudo} square planar \(N_4 \) donor compartments. When the macrocycles fold into the Pacman geometry, the \textit{meso} substituents, which are equivalent in the free macrocycles, become desymmetrised since two groups are now \textit{exo} with respect to the macrocyclic cleft and the other two are \textit{endo}.

Pacman \([M_2\,(L^X)]\) complexes, where \(L^X \) is any Pacman calixpyrrole, have been synthesised for many transition metals, including Co(II),27 Zn(II),28 Mn(II), Ni(II), Cu(II) and Pd(II).25 To facilitate structural comparison of Pacman complexes, it is useful to define two parameters: the bite angle, \(\theta \), and the torsional twist angle of the aryl hinges, \(\Phi \) (Figure 1.4). The bite angle is only relevant to complexes of the \textit{ortho}-phenyl hinged macrocycles and is defined as the angle between M1, the centroid of all twelve aryl hinge carbons, and M2. The torsional twist angle quantifies the lateral slipping of the two macrocycle pockets and is defined as the mean angle between the perpendiculars to the \(N_4 \) planes and the planes of the aryl hinges.
The simple Pacman complex [Ni₂(L)] has a pronounced lateral twist of 28 ° which results in a bite angle of 55 ° that is decreased from the ideal 60° (Figure 1.5, left). This twisting maximises favourable off-set π-π stacking interactions between the aryl hinges of the macrocycle. If there is a bridging atom between the two metal centres within the macrocyclic cleft, as in the mixed-valent complex [Mn₂(µ-OH)(L)] (Figure 1.5, right), then the bridging group acts to anchor the two metals in vertical alignment and reduces the twisting of the macrocycle, in this case to 7 °. The bite angle in [Mn₂(µ-OH)(L)] is also lowered, to 50 °, because the bridging hydroxide causes the Mn ions to distort out of the N₄ planes, into the macrocyclic cleft. A solvent molecule may also be incorporated within the macrocyclic cleft, as in [Cu₂(endo-py)(L)] (Figure 1.5, centre). The pseudo bridging binding mode of the pyridine in this complex is highly unusual and is induced by the constrained environment of the intermetallic cleft. There is considerable lateral slipping of the macrocycle pockets in [Cu₂(endo-py)(L)] (twist angle = 20 °) which emphasises that there is no significant bonding interaction between N9 and Cu2.
Chapter One

The flexibility of the H₄L macrocycles means other metal binding modes are also accessible, unlike for the rigid co-facial diporphyrin ligands. If the macrocycles do not fold at the aryl hinge groups but instead flex about the meso carbon atoms then bowl-shaped complexes are produced (Figure 1.6). In Pacman complexes, the metal ions are bound to the two pyrrolides on either side of one meso carbon and the adjacent imines, one attached to each aryl hinge. In bowl complexes, the macrocycle co-ordination mode is switched so that the metal ion binds to both imines attached to a single arene ring and, in some cases, the two adjacent pyrrolide nitrogens. The bowl conformation has not been observed for complexes of the anthracenyl macrocycle, H₄Lᴬ, because the separation of the two imines attached to each anthracene hinge is too great for one metal to be co-ordinated by both nitrogens.

Figure 1.6 Bowl shaped complexes of calixpyrroles prepared by the Sessler (top)²⁹,³⁰ and Love (bottom)³¹,³² groups.

The bowl binding motif is most commonly observed when the pyrrole NHs are not fully deprotonated. Sessler and co-workers found that reaction of [Fe₂Mes₄] with H₄L in THF followed by aerobic oxidation yielded the oxo-bridged Pacman complex [Fe₂(µ-O)(L)]. However, carrying out the same reaction with the acid salt of the ligand [H₄L(HCl)]₂ generated [(FeCl)₂(µ-O)(H₂L)] (1E, Figure 1.6) in which each Fe(III) cation binds to two imine nitrogens and one pyrrolide nitrogen and the other two pyrroles remain protonated and hydrogen bond to the bridging oxo group.²⁹ The bowl complex [Zn₂(µ-F)₂(µ-OCMe₂)(BF₄)₂(H₄L)] (1F) was prepared by reaction of Zn(BF₄)₂ with H₄L.³⁰ The Zn(II) cations co-ordinate solely to the imine nitrogens of the macrocycle which is a neutral
chelator since all four pyrrole nitrogens remaining protonated. The Zn(II) ions are pseudo octahedral, also binding to two bridging fluorides, a bridging acetone molecule and a BF₄⁻ ion. Hydrogen bonding between the pyrrole NHs and bridging fluorides stabilises the complex. Very recently it has also been demonstrated that the bowl geometry is adopted in preference to the Pacman geometry when large metal cations are introduced, even in fully deprotonated complexes. Reaction of one or two equivalents of [Ca(N”)_2(THF)] with H₄L formed the monometallic or bimetallic bowl complexes, [Ca(THF)_2(H₂L)] (1G) or [Ca₂(µ-THF)(THF)_2(L)] (1H), respectively. In both these complexes each Ca(II) ion binds to two imines and two pyrrolides with THF ligands occupying the axial sites.

1.4 Transition metal Pacman complexes

1.4.1 Oxygen reduction catalysis

Pacman calixpyrrole complexes have proven to be functional, as well as structural, models for co-facial diporphyrin complexes, with cobalt Pacman complexes also able to catalyse the 4 e⁻ reduction of O₂ to water. Love and co-workers reported that a THF solution of the binuclear cobalt complex of an ortho-phenyl hinged macrocycle, [Co₂(L⁵)], reacted immediately with O₂ upon exposure to air. NMR spectroscopy revealed that two different products were formed in a 9:1 ratio. Addition of pyridine to the reaction mixture facilitated structural characterisation of the major product, the Co(III)/Co(III) peroxide bridged complex 1J (Scheme 1.6). The minor product was assigned as the Co(III)/Co(III) superoxide-bridged radical cation 1K, on the basis of EPR spectroscopy. This mixture of compounds was able to slowly catalyse the reduction of oxygen to water. Its poor activity was attributed to the low concentration of the superoxide species, which is believed to be the route into the catalytic cycle, and the formation of unreactive peroxide and hydroxide bridged products.

Love and co-workers made modifications to the ligand framework to try to improve catalytic activity. An ortho-phenyl hinged complex carrying bulky fluorenyl substituents at the meso positions, [Co₂(L⁵)], was prepared. It was hoped that the increased steric bulk at the meso positions would induce a greater lateral twist of the macrocycle pockets preventing formation of unreactive mono-atom bridged species. Reaction of [Co₂(L⁵)] with air formed a mixture of the superoxide-bridged complex [Co₂(µ-O₂)(L⁵)(py)₂][OH] (1L) and the mixed valence Co(II)/Co(III) hydroxide-bridged complex [Co₂(µ-OH)(L⁵)(py)] (1M), both of which were structurally characterised (Scheme 1.6). No peroxide species were observed. This
mixture of products proved to be a better oxygen reduction catalyst but evidently formation of unreactive bridged species was still inhibiting catalysis.34

Next [Co\textsubscript{2}(LA)] was synthesised, in which the macrocycle hinges were extended from \textit{ortho}-phenyl to anthracenyl. [Co\textsubscript{2}(LA)] was unreactive towards O\textsubscript{2} in either THF or pyridine solution but formation of a new species was observed by 1H NMR spectroscopy upon exposure of a PhCN solution of [Co\textsubscript{2}(LA)] to O\textsubscript{2}. The reaction was found to be reversible; applying vacuum regenerated the starting material [Co\textsubscript{2}(LA)]. The authors suggested that an adduct such as [CoII\textsubscript{2}(O\textsubscript{2})(LA)] (1\text{N}) was formed in the presence of O\textsubscript{2}, facilitated by \textit{exo} axial co-ordination of PhCN to the Co(II) centres. [Co\textsubscript{2}(LA)] was found to be an efficient and selective catalyst for the reduction of oxygen to water in the presence of PhCN and could operate under less acidic conditions than the previously studied [Co\textsubscript{2}(diporphyrin)] catalysts.27 Formation of hydroxide or peroxide bridged decomposition products was successfully inhibited in the [Co\textsubscript{2}(LA)] system by the increased intermetallic separation. This series of cobalt Pacman complexes illustrates the importance of being able to make straightforward and systematic variations to a ligand system.

\textbf{Scheme 1.6} Reactivity of binuclear cobalt Pacman complexes of different calixpyrroles towards O\textsubscript{2}.27,33,34 All [Co\textsubscript{2}(L)] complexes were synthesised by reaction of two equivalents of [Co(N″)\textsubscript{2}] with H\textsubscript{4}L. The ligand frameworks are shown in cartoon form in complexes 1\text{J} – 1\text{N}.

13
1.4.2 Anion recognition

The intermetallic cleft established in Pacman complexes of the anthracenyl macrocycle was also found to be of ideal geometry for anion binding. Love and co-workers synthesised the binuclear zinc Pacman complex \([\text{Zn}_2(L^\Lambda)]\) by heating a mixture of \(\text{ZnEt}_2\) and \(\text{H}_4L^\Lambda\) (Scheme 1.7). \(^{28}\) \([\text{Zn}_2(L^\Lambda)]\) existed as \([\text{Zn}_2(L^\Lambda)]_n\) aggregates in solution, giving rise to a very complicated \(^1\text{H}\) NMR spectrum. De-aggregation could be induced by dilution or addition of a very strongly co-ordinating solvent such as DMF. Salt elimination was also investigated as an alternative method of preparing \([\text{Zn}_2(L^\Lambda)]\). However, deprotonation of the macrocycle with excess \(\text{KH}\) followed by addition of \(\text{ZnCl}_2\) resulted in isolation of the “-ate” salt \([\text{K(THF)}_6][\text{Zn}_2(\mu-\text{Cl})(L^\Lambda)]\), in which one chloride ion is trapped in the macrocyclic cavity, bridging the Lewis acidic zinc ions.

This observation encouraged the authors to investigate the affinity of \([\text{Zn}_2(L^\Lambda)]\) towards the different halide ions. Addition of \([\text{NBu}_4][\text{X}]\), where \(\text{X} = \text{Cl}, \text{Br}, \text{I} \) and \(\text{OH}\), to a THF solution of \([\text{Zn}_2(L^\Lambda)]_n\) promoted de-aggregation of the starting material. However in-cleft anion binding was only observed for the chloride and hydroxide anions. In these cases, two sharp sets of resonances were observed in the resultant \(^1\text{H}\) NMR spectra corresponding to monomeric \([\text{Zn}_2(L^\Lambda)]\) and the anion incorporated complex \([\text{NBu}_4][\text{Zn}_2(\mu-X)(L^\Lambda)]\). Over time \([\text{NBu}_4][\text{Zn}_2(\mu-X)(L^\Lambda)]\) was formed exclusively (Scheme 1.7). The observed selectivity for \(\text{Cl}^-\) over \(\text{Br}^-\) or \(\text{I}^-\) was supported by theoretical calculations which showed that the \(\text{Br}^-\) and \(\text{I}^-\) anions would be poorly accommodated within the macrocyclic cleft, resulting in much less stable complexes. The calculations also revealed that hydroxide bound far more strongly than chloride, limiting the potential halide sensing applications of \([\text{Zn}_2(L^\Lambda)]\) to rigorously anhydrous systems.

\[
\begin{align*}
\text{H}_4L^\Lambda + 2\text{ZnEt}_2 &\xrightarrow{\text{THF} \Delta} [\text{Zn}_2(L^\Lambda)]_n \\
\text{[NBu}_4][\text{X}] &\xrightarrow{\text{THF}} \frac{1}{n} [\text{NBu}_4][\text{Zn}_2(\mu-X)(L^\Lambda)] \\
\end{align*}
\]

\textbf{Scheme 1.7} Synthesis of a zinc Pacman complex and in-cleft anion incorporation in its reaction with ammonium salts. \(^{28}\)
1.4.3 Early transition metal Pacman complexes

All the co-facial diporphyrin and Pacman calixpyrrole complexes discussed above have contained mid-to-late transition metals. Indeed, very little exploration of the early transition metal chemistry of these systems has been undertaken. Love and co-workers have synthesised materials of empirical formula \([(MCl)_2(L)]\), where \(M = Ti\) and \(V\), by deprotonating \(H_4L\) with excess KH and then performing a salt elimination reaction with two equivalents of \(MCl_3(THF)_3\) (Scheme 1.8).\(^{35}\) Neither complex was characterised in the solid state so it is not known whether their structures are monomeric or oligomeric with chloride ions bridging between different macrocycles. However, serendipitous partial oxidation/hydrolysis of the vanadium compound \([(VCl)_2(L)]\) resulted in crystallisation of the mixed-valent \(V(III)/V(IV)\) complex \([(V=O)(THF)(VCl)(L)]\) (1P).

Scheme 1.8 Synthesis of Ti(III) and V(III) Pacman complexes and partial hydrolysis to form a mixed-valent V(III)/V(IV) complex.\(^{35}\) \(M = Ti, V, sol = THF, py.\)

In complex 1P one V ion has been oxidised to the vanadyl cation, \((V^{IV}O)^{2+}\) while the other remains in the +3 oxidation state. Both V centres are octahedral; the remaining Cl\(^-\) ligand occupies the exo axial site at the V(III) ion while a molecule of donor solvent (THF or pyridine) co-ordinates exo to the vanadyl cation and the endo vanadyl oxo group bridges to the V(III) ion. Compound 1P is the first structurally characterised mixed-valent bridging vanadyl complex and this unusual vanadyl co-ordination mode is likely imposed by the constrained Pacman environment. Complex 1P remains the only early transition metal Pacman complex that has been characterised in the solid state.
1.5 Uranium Pacman complexes

The bulk of the uranium Pacman investigations undertaken in the Arnold and Love groups have focussed on high oxidation state uranium chemistry. There is much interest in the complexation and transformation of the uranyl dication, \((\text{UO}_2)^{2+}\), a soluble, highly stable, linear species where uranium is in its highest oxidation state of +6. In the environment, uranium exists predominantly in this form but cation-cation interactions with other solution metal species can lead to reduction of \((\text{UO}_2)^{2+}\) to insoluble U(IV) species via the unstable uranyl monocation, \((\text{UO}_2)^{+}\). Study of the reactivity of the uranyl dication in a controlled environment may provide valuable insight into the reactions and speciation occurring in nuclear waste.\(^{36}\)

1.5.1 Mono-uranyl Pacman complexes

The uranyl dication cannot be incorporated into the cavity of porphyrin macrocycles due to the large ionic radius of uranium. However, the flexibility of the Pacman calixpyrroles facilitated uranyl complexation. The room temperature transamination reaction between \(\text{H}_2\text{L}\) and the uranyl silylamide \([\text{UO}_2(N''_2)(\text{THF})_2]\) formed exclusively the mono-uranyl Pacman complex \([\text{UO}_2(\text{sol})(\text{H}_2\text{L})]\) (1Q, Scheme 1.9, sol = THF, py), even if excess \([\text{UO}_2(N''_2)(\text{THF})_2]\) was added.\(^ {37}\) The U centre in 1Q is pentagonal bipyramidal, binding to the four N donors of the macrocycle and a molecule of THF which sits between the aryl hinges and the two axial oxo groups, one of which is \(\text{exo}\) and one \(\text{endo}\) with respect to the macrocyclic cleft. The complex is stabilised by hydrogen bonding between the remaining pyrrole NHs in the bottom macrocycle pocket and the \(\text{endo}\) oxo group. Significantly, the uranyl dication is desymmetrised in 1Q due to the differing \(\text{endo}\) and \(\text{exo}\) environments of the two O atoms. This asymmetry has been exploited in further reactivity.

\[
\begin{align*}
\text{Scheme 1.9 Synthesis of mono-uranyl Pacman complex 1Q}^{37} \text{ and structural comparison with dimethyl tin complex 1R.}^{38}
\end{align*}
\]
Chapter One

With the exception of the mono-calcium bowl complex 1G, all the other metal complexes of Pacman ligands discussed have contained two metal ions, one occupying each macrocycle pocket. The preparation of monometallic Pacman complexes is difficult because the binding of one metal cation causes the macrocycle to fold, simultaneously establishing the second metal binding pocket so insertion of a second metal ion into the same macrocycle is favoured over metallation of another, unfolded macrocycle. In the case of 1Q monometallation occurs because of the steric demands of the strictly linear uranyl unit; if one (UO₂)²⁺ unit were incorporated in each macrocycle pocket the two endo oxo groups would clash. Similar steric selectivity has been observed in the formation of a monometallic tin Pacman complex. Reaction of SnMe₂Cl₂ with H₄L in the presence of DABCO formed [(SnMe₂)(H₂L)] (1R, Scheme 1.9) in which linearly disposed exo and endo methyl groups are bound to the tin centre.³⁸

Scheme 1.10 Reductive silylation of the uranyl dication. M = Fe, Zn.³⁹

The vacant lower binding pocket in complex 1Q has allowed the preparation of a variety of hetero bi- and multi-metallic uranyl Pacman complexes,⁴⁰ some of which feature reduced uranyl(V) units. The one pot reaction between 1Q, KN″, and MI₂, where M = Fe, Zn, resulted in formation of complex 1S (Scheme 1.10) in which the uranyl dication has been reduced to the uranyl(V) monocation with a silylated exo oxo group, and two (MI) units are bound within the lower macrocycle pocket.³⁹ Following mechanistic investigation, it was suggested that initial deprotonation of the remaining pyrrole NHs formed an intermediate species in which two K⁺ ions co-ordinate to the endo oxo, thereby activating the uranyl moiety towards homolytic cleavage of an N-Si bond in the silylamine by-product (Scheme 1.10). A salt elimination reaction with MX₂ then yields the observed product 1S.
Complex 1S contains a reduced uranyl(V) unit bound to a d-block metal but similar complexes featuring s- and f- metals have also been synthesised. It was found that reaction of 1Q with two equivalents of lithium diisopropylamide (LDA) in pyridine solution formed the uranyl(V) complex 1T (Figure 1.7, left) where lithium cations are co-ordinated to both the exo and endo uranyl oxo groups.\(^{41}\) Uranyl reduction takes place upon addition of the second equivalent of LDA. Homolytic cleavage of the Li-N bond yields 1T and releases an aminyl radical which is quenched by the solvent. Similarly, reaction of 1Q with lanthanide reagents LnA\(_3\) (A = N\(^{″}\), OAr) resulted in insertion of the Ln(III) cation into the bottom pocket of the macrocycle where it co-ordinates to the endo uranyl oxo group and reduces the U(VI) centre to U(V) by homolysis of the remaining Ln-A bond. The uranyl(V) complexes dimerise with the exo oxo groups bridging between the U(V) centres (1U, Figure 1.7, right).\(^{42,43}\) These reductions of the uranyl dication are highly unusual. Classic reducing agents were not employed in any of the reactions. Instead, the observed products illustrate the propensity of uranyl(VI) to undergo 1 e\(^−\) reduction in the presence of substrates containing bonds that are susceptible to homolytic cleavage.

![1T](image1)

Figure 1.7 Uranyl(V) complexes formed by reaction of 1Q with s-\(^{41}\) and f-block\(^{42,43}\) metal reagents. Ln = Sc, Y, Ce, Sm, Eu, Gd, Dy, Er, Yb, Lu.

1.5.2 Bis-uranyl Pacman complexes

Expansion of the Pacman macrocycle hinges from ortho-phenyl to anthracenyl allowed two linear (UO\(_2\))\(^{2+}\) units to be incorporated. Reaction of H\(_2\)L\(^A\) with two equivalents of [UO\(_2\)(N\(^{″}\))\(_2\)(py)]\(_2\) in pyridine solution formed the bis-uranyl Pacman complex [(UO\(_2\))\(_2\)(L\(^A\))(py)]\(_2\) (1V, Scheme 1.11).\(^{44}\) The U(VI) centres in 1V are once again pentagonal bipyramidal, this time with a molecule of pyridine co-ordinated in the fifth equatorial site between the ligand hinges. The pockets of the macrocycle are laterally twisted (Φ = 23 \(^°\)) in order to maximise the separation of the endo oxo groups, but even so the endo O···O separation is short at 2.709(6) Å.
Scheme 1.11 Synthesis of the bis-uranyl Pacman complex 1W.44

Recently it was discovered that under forcing conditions it is in fact possible to insert two uranyl groups into the ortho-phenyl hinged macrocycle H$_4$L$^\text{Me}$. Thus, reaction of mono-uranyl complex 1Q with a further 1.5 equivalents of [UO$_2$(N")$_2$(py)$_2$] in pyridine at 120 °C or reaction of the free macrocycle with 2.5 equivalents of [UO$_2$(N")$_2$(py)$_2$] under the same conditions resulted in formation of the reduced, silylated bis-uranyl(V) complex 1W along with an oligomeric by-product (Scheme 1.12).45

Scheme 1.12 Synthetic routes to the silylated bis-uranyl(V) Pacman complex 1W.45

Complex 1W features U(V) ions bounds in each N$_4$ donor pocket of the macrocycle, each with an exo axial siloxide ligand, and bridged by two endo oxo groups, forming a diamond shaped U$_2$O$_2$ core. The resultant U···U separation of 3.3557(5) Å is extremely short and there is strong electronic coupling between the U(V) centres. The complex is highly unusual because the normal mutually trans arrangement of the uranyl oxo ligands has been disrupted; one of the endo oxo groups remains trans to both exo siloxide ligands but the other endo oxo is cis to both exo axial siloxides. The uranyl(VI) starting materials were reduced to uranyl(V) during the formation of 1W and the exo oxo groups were silylated. These silyl groups originated from the uranyl silylamide starting material and their incorporation accounts for the need for super-stoichiometric quantities of [UO$_2$(N")$_2$(py)$_2$] in...
Chapter One

the reaction. Presumably, the reductive silylation occurs through homolytic cleavage of N-Si bonds in the excess \([\text{UO}_2(\text{N}^\prime)_2(\text{py})_2]\).

Complex \(1\text{W}\) proved to be remarkably inert towards disproportionation, oxidation or hydrolysis. An elegant study of the redox reactivity of \(1\text{W}\) reported by Arnold, Love and co-workers demonstrated that the source of this stability was the \(\text{exo}\) silyl groups, which effectively act as protecting groups.\(^4\) Reaction of \(1\text{W}\) with two equivalents of potassium yielded the potassium salt of the doubly reduced \(\text{U(IV)/U(IV)}\) Pacman complex \(1\text{X}\) (Scheme 1.13, step i). Addition of iodine to \(1\text{X}\) quantitively regenerated the \(\text{U(V)/U(V)}\) starting material \(1\text{W}\) with the elimination of KI. However re-oxidation of \(1\text{X}\) with pyridine-N-oxide formed the new \(\text{U(V)/U(V)}\) material \(\text{K}_2[(\text{UO}_2)_2(\text{L}^{\text{Me}})_2]\) (\(1\text{Y}\), step ii) with the elimination of \((\text{SiMe}_3)_2\text{O}\), presumably driven by the formation of strong Si-O bonds. Complex \(1\text{Y}\) contains two uranyl(V) centres bridged by two \(\text{endo}\) oxo groups and is therefore analogous to complex \(1\text{W}\) but without the protecting \(\text{SiMe}_3\) groups. In contrast to \(1\text{W}\), \(1\text{Y}\) reacted rapidly with dry \(\text{O}_2\) to yield the oxidised bis-uranyl(VI) “-ate” complex \(1\text{Z}\) where the \(\text{U(VI)}\) centres are bridged by an \(\eta^2\) bound peroxide anion (step iii).

Scheme 1.13 Successive reactions of the bis-uranyl(V) Pacman complex with oxidising and reducing agents.\(^4\) The ligand is shown in cartoon form and solvent molecules bound to the \(\text{K}^+\) ions and the resulting complex nuclearities are not shown.

Therefore, by forming the reduced bis-uranyl(V) complex \(1\text{W}\), deprotecting it and then oxidising it, it was in fact possible to form a bis-uranyl(VI) complex of an \(\text{ortho}\)-phenyl hinged Pacman macrocycle. However, the macrocycle has to distort considerably to incorporate the two linear \((\text{UO}_2)^{2+}\) units. The bite angle of complex \(1\text{Z}\) has expanded to 90 ° compared to 61 ° in \(1\text{W}\) in order to maximise the \(\text{endo}\) oxo separation (\(\text{O}····\text{O} = 2.679(9) \, \text{Å}\)), which is only slightly shorter than that seen in the bis-uranyl anthracene Pacman complex \(1\text{V}\). The \(\text{U}····\text{U}\) separation of 3.9824(4) Å is significantly increased from that found in the strongly coupled complex \(1\text{W}\). This series of uranyl complexes emphasises the considerable flexibility of the Pacman calixpyrroles.
1.5.3 Low oxidation state uranium Pacman chemistry

The reactivity of low oxidation state, non-uranyl, uranium precursors with Pacman macrocycles has been much less extensively researched and the investigations that have been undertaken have focussed on the lowest readily accessible oxidation state of uranium, U(III).

\[
\begin{align*}
\text{H}_4\text{L} & \quad \rightarrow \quad \text{THF} \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{U(III)} \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{THF} \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{U(IV)} \\
\end{align*}
\]

Scheme 1.14 Synthesis of binuclear uranium Pacman complex 1AA and its suggested solid state structure (right). The ligand is shown in cartoon form.

The reaction between the ortho-phenyl hinged Pacman macrocycle, H₄L, bearing methyl or ethyl meso substituents, with excess potassium base followed by two equivalents of U₁₃ was investigated and brown solids of composition [(UI)_2(L)] (1AA) were obtained from the reaction mixture (Scheme 1.14). Further characterisation of the product was challenging due to the poor solubility of the isolated material in common laboratory solvents and single crystals were not obtained. Solid state magnetic measurements suggested that 1AA has an oligomeric structure with neighbouring macrocycles linked by iodide bridges (Scheme 1.14, right) and this model is consistent with its low solubility. The only further reactivity attempted with 1AA was its reaction with KBH₄. The new material obtained, of composition [{U(BH₄)}₂(L)], was similarly intractable and is also believed to have an oligomeric structure in the solid state.

\[
\begin{align*}
\text{H}_4\text{L} & \quad \rightarrow \quad \text{THF, } \Delta \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{U(IV)} \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{THF, } \Delta \\
\text{H}_4\text{L} & \quad \rightarrow \quad \text{U(IV)} \\
\end{align*}
\]

Scheme 1.15 Synthesis of encapsulated U(IV) Pacman complex 1AC and its solid state structure.

The transamination reaction between H₄L and U(N")₃ was also investigated. In THF solution at room temperature the reaction formed a mixture of two products, 1AB, assigned as [U(N")(H₃L)] and 1AC. Repeating the reaction in boiling THF yielded solely the thermodynamic product 1AC. Structural characterisation of 1AC revealed it to be the monometallic, macrocycle-encapsulated U(IV) complex [U(L)] (Scheme 1.15). Complex 1AC is assumed to be formed from 1AB by transamination of one remaining pyrrole N-H
bond followed swiftly by homolytic cleavage of the other, resulting in 1 e$^-$ oxidation of U(III) to U(IV) and release of H$_2$. The U(IV) ion in IAC is eight co-ordinate with distorted square anti prismatic geometry. As is evident from the solid state structure, the macrocycle distorts considerably, with the aryl hinges rotating away from each other to enable the jaws to clamp down on the single U(IV) ion, encapsulating it fully.

1.6 Aims

Pacman calixpyrroles have proven to be versatile ligands, promoting the formation of well-defined binuclear complexes of a range of metals from different areas of the periodic table. Binuclear Pacman complexes have effected catalytic transformations of small molecules and revealed hitherto unknown actinide bonding motifs. However, there is much Pacman chemistry still to be explored. There is a notable lack of binuclear early transition metal Pacman or co-facial diporphyrin complexes and consequently, virtually no study of the reactivity of such systems has been undertaken. In the Arnold and Love groups there is a particular interest in uranium chemistry. Though the uranyl Pacman complexes have revealed much about the reactivity of the uranyl dication, previously considered an inert unit, well-characterised binuclear U(III)/U(III) Pacman complexes have not been prepared. Low oxidation state uranium complexes have much greater potential application in small molecule activation (see 3.1).

Therefore the aims of the experimental work presented in this thesis were two-fold. The first aim was to synthesise and fully characterise a binuclear early transition metal Pacman complex and explore its reactivity. For this purpose, chromium was selected due to the wealth of redox chemistry it exhibits and its significant role in industrial polymerisation (see 2.1). The second aim was to synthesise and fully characterise a binuclear U(III)/U(III) Pacman complex and investigate its interactions with small molecules. There has been very limited exploitation of the uranium chemistry of the anthracene Pacman ligand so this was identified as a starting point for investigations.
1.7 References

Chapter One

(32) E. A. Connolly, J. B. Love, *unpublished work*

Chapter One

Chapter Two

Chromium Pacman Complexes
2.1 Introduction to chromium chemistry

Metallic chromium was first isolated in 1798. Its name derives from the Greek word *chroma*, meaning colour, due to the variety of colours found in its compounds. Chromium is the 24th element of the periodic table and the lightest element of Group VI. The Group VI metals, chromium, molybdenum and tungsten, exhibit particularly rich redox chemistry; compounds in every oxidation state from +6 down to -2 are known for all three metals. The +3 oxidation state is by far the most stable for chromium while Cr(VI) compounds such as CrO$_3$ tend to be highly oxidising and find wide application in organic chemistry. The coordination and organometallic chemistry of chromium is varied and well developed. Therefore this short introduction will seek to highlight some recent exciting advances in the field of low oxidation state chromium chemistry, and review important industrial chromium-catalysed processes.

2.1.1 Quintuple Cr-Cr bond formation

The chemistry of binuclear, low oxidation state chromium complexes is dominated by a tendency to form M-M multiple bonds. Until recently it was commonly accepted that quadruple M-M bonds, as featured in the classic paddle wheel structures [M$_2$(OAc)$_4$] (M = Cr, Mo), were the highest order bond that could be stabilised under normal conditions. However, in 2005 Power reported the synthesis of a dimeric Cr(I)/Cr(I) complex containing the first quintuple M-M bond. Reduction of the chloride bridged Cr(II)/Cr(II) dimer [Ar′Cr(µ-Cl)]$_2$ with KC$_8$ resulted in the formation of the terphenyl-supported, quintuply bonded species [(Ar′)CrCr(Ar′)] (2A) (Scheme 2.1). Each Cr(I) centre in 2A is stabilised by a bonding interaction with the *ipso* carbon of one of the Dipp rings of the terphenyl ligand bound to the other Cr(I) ion (dashed bonds). The Cr-Cr bond length in 2A is 1.8351(4) Å.

![Scheme 2.1 Synthesis of the first quintuply bonded Cr/Cr dimer 2A.](image)

This seminal discovery prompted a rush to identify other ligands capable of supporting Cr-Cr quintuple bonds. Using the same methodology as Power, several other groups reported the successful reductive coupling of the corresponding chloride precursors to
 Chapter Two

form a range of Cr-Cr quintuply bonded complexes. In contrast to 2A, all subsequently isolated Cr-Cr quintuply bonded complexes reported by other researchers have been supported by bidentate N-donor ligands (Figure 2.1). The Tsai and Kempe groups employed amidinate ligands to form neutral and anionic complexes of the type 2B and 2E. Systematic variation of the substituent groups R and R’ in 2B has allowed identification of the ligand system which results in the shortest Cr-Cr interaction; with R = 2,6 dimethylpiperidinide and R’ = Dipp an extremely short Cr-Cr separation of 1.7056(12) Å was observed, which is the same length as an alkane C-C bond. The Theopold group published complex 2D which contains singly reduced radical anion diimine ligands, and substituted pyridine ligands have also been employed (2C). The features common to all the different ligands used are bidenticity to promote dimerisation and bulky aryl substituents to discourage the formation of higher oligomers.

![Figure 2.1 N-donor supported Cr-Cr quintuply bonded complexes](image)

One exception to these general rules was reported in 2012 by Tsai and co-workers who used tridentate substituted pyridine ligands to support the stepwise reduction of a halide-free Cr(II)/Cr(II) dimer (2F) to the mixed valence Cr(I)/Cr(II) species (2G) and then to the quintuply bonded Cr(I)/Cr(I) complex (2H) (Scheme 2.2). This example is a somewhat special case: incorporation of the two K⁺ counterions bound by the amido nitrogens in the structure of 2H is vital for the stabilisation of the Cr-Cr quintuple bond. If 18-crown-6 is added to 2H to abstract a K⁺ ion, the newly freed amido nitrogen bites into the nearest Cr(I) ion axial to the Cr-Cr bond resulting in its complete destruction and disproportionation to Cr(II) and Cr(0) species.
Scheme 2.2 Formation of a Cr-Cr quintuple bond by stepwise reduction of a Cr(II)/Cr(II) precursor.10 Reagents: (i) KC\textsubscript{8}, 18-crown-6, THF, (ii) 3 KC\textsubscript{8}, 5 KI, THF, recrystallised from Et\textsubscript{2}O. The [K(18-crown-6)]+ counterion is omitted from 2G.

Scheme 2.3 Selected reactions of quintuply bonded complexes 2C and derivatised 2D.11-14 \(L = [(\text{Dipp})N\text{CHCHN(\text{Dipp})}]^-, L' = [(\text{Dipp})N=\text{CHCH=N(\text{Dipp})}], \text{R} = \text{Me, Et}.

Following the successful isolation of a range of stable complexes containing quintuple Cr-Cr bonds, the first studies of the reactivity of these unique systems have been
Chapter Two

published. Selected examples are shown in Scheme 2.3. Kempe has reported a remarkably selective oxidation of the Cr-Cr quintuple bond by O₂ to form a diamagnetic Cr(V)/Cr(V) dimer which maintains a single Cr-Cr bond and features terminal and bridging oxo groups (path 1.). The group also reported the reaction of derivatised 2D with AlMe₃ to form the unprecedented carboalumination product in which one of the Cr-Cr bonds has inserted into one Al-Me bond (path 2.).¹¹ Derivatised 2D also reacts selectively with white phosphorous, AsP₃, yellow arsenic and the elemental chalcogenides (paths 3. and 4.) to generate the coordinated polyanions E₂²⁻ (E = S, Se, Te) and E₄²⁻ (E₄ = P₄, AsP₃, As₄).¹²¹³ Cyclo- AsP₃²⁻ and As₄²⁻ ligands have not been previously observed.

The Theopold group have demonstrated the capability of 2C to effect interesting transformations of organic molecules. They have reported that one of the Cr-Cr bonds in 2C undergoes a [2+2] cycloaddition with alkynes to form the Cr(II)/Cr(II) metallacyclo alkene product (path 6.).¹² C-C coupling has also been achieved. Reaction of 2C with 4 equivalents of trans benzylideneaniline resulted in reductive coupling of the C=N bonds to form a Cr(III) 1,2 di-amido complex (path 7.).¹³ Addition of excess cyclohexyl isocyanide to 2C formed a mixture of products path (5.). The major product was the octahedral Cr(0) complex \([\text{Cr}\{\text{Dipp}\text{N}=\text{CHCH=N(Dipp)}\}\{\text{CNCy}\}]\) but two minor coupled products were also formed. In the first, four isocyanides underwent reductive C-C coupling to form \((\text{C}_₄\text{NCy})₄²⁻\), the (NCy) substituted analogue of the squarate dianion \((\text{C}_₄\text{O})₂²⁻\), which bridges between two Cr(II) centres. The second minor product was the result of reductive coupling of six isocyanides to form two fused heterocycles featuring new C-C and C-N bonds. Amido and immine functionalities at each end of the heterocycles ligate the Cr(II) centres. The organic bicyclic fragment could be liberated by protonolysis. After optimization, this reaction might be a useful method for the production of unusual fused heterocycles.¹⁴ Doubtless the continuing exploration of the reactivity of Cr-Cr quintuple bonds will prove a fruitful research area for years to come.

2.1.2 Dinitrogen binding and activation by chromium

The chemistry of dinitrogen binding and fixation has been dominated by chromium’s heavier neighbours, molybdenum and tungsten.¹⁵¹⁶ Only three homogeneous systems have achieved the catalytic reduction of N₂ to ammonia under mild conditions; two are Mo-based and one is an iron catalyst.¹⁷⁻¹⁹ However chromium dinitrogen complexes have been known since 1972, though the number of examples remains small.²⁰ Interest in the topic has reignited in recent years. In 2007, the Theopold group reported the synthesis of an unusual side-on bridging dinitrogen chromium complex (2J) by reduction of the chloro-bridged
Cr(II) “nacnac” supported dimer with magnesium under an N₂ atmosphere (Scheme 2.4).²¹ A modest degree of reduction of the dinitrogen ligand was indicated by the observed lengthening of the N≡N bond from 1.0976 Å to 1.249(5) Å. However dinitrogen was readily displaced from 2J by competitive ligands suggesting that 2J should best be considered as a veiled Cr(I)/Cr(I) complex. Thus, although 2J did not activate dinitrogen towards hydrogenation, it did allow study of the chemistry of a unique Cr(I) fragment.²² Two of the reactions explored are included in Scheme 2.4. Reaction of 2J with azobenzene resulted in displacement of N₂, co-ordination of PhN=NPh and complete cleavage of the N≡N double bond to form the Cr(III)/Cr(III) imido bridged complex 2K, demonstrating the reductive power of the Cr(I) centres. Addition of the π-acid CO to 2J also caused displacement of N₂ to form the remarkable asymmetric complex 2L in which disproportionation of the Cr(I)/Cr(I) starting material has occurred to form a Cr(II)/Cr(0) dimer bridged by isocarbonyls. The Cr(II) ion in 2L is square planar and bound by the O atoms of the two isocarbonyls whilst the Cr(0) centre is square pyramidal and binds to the C atoms of the isocarbonyls and an additional terminal CO molecule.

Scheme 2.4 Synthesis of a side-on bound chromium dinitrogen complex and its reactivity with CO and azobenzene.²¹²² The ligand is abbreviated to L in 2K and 2L.

Also in 2007, Gambarotta reported the first example of complete cleavage of the N≡N triple bond in a chromium dinitrogen complex.²³ The Gambarotta group favour the diimine pyridine ligand to support formally low oxidation state chromium complexes because the ligand is able to accommodate electrons in its π system. These electrons are still available for reduction chemistry but the metal centre is able to rest in a higher oxidation state. Gambarotta reported that reduction of [Cr²Cl₂(L)] (2P) with two equivalents of NaH or Na metal produced the rare, end-on bridging dinitrogen chromium complex 2Q (Scheme 2.5). The nitrogen ligand is reduced to [N₂]²⁻ (N-N bond length = 1.241(6) Å) and each pyridine ligand is also reduced to its dianion so the oxidation states of the Cr centres are +3. Addition of a further two equivalents of NaH to 2Q resulted in the formal two e⁻ reduction of the N₂ fragment, which is bridged by two Na⁺ cations in the product 2R, coupled with
hydrogen atom transfer from the ligand to one N atom, confirmed by IR spectroscopy. The
N-N separation in 2R is lengthened to 1.288(5) Å and the authors suggest that the +3
oxidation state of the Cr centres is maintained. Complete cleavage of the N-N bond was
achieved by addition of a final equivalent of NaH to 2R to form the imido complex
[Cr(L)NHNa(THF)] (2S) in which the Na + cation binds to the imido N and in an η6 fashion
to one aryl ring of the ligand. In 2S the pyridine ligand is formulated as a radical anion and
the Cr centre is in the +2 oxidation state. In Scheme 2.5, the reducing electrons required to
break the N≡N triple bond were provided by NaH rather than the Cr ion and the pyridine
ligand acted as an electron reservoir preventing the oxidation state of Cr dropping below +2.

Scheme 2.5 Successive reductions of a Cr(II) precursor to form a bridging dinitrogen
complex and ultimately a chromium imido complex as a result of N≡N cleavage.23

Mock and co-workers reported a further advance in 2013 in which they
demonstrated the reduction of dinitrogen to hydrazinium and ammonium salts by a Cr(0)
complex where the reducing electrons originated from the chromium.25 CrCl2 was added to
two equivalents of a neutral eight membered P2N2 macrocycle (Scheme 2.6). Rather than
formation of the expected product, [CrCl2(P2N2)2], a small amount (5 %) of an expanded 16
membered P3N3 macrocycle ligated material [CrCl2(P3N3)] (2M) was isolated. The authors
suggest that the presence of the Cr(II) precursor is key in enabling the macrocyclic
expansion. Reduction of 2M with magnesium under a nitrogen atmosphere resulted in
formation of the rare, terminal trans bis(dinitrogen) chromium (0) complex 2N in good yield.
Treatment of 2N, formed using labelled 15N2, with 8 equivalents of triflic acid in d8-THF at
−50 °C resulted in the slow formation of free hydrazinium triflate and trace amounts of ammonium triflate, identified in the 1H and 15N NMR spectra of the mixture. Experimental observations and computational analysis suggest that protonation of two of the pendant amine groups of the macrocycle occurs initially. One of the co-ordinated N$_2$ molecules then dissociates which increases the basicity of the remaining N$_2$ ligand and facilitates proton transfer from the macrocycle to the co-ordinated N$_2$. The eventual oxidised Cr species formed have not been characterised. These two examples from the Gambarotta and Mock groups indicate that judicious choice (or fortuitous formation) of an appropriate ligand set for chromium can enable unique chemistry.

Scheme 2.6 Synthesis of a rare terminal dinitrogen complex of chromium and its reaction with triflic acid.25 Ph groups attached to P atoms have been omitted in 2M and 2N.

2.1.3 Ethylene polymerisation and oligomerisation chemistry

2.1.3.1 Polymerisation

The major industrial use of chromium is in the heterogeneous catalysis of ethylene polymerisation. Roughly one third of global high density polyethylene (HDPE) is produced using the Phillips catalyst system, first patented in 1958.26 The Phillips catalyst is prepared by impregnation of a silica support with any of a range chromium starting materials followed by calcination in oxygen.27 This process oxidises the chromium to the +6 state but upon contact with ethylene gas it is reduced to the active catalyst (Scheme 2.7, top).28 An alternative catalyst was developed by Union Carbide which is formed by impregnating dehydroxylated silica with chromocene, Cp$_2$Cr.29,30 The chromium catalyst is adsorbed onto the support by reaction with remaining hydroxyl groups to eliminate CpH and form Cr-O surface bonds (Scheme 2.7, bottom). Both of these heterogeneous catalyst systems polymerise ethylene with high activity and do not require the addition of any co-catalyst.
While it is accepted that the polymer chain grows by a migratory insertion mechanism, the nature of the industrial active catalytic species is still not well understood. There has been much academic interest in the area and a huge range of chromium coordination compounds have been reported to polymerise ethylene in the presence of a large molar excess of an aluminium activator, typically AlR₃ or methylaluminoxane (MAO). It is thought that the activator can fulfil several functions: reduction and/or alkylation of chromium, ionisation of the chromium complex by halide/alkyl abstraction and scrubbing of trace oxygen and water from the ethylene feed. It is difficult to deduce the nature of the active catalytic species formed since changes in the coordination sphere and oxidation state of the Cr centre in the precatalyst are expected. Noting that neither the Phillips nor the Union Carbide catalysts require the addition of an activator, the Theopold group set out to develop and study well-defined homogeneous model systems for ethylene polymerisation based on the suggested surface-bound structures of the two industrial catalysts.

Scheme 2.7 Suggested generation of the surface-bound Phillips (top) and Union Carbide (bottom) catalysts.²⁸

Scheme 2.8 Synthesis of functional structural models of the Phillips catalyst (2T)³¹ and Union Carbide catalyst (2U).³² R = CH₃SiMe₃. Ar⁺ = C₆H₃(CF₃)₂. The [B(Ar⁺)₄]⁻ and [BPh₄]⁻ anions are omitted from the cationic complexes.
Chapter Two

The structural model for the Phillips catalyst is a Cr(III) alkyl cation of a bidentate “nacnac” ligand with bulky aryl substituents. The active catalyst, 2T, is revealed by dissociation of a bound ether molecule in DCM solution (Scheme 2.8, top) to form the co-ordinatively unsaturated alkyl complex which is moderately active in ethylene polymerisation.31 Compared to the suggested structure of the Phillips catalyst the co-ordination geometry of 2T is similar but N donors have replaced the O donors and the “nacnac” ligand contributes a 1– charge rather than the combined 2– charge of 2 siloxide groups. The Union Carbide model complex (2U) synthesised by the Theopold group is also a Cr(III) alkyl cation, this time bound to a Cp* ligand and one neutral THF donor (in the active form of the catalyst).32 The major difference between 2U and the Union Carbide catalyst is that the O donor is neutral rather than anionic. Solutions of 2U in DCM catalysed the polymerisation of ethylene without any added co-catalyst. The rate was severely inhibited by addition of THF due to driving of the equilibrium towards the co-ordinatively saturated bis(THF) adduct, in which there is no available site for ethylene to co-ordinate. These observations led Theopold to conclude that the minimum requirement for ethylene polymerisation is a co-ordinatively unsaturated chromium complex bearing at least one alkyl (or hydride) ligand, though the group do not speculate upon the origin of the alkyl/hydride in the industrial catalyst systems.

Scheme 2.9 Reactivity of different Union Carbide model complexes towards ethylene.28 The PF\textsubscript{6}– anion is omitted from 2X. R = CH\textsubscript{2}SiMe\textsubscript{3}.

Further studies were undertaken to probe whether a co-ordinatively unsaturated Cr alkyl complex must necessarily be cationic and in the +3 oxidation state for successful polymerisation (Scheme 2.9). The neutral dialkyl Cr(III) complex, 2W, was found to be a good polymerisation catalyst.28 However the structurally analogous cationic Cr(III) and neutral Cr(II) compounds 2X and 2Y exhibited different activities towards ethylene. While 2X was effective in ethylene polymerisation, the product of the reaction of ethylene with 2Y was propene. This indicates that for the Cr(II) complex β-hydride elimination is favoured over chain growth after ethylene binding and insertion into the Cr-Me bond. Therefore in these model systems Cr(III) was found to be the catalytically relevant oxidation state, though the charge on the complex did not matter. In practice however, it is often easier to prepare a
Chapter Two

co-ordinatively unsaturated cationic complex since dimerisation of like-charged fragments is disfavoured.

2.1.3.2 Selective oligomerisation

An expanding area of both commercial and academic interest is the use of chromium catalysts for the selective oligomerisation of ethylene to 1-hexene and 1-octene. Linear \(\alpha \)-olefins (LAOs) of chain length \(C_4 \) to \(C_{20} \) are valuable commodity petrochemicals. \(C_4 \) to \(C_8 \) materials are particularly sought after for use as co-monomers in the production of linear low density polyethylene (LLDPE). Formation of 1-hexene was first noted by Manyik and co-workers when experimenting with some modifications to the Phillips catalyst.\(^{33}\) The generally accepted mechanism for catalytic ethylene trimerisation was proposed by Briggs and involves the formation of a metallacyclopentane by coupling of two ethylene molecules at the Cr centre, insertion of another monomer and then \(\beta \)-hydride elimination followed by reductive elimination of 1-hexene (Scheme 2.10). Successful, selective, 1-hexene formation relies upon the greater stability of the metallacyclopentane \(\text{vs.} \) the metallacycloheptane such that the former undergoes a further insertion reaction and the latter undergoes rapid elimination.\(^{34}\) In 2004, researchers at Sasol demonstrated that selective tetramerisation of ethylene to 1-octene may also be achieved by modifying the supporting ligand set.\(^{35}\) A similar catalytic cycle operates but in this case the metallacycloheptane is stable with respect to elimination allowing a further ethylene insertion to occur, forming a 9-membered metallacycle from which 1-octene is eliminated.\(^{36}\)

\[\text{Scheme 2.10 Mechanism of chromium catalysed metallacyclic trimerisation.}^{36} \]

From the oligomerisation mechanism it is apparent that three co-ordination sites are required at the Cr centre. Therefore many of the catalytic systems developed employ a tridentate ligand combined with a Cr(III) precursor such as CrCl\(_3\). Once again a large quantity of activator, typically AlR\(_3\) or MAO, is usually added to generate the active catalyst by alkylation and/or halide abstraction.\(^{37}\) As in the case of the polymerisation systems, the
structure of the active catalyst is difficult to deduce. However, Bercaw and co-workers have published an elegant study on stoichiometrically activated ethylene trimerisation catalysts. The ligand studied was a neutral “PNP” ligand bearing four ortho-methoxy substituted aryl rings. In addition to the two phosphorus atoms, up to two of the methoxy groups can bind to the metal to provide extra stabilisation. The Bercaw group prepared a “PNP” ligand in which all the methoxy groups had been deuterated and synthesised the Cr(III) complex [(PNP)CrPh₃]. A §H NMR study revealed the fluxional co-ordination of one methoxy arm to the Cr(III) centre. Treatment of 2Z with one equivalent of [H(OEt₂)]₂[B(ArF)]₄ yields the cationic Cr(III) complex 2AA which catalyses ethylene trimerisation (Scheme 2.11). Bercaw suggested that 2AA is likely stabilised by co-ordination of a second methoxy group to Cr(III).

![Scheme 2.11 Stoichiometric activation of the catalyst precursor 2Z.](image)

The group also probed the route from complex 2AA into the catalytic cycle. Reductive elimination of biphenyl from 2AA would immediately yield a Cr(I) complex capable of co-ordinating two ethylene molecules, but only trace amounts of biphenyl were detected in the reaction mixture. Instead, styrene and other phenyl containing hydrocarbons were observed implying that the Cr-Ph bonds are cleaved by ethylene insertion and β-hydride eliminations to yield the active catalyst (Scheme 2.12). The cationic Cr centre is then expected to cycle between the +1 and +3 oxidation states during catalysis.

![Scheme 2.12 Suggested mechanism of initiation of ethylene trimerisation.](image)

In summary, chromium is an industrially relevant metal capable of catalysing uniquely selective transformations of small molecules. Our understanding of these organometallic systems is continually improving through the study of well-defined homogeneous analogues.
2.2 Preparation of chromium Pacman complexes

Both transamination and salt elimination strategies proved effective in the insertion of two Cr(II) ions into the ortho-phenyl hinged macrocycle H₄L⁻Me. Thus addition of two equivalents of [Cr(Nʺ)₂(THF)₂] to H₄L⁻Me or reaction of K₄L⁻Me (formed in situ) with two equivalents of CrCl₂ (Scheme 2.13) form the binuclear chromium Pacman complex [Cr₂(L⁻Me)] (1). Both reactions have comparable yields (≈ 70 %) but salt elimination is preferred since the literature synthesis of [Cr(Nʺ)₂(THF)₂] from CrCl₂ is low yielding.⁴⁰ The ¹H NMR spectrum of 1 in d₅-pyridine at 298 K shows paramagnetically broadened and contact-shifted resonances at δ 16.9, 14.0, 6.7, −29.2, and −97.7 ppm, which are not assignable to specific ligand protons. Two, broad, residual protio-pyridine resonances are visible at δ 8.7 and 7.2 ppm, rather than the expected three resonances. At 393 K, the resonance at 7.2 ppm separates into two sharper resonances at δ 7.3 and 7.2 ppm, which indicates that pyridine binds transiently to the paramagnetic chromium complex in solution.

Scheme 2.13 Synthesis of 1 by transamination (A) and salt elimination (B) strategies.

2.2.1 Electronic characterisation of [Cr₂(L⁻Me)]

The electronic configuration of the Cr(II) ion is 3d⁴. The solution magnetic moment of 1 determined by the Evans’ method ⁴¹ was measured in THF/C₆D₆ solution as 6.34 µₜ. This value is approaching the spin only value of 6.93 µₜ for two non-interacting S = 2 ions, calculated according to the equation below.

\[
\mu_{S.O.} = \mu_B \sqrt{4S_1^2(S_1 + 1) + 4S_2^2(S_2 + 1)}
\]

The electronic structure of 1 was probed in greater depth by variable temperature magnetic susceptibility and EPR measurements which were carried out by Dr Floriana Tuna and Prof. Eric McInnes at the National Facility for EPR Spectroscopy at the University of
Manchester. The SQUID magnetometry data (Figure 2.2) are consistent with strong antiferromagnetic coupling between the Cr(II) ions leading to a diamagnetic ground state for the complex below 2 K. The χ vs. T curve does not reach zero at 0 K; χ increases below 25 K and the magnetisation saturates at roughly 0.05 μ_B below 2 K. This is thought to be due to a minor (5 %) paramagnetic impurity, most likely a partially oxidized Cr(II)/Cr(III) Pacman complex with overall spin $S = \frac{1}{2}$. The data were adequately simulated (red curves) using the Hamiltonian for two magnetically interacting ions, $H = -2JS_1S_2$, which has eigenvalues $E(S) = -J[S(S + 1) - S_1(S_1 + 1) - S_2(S_2 + 1)]$ where the values of the total spin are $S = S_1 + S_2, S_1 + S_2 - 1, \ldots |S_1 - S_2|$, and $S_1 = S_2 = 2$, confirming a high spin electron configuration for both Cr(II) ions. The energy separation between consecutive spin states is given by $\Delta E_S = E(S) - E(S - 1) = -2JS$, with the isotropic exchange parameter $J = -53.5$ cm$^{-1}$. The ground state of the complex is $S = 0$ due to the antiferromagnetic coupling between the two Cr(II) ions with the excited $S = 1, 2, 3, 4$ states, at energies of $2J, 6J, 12J, 20J$ above the ground state, being thermally populated according to the Boltzman distribution.

Figure 2.2 Plots of the measured (black) and simulated (red) variable temperature magnetic susceptibility data for 1. $\chi = $ triangles, $\chi T = $ squares.

1 displays a rich EPR spectrum at 200 K which collapses to a single, sharp feature at 12.2 kG upon cooling (Figure 2.3, top); the sharp singlet seen at 5 K is associated with the 5 % Cr(II)/Cr(III) impurity. The disappearance of the other features is in agreement with 1 having a diamagnetic ground state, as determined from the SQUID measurements. The features observed in the 0 - 10,000 G region arise from thermally populated total spin $S = 2$.
and $S = 3$ states of 1. At 200 K, the populations of the $S = 2$ and $S = 3$ spin states are 17% and 2% respectively. Most of the features in the EPR spectrum and the variable temperature behaviour can be satisfactorily modelled with the axial zero field splitting parameter $D = -1.8 \text{ cm}^{-1}$ (Figure 2.3, bottom) which is comparable to the value determined for the square planar N₄-ligated Cr(II) complex $[\text{Cr(MeCN)}_4]^{2+}$ of $D = -2.2 \text{ cm}^{-1}$.42

![EPR spectrum](image)

Figure 2.3 Variable temperature Q-band EPR spectra of 1 measured at 34 GHz (top) and enlargement of 0 – 10000 G field region (bottom, black) overlaid with simulated spectra (red).
2.2.2 Solid state structure of [Cr$_2$(L$^{\text{Me}}$)]

Single crystals suitable for X-ray diffraction analysis were grown by slow cooling a saturated benzene solution of 1 from 80 °C to room temperature. The X-ray crystal structure reveals that the macrocycle adopts a C_2 symmetric Pacman geometry (Figure 2.4) with the two pockets of the macrocycle twisted with respect to each other in order to maximise favourable, offset π-π stacking interactions between the aryl hinges of the ligand. Both Cr(II) ions are bound in equivalent pseudo-square-planar environments comprising N$_4$ pyrrolide and imine donor sets. The mean Cr-N(pyrrolide) distance of 1.97 Å is significantly shorter than the mean Cr-N(imine) distance of 2.10 Å, though both lie within the usual range. This difference is likely imposed by the ligand architecture rather than by increased electrostatic attraction since in the related bis-imine bis-pyrrolide Cr(II) complex [Cr{(2,6-i-Pr$_3$C$_6$H$_3$)N=CH(C$_4$H$_3$N)}$_2$] (2AB, Figure 2.6, left) the mean Cr-N(imine) and Cr-N(pyrrolide) distances are both 2.08 Å. The adoption of square planar geometry is by no means unusual for a Cr(II) ion; reported four coordinate complexes are a mixture of square planar, pseudo-square-planar and distorted tetrahedral depending on the steric demands of the ligand set. This can be rationalised by considering the Jahn Teller effect. In tetrahedral (or octahedral) symmetry a high spin d4 electronic configuration is orbitally degenerate so the complex must necessarily distort toward square planar symmetry to break the degeneracy. In the lattice, molecules of 1 are arranged in alternating chains with benzene molecules which cap the exo faces of the macrocycles at a Cr···C short contact distance of 3.608(2) Å (Figure 2.5).

![Figure 2.4 Solid state structure of 1 showing side view (left) and view into the jaws of the macrocycle (right). Thermal ellipsoids are drawn at 50 % probability. For clarity, lattice solvent and H atoms are omitted.](image)
Table 2.1 Selected distances (Å) and angles (°) for 1.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1'</td>
<td>3.1221(1)</td>
<td></td>
</tr>
<tr>
<td>N4-Cr1-N1</td>
<td></td>
<td>114.02(6)</td>
</tr>
<tr>
<td>Cr1-N1</td>
<td>2.114(2)</td>
<td></td>
</tr>
<tr>
<td>N1-Cr1-N2</td>
<td>80.06(6)</td>
<td></td>
</tr>
<tr>
<td>Cr1-N2</td>
<td>1.970(2)</td>
<td></td>
</tr>
<tr>
<td>N2-Cr1-N3</td>
<td>85.52(6)</td>
<td></td>
</tr>
<tr>
<td>Cr1-N3</td>
<td>1.976(2)</td>
<td></td>
</tr>
<tr>
<td>N3-Cr1-N4</td>
<td>78.64(6)</td>
<td></td>
</tr>
<tr>
<td>Cr1-N4</td>
<td>2.078(2)</td>
<td>bite angle</td>
</tr>
<tr>
<td>Cr1-N4 plane</td>
<td>−0.19</td>
<td>twist angle</td>
</tr>
</tbody>
</table>

Figure 2.5 Packing within the unit cell of 1, viewed along the b axis.

The sum of the four N-Cr-N angles is 358° because the Cr(II) ions are displaced −0.19 Å out of the N₄ plane. In this formalism the negative sign signifies the direction of displacement as in-to-cleft as opposed to a positive, out-of-cleft displacement. This reduces the bite angle of the macrocycle to 48° (from the ideal 60°) and results in a Cr···Cr separation of 3.1221(1) Å, the shortest M-M distance observed in any [M₂(L)] complex of this type. A binuclear chromium complex, 2AC, reported by the Wolczanski group provides an interesting structural comparison (Figure 2.6, right). The two halves of complex 2AC self-assemble with concomitant C-C bond formation (grey bonds) and reduction of two imine moieties to form a triply bonded Cr(II)/Cr(II) compound with a Cr-Cr bond length of 2.5515(3)Å. In all published structures where two metal-metal bonded Cr centres are supported by an N₄ donor set, Cr-Cr bond lengths range from 1.86 to 3.00 Å, with the median value being 2.40 Å. The Cr···Cr separation in 1 lies beyond this range and is also considerably greater than double the covalent radius of chromium (1.39(5) Å). Furthermore the SQUID and EPR data do not indicate the presence of Cr-Cr bonding.
2.2.3 High pressure X-ray crystallography studies of [Cr₂(LMe)]

The effect of pressure on single crystals of 1 was investigated to determine if increasing the pressure would cause the jaws of the Pacman macrocycle to close, bringing the Cr(II) centres close enough to allow a M-M bonding interaction to develop. High pressure X-ray diffraction data were collected for 1 by Dr Alessandro Prescimone of the University of Edinburgh at the Diamond Light Source over the pressure range 0.14 – 3.00 GPa at 300 K. A single crystal of 1 was inserted into a diamond-anvil cell containing a hydrostatic medium and a ruby chip, from the luminescence of which the cell pressure was determined. Dr Alessandro Prescimone carried out the structure solution and refinement for all high pressure data sets. Unfortunately, in the following analysis no rigorous comparisons can be made to the ambient pressure structure because the ambient pressure data was collected at 170 K rather than 300 K.

Graph 2.1 Plot of the unit cell parameters of 1 against pressure.
Chapter Two

Figure 2.7 Variation in the unit cell of 1 (viewed along the b axis) with increasing pressure.

At ambient pressure 1 crystallises in the monoclinic space group $C2/c$. The crystal does not undergo a phase change as the pressure is increased to 3.0 GPa and the crystal symmetry is maintained. Linear compression of all three unit cell axes is observed with increasing pressure whilst the β angle increases from 114.216(6) ° at 0.14 GPa to 118.194(6) ° at 3.0 GPa (Graph 2.1, Figure 2.7). The result is a decrease in unit cell volume, V, from 4116.5(5) Å3 at 0.14 GPa to 3438.1(4) Å3 at 3.0 GPa.

As the pressure is increased the jaws of the Pacman macrocycle do not close. Instead, the two pockets of the macrocycle slip past each other resulting in a linear increase in the torsional twist angle of the aryl hinges (Φ) with increasing pressure (Graph 2.2). There is an associated small decrease in the angle between the planes of the two aryl rings (ω) increasing the aryl coplanarity (Figure 2.8). The increased torsional twist results in a very slight increase in the Cr–Cr separation and the macrocycle bite angle (Θ). Evidently, subjecting 1 to high pressure does not induce Cr-Cr bond formation. However, as the unit cell is compressed, the lattice chains of Pacman complexes and benzene molecules are also compressed resulting in the formation of long range η^6 bonding interactions between the Cr(II) ions and the benzene lattice solvent molecules. The Cr–ring(centroid) separation decreases from 4.07 Å at 0.14 GPa to 3.55 Å at 3.0 GPa. This is combined with a tilting of the benzene rings so that they become more coplanar with the N_4 donor planes of the macrocycle (Graph 2.2, Figure 2.8).
Graph 2.2 Variation of structural parameters of 1 with pressure. Φ = twist angle, ω = arene interplanar angle, θ = bite angle, ξ = N₄-benzene interplanar angle.

Figure 2.8 Solid state structures of 1 at different pressures, viewed along the b axis.

The Cr(II)–ring(centroid) distance of 3.55 Å in the 3.0 GPa structure of 1 is long compared to reported distances for η⁶-arene complexes of chromium. The Cr-ring(centroid) distance in bis(benzene)chromium (2AD) is 1.61 Å \(^5\) and the longest reported Cr-ring(centroid) distance is 1.70 Å in the half sandwich Cr(0) complex 2AE (Figure 2.9, centre). \(^5\) While η⁶-arene complexes of Cr(0) are ubiquitous and many examples have also been reported for Cr(I), Cr(II) arene complexes are rare. One example of the latter is the mixed sandwich complex [CrCp⁺{η⁶-(C₆H₅)BPh₃}] (2AF, Figure 2.9, right) which features a similar Cr-ring(centroid) separation of 1.67 Å. \(^3\) Therefore it must be concluded that even at high pressures, the Cr-benzene interaction in 1 remains weak.
Figure 2.9 Examples of Cr(0) (left and centre)50,51 and Cr(II) (right)32 arene complexes.

2.2.4 Preparation of [Cr\textsubscript{2}(LA)]

Metallation of the anthracenyl hinged macrocycle H\textsubscript{4}LA was investigated in order to synthesise an analogue of 1 in which the separation of the Cr(II) ions is increased. Transamination was found to be an effective strategy for forming a binuclear chromium complex of (LA)−. Reaction of two equivalents of [Cr(N”2)(THF)\textsubscript{2}] with H\textsubscript{4}LA in THF resulted in precipitation of the exo-THF adduct [Cr\textsubscript{2}(LA)(THF)\textsubscript{2}] (2THF) confirmed by single crystal X-ray diffraction. The coordinating THF molecules dissociate upon exposure of 2THF to high vacuum to yield the product [Cr\textsubscript{2}(LA)] (2) as a red powder in good yield (60\%, Scheme 2.14). Isolated 2 has some solubility in arene solvents but is insoluble in THF and pyridine. This implies that the solvated complexes 2THF and 2py which form in the presence of the coordinating solvents are less soluble than the base-free complex 2. The 1H NMR spectrum of 2 in C\textsubscript{6}D\textsubscript{6} shows paramagnetically broadened and contact-shifted resonances at δ 26, 14, 11, 9, 6, −50, and −56 ppm, which are not assignable to specific ligand protons. Unlike 1, complex 2 cannot be conveniently synthesized by a salt elimination methodology in THF solution because the poor solubility of 2THF leads to problems in separating the desired complex from the salt by-product.

Scheme 2.14 Synthesis of [Cr\textsubscript{2}(LA)], 2.
Chapter Two

Single crystals of 2_{THF} formed in an NMR-tube reaction between $[\text{CrN}^2 \text{N}(\text{THF})_2]$ and $\text{H}_4 \text{L}^\lambda$ in THF. The X-ray structure (Figure 2.10) reveals that the Pacman geometry is adopted. The Cr(II) ions occupy square pyramidal coordination sites with the macrocycle providing two imine and two pyrrolide donors to form the base of the pyramid and a single molecule of coordinated THF occupying the *exo* apical position. The Cr···Cr separation in 2 is lengthened to 5.6353(1) Å, compared to 3.1221(1) Å in 1, due to the elongation of the aryl hinges of the macrocycle from phenyl to anthracenyl. This prevents any possible M-M bonding interaction. The jaws of the macrocycle are now closer to coplanarity (the angle between the N$_4$ donor planes is measured at 20 ° *cf.* 35 ° in 1) as dictated by the 1,8 substitution pattern of the anthracene hinges. The mean Cr-N(imine) and Cr-N(pyrrolide) distances of 2.15 and 1.99 Å respectively are slightly lengthened compared to those observed in 1 (2.10 and 1.97 Å). This may be due to the presence of the THF donor. The displacement of the Cr(II) ions from the N$_4$ plane is reduced to an average of 0.10 Å and, in contrast to 1, the direction of displacement is out of the intermetallic cleft towards the apical THF ligands.

Figure 2.10 Solid state structure of 2_{THF} showing side view (left) and view into the jaws of the macrocycle (right). Two molecules are present in the asymmetric unit; only one is shown here. Thermal ellipsoids are drawn at 50 % probability. For clarity, lattice solvent and H atoms are omitted.
Table 2.2 Selected distances (Å) for 2\textsubscript{THF}.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr2</td>
<td>5.6353(1)</td>
</tr>
<tr>
<td>mean Cr-N\textsubscript{pyr}</td>
<td>1.99</td>
</tr>
<tr>
<td>Cr1-O1</td>
<td>2.349(3)</td>
</tr>
<tr>
<td>mean Cr-N\textsubscript{4 plane}</td>
<td>+0.10</td>
</tr>
<tr>
<td>Cr2-O2</td>
<td>2.356(3)</td>
</tr>
<tr>
<td>twist angle</td>
<td>36</td>
</tr>
<tr>
<td>mean Cr-N\textsubscript{im}</td>
<td>2.15</td>
</tr>
</tbody>
</table>

The Cr-O\textsubscript{THF} bond lengths in five co-ordinate Cr(II) complexes bearing a coordinated THF molecule fall into two distinct ranges: 2.01 - 2.23 Å and 2.28 – 2.47 Å.47 The former range consists of pentagonal bipyramidal structures and square pyramidal structures in which the THF occupies an equatorial or basal position (eg. 2AG, 2AH, Figure 2.11) whilst the latter group is made up of square pyramidal structures in which the THF binds in the apical position (eg. 2AJ, Figure 2.11). The Cr-O distances observed in 2\textsubscript{THF} of 2.349(3) and 2.356(3) Å are consistent with the latter range. The lengthening of the apical Cr-O bond is due to the occupation of the σ* 3d(z2) orbital.

![Figure 2.11 Examples of 5 co-ordinate Cr(II) complexes bearing THF ligands in different sites. Ar = 2,6-C\textsubscript{6}H\textsubscript{3}(Me)\textsubscript{2}.52-54](image)

2.3 Coordination chemistry of [Cr\textsubscript{2}(LMe)]

The coordination of Lewis bases to Pacman and cofacial diporphyrin complexes can influence their reactivity towards small molecule substrates. The Love group reported that successful electrocatalytic reduction of O\textsubscript{2} to H\textsubscript{2}O by the cobalt Pacman complex \{Co\textsubscript{2}(LA)\} only occurs in the presence of benzonitrile (PhC≡N),35 whilst Collman and co-workers showed that a bis-ruthenium cofacial diporphyrin complex binds dinitrogen irreversibly once activated by the addition of a bulky imidazole.56 These donors bind to the metals in the exo axial coordination sites thereby fulfilling the dual role of directing the substrate to the endo intermetallic site and boosting the reactivity of the complex by increasing the electron density available at the metal centres. The coordination chemistry of 1 was investigated to gain an understanding of which Lewis bases form the most stable adducts with Cr(II) in the macrocyclic microenvironment.57 All initial reactivity studies have been carried out on 1
since it is more straightforward to prepare than 2 and benefits from enhanced solubility and crystallinity.

2.3.1 Reaction with triphenylphosphine oxide

Triphenylphosphine oxide has long been recognised as an excellent donor for “hard” first row transition metals.58 Reaction of 1 with an excess of OPPh\textsubscript{3} in toluene resulted in precipitation of the 2:1 exo adduct [Cr\textsubscript{2}(OPPh\textsubscript{3})\textsubscript{2}(LMe)] (3) as a microcrystalline solid in 63 % yield (Scheme 2.15). The 1H NMR spectrum of 3 in C\textsubscript{6}D\textsubscript{6} (in which 3 is sparingly soluble) shows paramagnetically broadened and contact-shifted resonances at δ 17.6, 7.7, 6.9, 4.6, −26, and −42 ppm, which are not assignable to specific ligand protons. While 3 dissolves readily in THF, the 1H NMR spectrum in THF/C\textsubscript{6}D\textsubscript{6} solution shows resonances consistent with 1 and broad features in the aromatic region corresponding to the phenyl protons of free OPPh\textsubscript{3}. No resonances were present in the room temperature 31P{H} NMR spectrum but upon cooling to -70°C a broad resonance was observed at 24 ppm corresponding to free OPPh\textsubscript{3}. Therefore, in coordinating solvent the phosphine oxide ligands are labile and an equilibrium is likely established between the THF and phosphine oxide adducts of 1.

![Scheme 2.15 Preparation of the phosphine oxide adduct 3.](image)

Single crystals of 3 were obtained from an NMR scale reaction in toluene. X-ray analysis confirmed the formation of the desired 2:1 exo adduct in which one phosphine oxide coordinates to each Cr(II) ion in the exo axial coordination site (Figure 2.12). The Cr centres adopt square pyramidal geometries with a Cr-O distance of 2.327(2) Å. Although a wide range of first row transition metal phosphine oxide complexes have been crystallised, to our knowledge this is the first structurally characterised Cr(II) phosphine oxide complex. With the exception of one manganese cluster compound, all other reported 3d metal OPPh\textsubscript{3} structures feature considerably shorter M-O interactions than 3, ranging from 1.91 to 2.26 Å.47 Examples of Cr(III)59 (2AK) and Mn(II)60 (2AL) porphyrin-supported OPPh\textsubscript{3}
complexes are shown in Figure 2.13. These complexes feature M-O distances of 2.034(4) and 2.05(1) Å respectively. The elongation of the Cr-O bond in 3 is expected on the basis of the increased ionic radius of Cr(II) vs. Mn(II), the decreased electrostatic attraction of Cr(II) vs. Cr(III) and the occupation of the σ* d(2z²) orbital in Cr(II) complexes but not Cr(III) complexes. The structural parameters of 3 are very similar to those of 2 as might be expected for two square pyramidal Cr(II) complexes with apical O-donors. The Cr1-O1-P1 bend angle of 137.6(1) orients the two propeller shaped PPh₃ units in opposite directions (Figure 2.12, right) giving the structure overall C₂ symmetry.

Figure 2.12 Solid state structure of 3 showing side view (left) and view into the jaws of the macrocycle (right). Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted. For clarity, the meso Me groups and all but the ipso carbons of the OPPh₃ rings have been removed from the right hand structure.

Table 2.3 Selected distances (Å) and angles (°) for 3.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1’</td>
<td>4.3210(5)</td>
<td>mean Cr-Nₚyr</td>
<td>1.99</td>
</tr>
<tr>
<td>Cr1-O1</td>
<td>2.327(2)</td>
<td>Cr-Nₚ plane</td>
<td>+0.16</td>
</tr>
<tr>
<td>O1-P1</td>
<td>1.497(2)</td>
<td>bite angle</td>
<td>67</td>
</tr>
<tr>
<td>Cr1-O1-P1</td>
<td>137.6(1)</td>
<td>twist angle</td>
<td>24</td>
</tr>
<tr>
<td>mean Cr-Nₘₘ</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter Two

Figure 2.13 Porphyrin-supported transition metal OPPH₃ complexes.⁵⁹,⁶₀

The reactions of other Lewis bases with 1 were also investigated by NMR spectroscopy and a similar reactivity pattern was observed. When excess phosphine PR₃ (R = Me, Ph) was added to 1 in C₆D₆ a suspension formed, which is assumed to be the 2:1 adduct [Cr₂(PR₃)₂(L¹⁶Me)] (Scheme 2.16, right), and resonances corresponding to 1 were absent from the ¹H NMR spectrum. A new ¹H NMR spectrum acquired following addition of a couple of drops of THF to re-dissolve the suspension displayed resonances corresponding to 1 and broadened phosphine signals indicating fluxional co-ordination. By contrast, the adduct formed between 1 and 1,2-dimethylimidazole (im), presumably [Cr₂(im)₂(L¹⁶Me)] (Scheme 2.16, left), is robust in the presence of THF though unfortunately insoluble. However when this adduct was dissolved in d₅-pyridine, again resonances corresponding to 1 and broadened imidazole signals were observed. These observations suggest that stronger Lewis bases need to be employed to form a robust and soluble adduct.

Scheme 2.16 Reactions of 1 with imidazole and phosphine bases. R = Me, Ph. The macrocycle is shown in cartoon form.

2.3.2 Reaction with isocyanides

Isocyanide ligands C≡NR are isolobal and isoelectronic to carbon monoxide and engage in analogous synergic bonding with transition metals (Figure 2.14). They are generally better σ-donors and poorer π-acceptors than CO, though their electronic and steric properties are tunable by modification of the organic substituent R.⁶¹ Furthermore, transition metal isocyanide complexes have been employed to achieve C-F bond activation, selective hydrogenation of alkynes, nitriles and isocyanides, and alkene polymerisation.⁶² Recently, a
co-ordinatively unsaturated cobalt(−I) complex supported by bulky m-terphenyl isocyanide ligands was isolated and was shown to bind dinitrogen, as well as undergoing reactions with a range of organic substrates.63

\[\begin{array}{c}
\text{C≡N}^- \quad \text{C≡N}^+ \\
\downarrow \quad \downarrow \\
\text{C≡N}^- \quad \text{C≡N}^+ \\
\end{array} \quad :\text{C≡N}^- \quad :\text{C≡N}^+ \\
\]

Figure 2.14 Illustration of the isolobal nature of CO and isocyanides in both the neutral and charge-separated canonical forms. The principle σ (blue) and π* (red) orbitals employed in metal binding are shown.

The reactions of 1 with two isocyanides, 2,6-xylyl and tert-butyl, were evaluated. The steric and electronic properties of these two isocyanides are considerably different: the xylyl isocyanide is flat whilst the tert-butyl isocyanide has appreciable three dimensional steric bulk, and the xylyl isocyanide is a poorer σ-donor but better π-acceptor than the tert-butyl isocyanide due to conjugation with the phenyl ring. An excess of the isocyanides C≡NR (R = Xyl, tBu) were added to solutions of 1. Single crystals were obtained from the reaction carried out in fluorobenzene (R = Xyl) and a THF/C\textsubscript{6}D\textsubscript{6} mixture (R = tBu). Determination of the structures revealed the formation of the 1:1 endo adducts [Cr\textsubscript{2}(μ-CNXyl)(L\textsubscript{Me})] (4) and [Cr\textsubscript{2}(μ-CNtBu)(L\textsubscript{Me})] (5) in which the isocyanide adopts a bridging position within the macrocyclic cleft, rather than the anticipated 2:1 exo adducts (Scheme 2.17).

![Scheme 2.17 Synthesis of the bridging isocyanide complexes 4 and 5.](image)

On a preparative scale 4 and 5 may be synthesized in toluene, benzene or THF in good yields. The reaction between 1 and CNXyl is instantaneous and accompanied by a solution color change from dark red-brown to dark green. Dark red crystals of 4 precipitate rapidly from the reaction mixture regardless of which solvent is employed. Isolated 4 is only sparingly soluble in THF with no resonances observed in the 1H NMR spectrum acquired in THF/C\textsubscript{6}D\textsubscript{6} and 4 is stable under vacuum and as a suspension in THF. However, the 1H NMR
spectrum recorded in d_5-pyridine shows resonances corresponding to 1 and a broad resonance at 1.8 ppm attributed to the ortho-Me groups of the free isocyanide. This implies that co-ordination of pyridine to the Cr centres is competitive with isocyanide co-ordination.

In contrast, 1 reacts slowly with CN'Bu at room temperature in toluene, benzene or THF, though the reaction is complete within 48 h at 80 °C. Complex 5 is highly soluble in benzene and exhibits paramagnetically broadened and contact shifted resonances in the 1H NMR spectrum (C_6D_6) at δ 20, 2.3 and −50 ppm. Complex 5 is stable under vacuum, in THF or pyridine solution, and even upon addition of the highly Lewis basic 4-dimethylaminopyridine. These observations suggest that an activation barrier must be overcome to co-ordinate the sterically hindered tert-butyl isocyanide within the intermetallic cleft but that once co-ordination has occurred the isocyanide is kinetically trapped and not vulnerable to competitive displacement. The magnetic moment of 5 in C_6D_6 solution was measured as 4.75 μ_B, which is significantly less than the magnetic moment of 1 (6.34μ_B). Therefore the presence of the isocyanide bridge increases the electronic communication between the two Cr(II) centres and facilitates antiferromagnetic coupling.

The solid state structures (Figure 2.15) reveal that the isocyanides bridge symmetrically between the square pyramidal Cr(II) centres, which are displaced considerably out of the N$_4$ donor pockets into the macrocyclic cleft (Table 2.4, 7.). In 4 the planar xylyl ring is perpendicular to the aryl hinges of the macrocycle, minimising steric interactions with the endo meso Me groups, C7 and C28. One of the protons bound to C7 is oriented towards the electron rich π-system of the isocyanide ligand (C7···C44 3.349(3) Å, C7···N9 3.568(3) Å) indicating that intramolecular hydrogen bonding occurs, similar to that seen in $[Cu_2(\mu-py)(L)]$_{45}$. In contrast, the three-dimensional steric bulk of the 'Bu group in 5 forces the isocyanide to protrude sideways out of the macrocycle jaws to avoid clashing with the meso Me groups (Figure 2.15, bottom right). We reason that these steric constraints prevent the 'Bu isocyanide from approaching closer to the Cr centers, resulting in the longer Cr-C separation observed in 5 of 2.490(2) Å compared to 2.259(2) Å and 2.261(2) Å in 4 and the more acute Cr-Cr bridging angle of the tert-butyl isocyanide (96.35(7) ° in 5 vs. 105.080(9) in 4).
Figure 2.15 Solid state structures of 4 (top) and 5 (bottom). Thermal ellipsoids are drawn at 50% probability. Lattice solvent and H atoms are omitted. Both a side view and the view into the jaws of the macrocycle are shown for 5. The tert-butyl group of the isocyanide ligand in 5 was found to be rotationally disordered, the major conformer is shown.

Table 2.4 Comparison of selected structural parameters of 4 and 5. Distances (Å), angles (°).

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cr···Cr</td>
<td>3.5877(5)</td>
</tr>
<tr>
<td>2.</td>
<td>Cr-C<sub>CNR</sub></td>
<td>2.259(2), 2.261(2)</td>
</tr>
<tr>
<td>3.</td>
<td>C<sub>CNR</sub>-N<sub>CNR</sub></td>
<td>1.169(3)</td>
</tr>
<tr>
<td>4.</td>
<td>Cr-C<sub>CNR</sub>-Cr</td>
<td>105.08(9)</td>
</tr>
<tr>
<td>5.</td>
<td>Cr-C<sub>CNR</sub>-N<sub>CNR</sub></td>
<td>127.9(2), 126.7(2)</td>
</tr>
<tr>
<td>6.</td>
<td>C<sub>CNR</sub>-N<sub>CNR</sub>-C<sub>CNR</sub></td>
<td>175.9(2)</td>
</tr>
<tr>
<td>7.</td>
<td>mean Cr-N<sub>4</sub> plane</td>
<td>−0.39</td>
</tr>
<tr>
<td>8.</td>
<td>bite angle</td>
<td>53</td>
</tr>
<tr>
<td>9.</td>
<td>twist angle</td>
<td>2</td>
</tr>
</tbody>
</table>
In both 4 (C43-N9-C44 175.9(2) °) and 5 (C22-N5-C23 172.8(2) °) the bridging isocyanide retains the linear geometry of the free ligand. This is not uncommon for a bridging isocyanide (see for example 2AN, Figure 2.16). The frequency of the C≡N stretching band in the IR spectrum is more indicative of the degree of back donation than the isocyanide geometry. In the IR spectrum (nujol mull) of 5, ν_{C≡N} is 2150 cm⁻¹. This is shifted to slightly higher energy than in free CN′Bu (2132 cm⁻¹) and indicates that little π back donation occurs from the Cr(II) centres to the isocyanide. The metal-ligand interaction is dominated by σ-donation which occurs from a carbon-based orbital that is anti-bonding with respect to the (C≡N)π system of the isocyanide, explaining the increase in ν_{C≡N}. In contrast, two C≡N stretching bands are observed in the IR spectrum of 4 at 1990 cm⁻¹ and 1970 cm⁻¹, a phenomenon which has been observed before in complexes containing a single bridging isocyanide and is attributed to solid state effects. These bands are shifted to considerably lower energy than in free CNXyl (2114 cm⁻¹) indicating that significant π back donation occurs. The observed increase in back donation is likely due to the greater π-acceptor ability of the conjugated aryl isocyanide compared to CN′Bu and the shorter Cr-C_CNR separation in 4 compared to 5 resulting in increased M-L orbital overlap.

Although bimetallic complexes with bridging isocyanide ligands are common in late transition metal chemistry, those of early transition metals are rare. The only homobimetallic examples reported are two molybdenum and three tungsten complexes, one of which, 2AM, is shown in Figure 2.16. Since these are the first binuclear chromium µ-CNR complexes, comparison with other first row transition metal complexes is instructive. A number of mid to late first row transition metal complexes containing the motifs {M₄(µ-CNR)} or {M₃(µ³-CNR)} have been reported, including for R = 'Bu, Xyl. For the binuclear complexes, the mean M-C_CNR distance is 1.98 Å. The longest M-C_CNR bond previously reported is 2.381(4) Å in a binuclear Fe(II) compound bridged by CNMe (2AP, Figure 2.16). Examples of homobimetallic W(III), Ni(0) and Fe(II) isocyanide bridged complexes. Eight phenyl groups bound to the P atoms of 2AN have been omitted.
2.16), meaning that the M-CNR distance observed in 5 (2.490(2) Å) is by far the longest for a 3d metal isocyanide bridged complex.

To summarize, the isocyanide ligands display exclusive preference for the endo intermetallic bridging site where they are held between the two Cr(II) ions as if in a pincer. The tert-butyl isocyanide complex 5 is a soluble and kinetically stable adduct of 1. However 5 is expected to be of limited use in further reactivity studies since the intermetallic site designed for the cooperative binding of substrates is blocked by the isocyanide ligand.

2.3.3 Attempted reactions with gases

Since 1 readily binds isocyanides in the endo intermetallic site, its reactivity towards CO was also evaluated. To our surprise, 1H NMR spectroscopy indicated that no reaction occurred between a THF solution of 1 and an atmosphere of CO gas at 1.0 bar. As mentioned above, CO is generally a poorer σ-donor but a better π-acceptor than isocyanides and less sterically demanding. We conclude that σ-donor strength must determine whether or not adduct formation with 1 is favoured. In this instance, CO, unlike the isocyanides, cannot out-compete the THF solvent.

THF solutions of 1 were also found to be unreactive towards CO$_2$ and H$_2$. Introduction of an atmosphere of O$_2$ to a pyridine solution of 1 did not result in any obvious colour change or formation of a precipitate but the resonances corresponding to 1 were absent from the subsequent 1H NMR spectrum. This indicates that a reaction occurred but the products were not successfully isolated or characterised.

2.4 Redox chemistry of [Cr$_2$(LMe)]

There have been very few reports on the synthesis or reactivity of early transition metal complexes of binucleating ligands. Therefore, it seemed pertinent to explore the redox chemistry of 1 to investigate the effect of the steric restrictions imposed by the ligand environment and determine whether the metal ions act as two independent redox centres.

2.4.1 Attempted reduction of [Cr$_2$(LMe)]

Since the metal centres in 1 are not sufficiently reducing to react with CO$_2$, H$_2$ or CO, attempts were made to reduce the Cr(II)/Cr(II) Pacman complex to either a Cr(I)/Cr(II) or Cr(I)/Cr(I) Pacman complex. Binuclear Cr(I) species have been shown to be sufficiently reducing to bind, and in some cases activate N$_2$, CO, alkynes and alkenes.13,21 Trial reactions of 1 with potassium reducing agents were carried out with a view to forming a reduced salt
of general formula $K_x[Cr_2(L^{Me})]$ ($x = 1$ or 2). Conceivably such a salt could be stabilised, and solubilised, by η^6 or η^5 interactions between the ligand arene groups or ligand pyrrolides and the K^+ cation(s).

Slightly more than two equivalents of potassium metal, potassium graphite or potassium naphthalenide were added to a THF solution of 1 (Scheme 2.18). Reaction occurred in all cases, accompanied by a colour change from red-brown to dark brown. THF soluble products were formed in the reactions with potassium graphite and potassium naphthalenide but these products or mixtures of products are NMR silent. In contrast, copious quantities of dark brown precipitate formed in the potassium metal reaction after overnight heating at 80 °C. The elevated temperature was necessary to melt the potassium and facilitate reaction, however, it is possible that the products underwent thermal decomposition after formation. Attempts to obtain single crystals for X-ray analysis from the potassium graphite and potassium naphthalenide reaction mixtures were unsuccessful. The addition of 18-crown-6, which often increases the crystallinity of potassium salts, did not result in the formation of single crystals. Since we were unable to establish whether a single product or mixture of products is formed in these reactions, or identify any component of the reaction mixture, reactivity studies of the reduction products were not pursued.

![Scheme 2.18 Attempted potassium reductions of 1.](image)

2.4.2 Oxidation of $[Cr_2(L^{Me})]$

The Pacman macrocycles, with their two $(N_4)^2$ donor pockets, are designed to form simple binary complexes with metals in the +2 oxidation state, without the need for any auxiliary anionic ligands. Indeed, the majority of the Pacman complexes reported by the Love group to date are of the form $[M^{II}_2(L)]$.15 If the study of early transition metal Pacman complexes is to be extended beyond chromium, an understanding of Pacman complexes of metals in the +3 oxidation state and higher will be necessary since monomeric M(II) precursors of group III, IV, V and the heavier group VI metals are not generally available.1
2.4.2.1 Synthesis of [Cr$_2$(µ-I)(I)(THF)(LMe)]

Iodine was investigated as an alternative oxidant to O$_2$, the advantages being that iodine is straightforward to purify by sublimation and enables good stoichiometric control. Stoichiometric O-based oxidants such as pyridine-N-oxide were avoided since the synthetic versatility of halides in salt elimination reactions made [(CrI)$_2$(LM$_{Me}$)] a more attractive target for future reactivity studies than [Cr$_2$(O)(LM$_{Me}$)].

Compound 1 was combined with one equivalent of I$_2$ in THF and the mixture stirred overnight at ambient temperature. During this time the colour of the solution changed from red-brown to deep crimson. Removal of the volatiles followed by hexane washing allowed the isolation of [Cr$_2$(µ-I)(I)(THF)(LM$_{Me}$)] (6) as a red microcrystalline solid in 84% yield (Scheme 2.19). The 1H NMR spectrum of 6 displays several very broad resonances between δ 24 and −67 ppm which cannot be assigned to individual ligand proton environments. The solution phase magnetic moment of 6 measured in THF/C$_6$D$_6$ by the Evans’ method was determined as 5.43 µ$_B$, which is very similar to the spin only value of 5.48 µ$_B$ calculated for two non-interacting $s = 3/2$ ions. This indicates that the bridging iodide anion does not facilitate magnetic exchange between the two Cr(III) ions. The reduction in the magnetic moment of 6 compared to that of 1 (6.34 µ$_B$) is consistent with the oxidation of the chromium centres from Cr(II) to Cr(III). Addition of half an equivalent of I$_2$ to 1 also resulted in the formation of 6 (confirmed by unit cell check) and, presumably, unreacted starting material. In this case it is not possible to selectively oxidise just one chromium centre to form a mixed valence Cr(III)/Cr(II) compound.

![Scheme 2.19 Oxidation of [Cr$_2$(LM$_{Me}$)] with iodine in THF to form 6.](image)

Single crystals suitable for diffraction analysis were grown by vapour diffusion of hexane into a THF solution of 6 at ambient temperature over 3 days. The solid state structure (Figure 2.17) reveals that the Pacman geometry is maintained with one iodide ligand endo to the cleft, bridging the two Cr(III) centres and the other iodide exo to the cleft in a terminal binding site. The two Cr(III) ions occupy inequivalent pseudo octahedral coordination sites.
In contrast to Cr(II), Cr(III) (3d³) displays a strong preference for octahedral co-ordination due to the favourable ligand field stabilisation energy generated by this electronic configuration in an octahedral environment. Four equatorial N-donors are provided by each pocket of the macrocycle and both Cr(III) ions bind to the endo iodide I₁. The exo axial site at Cr₁ is occupied by a coordinated THF molecule whilst Cr₂ is bound to the exo iodide I₂. The Cr(III) ions are barely displaced out of the N₄ donor pockets of the macrocycle, the bite angle of 67 ° is close to the theoretical free macrocycle bite angle of 60 °, and the O₁-Cr₁-I₁ and I₂-Cr-I₁ angles of 179.96(9) ° and 179.05(3) ° are near linear, all of which indicate that the bridging iodide is incorporated with very little strain imposed on the macrocyclic framework. The Cr(III)-N(imine/pyrrolide) distances in 6 have contracted slightly compared to those in the Cr(II) compounds 1 to 5, as is consistent with the increase in oxidation state of the Cr centres. The mean Cr-N(imine) and Cr-N(pyrrolide) distances in 6 are 2.09 Å and 1.96 Å respectively compared to mean Cr-N(imine) and Cr-N(pyrrolide) distances of 2.13Å and 1.99Å respectively in 1 to 5.

Figure 2.17 Solid state structure of 6 showing side view (left) and view into the jaws of the macrocycle (right). Thermal ellipsoids are drawn at 50 % probability. For clarity, lattice solvent and H atoms are omitted and the meso Me groups have been removed from the right hand structure.
Table 2.5 Selected distances (Å) and angles (°) for 6.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr2</td>
<td>4.3811(9)</td>
<td>mean Cr-N plane</td>
</tr>
<tr>
<td>Cr1-I1</td>
<td>2.7131(7)</td>
<td>Cr1-I1-Cr2</td>
</tr>
<tr>
<td>Cr2-I1</td>
<td>2.7883(7)</td>
<td>O1-Cr1-I1</td>
</tr>
<tr>
<td>Cr1-O1</td>
<td>2.076(3)</td>
<td>I2-Cr2-I1</td>
</tr>
<tr>
<td>Cr2-I2</td>
<td>2.7018(8)</td>
<td>bite angle</td>
</tr>
<tr>
<td>mean Cr-N$_{im}$</td>
<td>2.09</td>
<td>twist angle</td>
</tr>
<tr>
<td>mean Cr-N$_{pyr}$</td>
<td>1.96</td>
<td></td>
</tr>
</tbody>
</table>

The terminal I2-Cr2 bond length of 2.7018(8) Å is typical for a Cr(III) iodide complex; reported Cr(III)-I distances range from 2.5768(7) Å to 2.7816(7) Å, with a mean value of 2.69 Å. The Cr1-I1 bond length of 2.7131(7) Å is significantly shorter than the Cr2-I1 bond of 2.7883(7) Å, presumably due to the differing exo ligands attached to Cr1 and Cr2. The \{CrIII-(µ-I)-CrIII\} motif exhibited in 6 is an unusual one. Though a large number of chloride-bridged chromium complexes have been crystallographically characterised, examples containing bromide or iodide bridges are rare. Indeed, there are no reports of Cr(III) centres bridged by a single iodide.

Rauchfuss reported an interesting series of complexes with the empirical formulae [Cp*CrI$_x$] (2AQ) and [Cp*CrI$_{x+5}$] (2AR) which feature polyiodide bridges. The structures of the x = 3 (2AQ) and x = 5.5 (2AR) members are shown in Figure 2.18. In the solid state 2AQ is an alternating copolymer of [Cp*Cr(µ-I)I]$_2$ and [Cp*Cr(µ-I)(I)$_3$]$_2$ dimers whilst 2AR is formulated as [Cp$_2$Cr$_2$(µ-I)$_3$][I$_{16}$], containing the polyiodide cluster anion [I$_{16}$]$^{2-}$. The authors suggest that the short Cr-Cr distance observed in 2AR (Table 2.6) and the sharpening of the Cp*signal in the 1H NMR spectrum relative to that of 2AQ indicate that there is some degree of d-electron pairing and M-M bonding. Comparing selected structural parameters of 6, 2AQ and 2AR (Table 2.6) clearly illustrates the effect of increasing number of bridging
iodides: Cr···Cr separation decreases, Cr-I bond length decreases and the Cr-I-Cr bridging angle becomes more acute.

Table 2.6 Comparison of selected structural parameters for different iodide-bridged chromium complexes.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>2AQ</th>
<th>2AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of (μ-I)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cr···Cr (Å)</td>
<td>4.38</td>
<td>3.71</td>
<td>3.01</td>
</tr>
<tr>
<td>Cr-(μ-I) (Å)</td>
<td>2.75</td>
<td>2.71</td>
<td>2.69</td>
</tr>
<tr>
<td>Cr-(μ-I)-Cr (°)</td>
<td>106</td>
<td>86</td>
<td>68</td>
</tr>
</tbody>
</table>

2.4.2.2 **Synthesis of [Cr₂(μ-l)(py)₂(L\textsc{Me})][I]**

The reaction of 1 with iodine in pyridine solvent was also investigated. In contrast to the reaction in THF which proceeds over several hours with a subtle colour change, when 1 and iodine were combined in pyridine immediate precipitation of a red-bronze solid was observed. Repeating the experiment, this time slow-diffusing a pyridine solution of 1 into a pyridine solution of iodine allowed the isolation of poor quality single crystals. X-ray diffraction analysis revealed the product to be the salt [Cr₂(μ-I)(py)₂(L\textsc{Me})][I] (7) (Scheme 2.20, Figure 2.19). Once again the Pacman geometry is maintained and a bridging iodide occupies the intermetallic cleft. However, both exo axial Cr binding sites are occupied by pyridine and the remaining iodide sits within the crystal lattice as an isolated anion. The Cr(III) ions therefore occupy equivalent pseudo octahedral binding sites and the macrocycle is symmetric. The structural resolution of 7 is poor and a number of restraints were necessarily imposed during refinement (see 4.6.7) meaning that numerical analysis of the structure should be treated with caution. The structure of the cation of 7 is similar to that of 6. Once again the N-Cr-(μ-I) angles (179.0(4) °, 179.3(5) °) are essentially linear and the Cr1-I1-Cr2 angle in 7 of 106.59(7) ° is very close to that seen in 6 (105.56(2) °). The Cr···Cr separations observed in 6 and 7 are 4.3811(9) Å and 4.417(4) Å respectively and the macrocycles in both complexes display very similar bite and twist angles. One minor difference between 6 and 7 is that the endo iodide bridges more symmetrically between the two Cr(III) ions in 7 due to the increased symmetry of the macrocyclic environment with all pyridine exo donors; Cr1-I1 = 2.756(3) Å and Cr2-I1 = 2.754(2) Å in 7 whereas in 6 there is a difference in the Cr-(μ-I) bond lengths of ca. 0.08 Å. No spectroscopic data were obtained for 7 due to its extremely poor solubility.
Scheme 2.20 Oxidation of $[\text{Cr}_2(L^{\text{Me}})]$ with iodine in pyridine to form 7.

Figure 2.19 Solid state structure of 7 showing side view of the cation (left) and view into the jaws of the macrocycle (right). Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted. For clarity, the meso Me groups and the carbon atoms of the pyridine rings have been removed from the right hand structure.

Table 2.7 Selected distances (Å) and angles (°) for 7.

<table>
<thead>
<tr>
<th>Distance/Angle</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1-Cr2</td>
<td>4.417(4) Å</td>
</tr>
<tr>
<td>Cr1-I1</td>
<td>2.756(3) Å</td>
</tr>
<tr>
<td>Cr2-I1</td>
<td>2.754(2) Å</td>
</tr>
<tr>
<td>Cr1-N9</td>
<td>2.10(2) Å</td>
</tr>
<tr>
<td>Cr2-N10</td>
<td>2.08(1) Å</td>
</tr>
<tr>
<td>mean Cr-N$_{\text{im}}$</td>
<td>2.06 Å</td>
</tr>
<tr>
<td>mean Cr-N$_{\text{pyr}}$</td>
<td>1.96 Å</td>
</tr>
</tbody>
</table>

The formation of the ionic product 7 rather than a neutral pyridine solvated analogue of 6 is clearly caused by the change in solvent from THF to the more polar, more Lewis basic pyridine. It has long been known that a degree of ionisation occurs in binary
iodine/pyridine mixtures.74 The relevant equilibria are shown in Scheme 2.21. Equilibria (2) and (3) may be replaced by the single process (4). Besnard and co-workers have demonstrated that attainment of equilibrium (4) is rapid (nanosecond timescale) and that the equilibrium concentration of the triiodide anion is roughly 4% of the initial I\textsubscript{2} concentration.75

\begin{align*}
 \text{py} + \text{I}_2 & \rightleftharpoons \{\text{pyI}_2\} \quad (1) \\
 \{\text{pyI}_2\} & \rightleftharpoons [\text{pyI}]^+ + \text{I}^- \quad (2) \\
 \text{I}^- + \{\text{pyI}_2\} & \rightleftharpoons \text{I}_3^- + \text{py} \quad (3) \\
 2\{\text{pyI}_2\} & \rightleftharpoons [\text{py}_2\text{I}]^+ + \text{I}_3^- \quad (4)
\end{align*}

\textbf{Scheme 2.21} Equilibria established in binary iodine/pyridine mixtures. \{pyI\textsubscript{2}\} represents an outer-sphere co-ordination complex.75

Upon combination of \textbf{1} with iodine in pyridine, the potential reactive species present are I\textsubscript{2} and [py\textsubscript{2}I][I\textsubscript{3}]. Therefore both molecular and ionic reaction pathways must be considered, as outlined in Scheme 2.22. In the ionic pathway, the two Cr(II) centres of \textbf{1} co-operatively reduce the cation in [py\textsubscript{2}I][I\textsubscript{3}] to form [Cr\textsubscript{2}(\mu-I)(py\textsubscript{2})(L\textsubscript{Me})][I\textsubscript{3}] (step i). The pyridine solvent then abstracts I\textsubscript{2} from the I\textsubscript{3}- ion to form \textbf{7} (step ii) and the outer-sphere complex \{pyI\textsubscript{2}\}, according to the reverse of equilibrium (3) (Scheme 2.21). In the molecular route, \textbf{1} reacts with I\textsubscript{2} to form the neutral pyridine solvated analogue of \textbf{6}, [Cr\textsubscript{2}(\mu-I)(I)(py)(L\textsubscript{Me})] (6\textsubscript{py}) (step iv). Conceivably, 6\textsubscript{py} could be converted into \textbf{7} by ionisation driven by pyridine coordination (step v) and likewise \textbf{7} formed \textit{via} the ionic route could be converted to 6\textsubscript{py} by displacement of a pyridine molecule by the I- counterion (step iii).

Complex \textbf{7} precipitates from the reaction mixture in 50% yield and the supernatant decanted retains a deep pink-red colour. Therefore it seems likely that a second more soluble product is also formed which is proposed to be the neutral complex 6\textsubscript{py}, though this has not been spectroscopically observed, isolated or characterised. By analogy to the reaction of \textbf{1} with iodine in THF, formation of 6\textsubscript{py} \textit{via} the molecular pathway is expected to be moderately slow, taking place over hours. The experimental observation that \textbf{7} precipitates within minutes indicates firstly that \textbf{7} is probably not formed by the molecular pathway and secondly that reaction of \textbf{1} with ionic [py\textsubscript{2}I][I\textsubscript{3}] must be rapid; step (i) is faster than competing step (iv). This could account for the formation of an appreciable quantity of \textbf{7}, despite the low equilibrium concentration of [py\textsubscript{2}I][I\textsubscript{3}] present. The insolubility of \textbf{7} will also help to drive equilibrium (ii) towards its formation.
Isolated 7 is insoluble in pyridine. However, when a suspension of 7 in pyridine was left to sit for 2 weeks the solid dissolved forming a pink-red solution. This provides some evidence that the recombination of the iodide anion to form the neutral, soluble complex 6$_{py}$ (step (iii)) may indeed be feasible, though the rate is slow. This is presumably due to the poor solubility of 7 coupled with the expected kinetic stability of the 3d3 Cr$^{3+}$ ion. When 6 was dissolved in pyridine, presumably forming the pyridine solvate 6$_{py}$, no solid formation was observed over the course of 1 week indicating that solvation driven ionisation of 6$_{py}$ to form 7 does not occur and step (v) is not feasible.

We conclude that 7 is exclusively formed by reaction of 1 with the ionic species [py$_2$I][I$_3$] which proceeds rapidly. The reaction of 1 with I$_2$ to form 6$_{py}$ is a competing process. The rate of the latter reaction is slower but the starting concentration of I$_2$ is much greater than that of [py$_2$I][I$_3$], resulting in an approximate 50:50 product distribution. Although experimental observations indicate that 7 may be converted into 6$_{py}$, this process is slow compared to the timescale of the reaction.

2.4.2.3 Anion substitution of [Cr$_2$(μ-I)(py)$_2$(LMe)][I]

In an effort to isolate a more soluble derivative of 7 which might prove more versatile in further reactivity studies, an anion exchange reaction was carried out. The anion chosen was a highly soluble, non-co-ordinating aryl borate [B{(OC$_6$H$_3$(Bu)$_2$)$_2$}]$^-$]. Addition
of the sodium salt \([\text{Na(THF)}_2][\text{B(O}_6\text{H}(\text{t-Bu})_2)_2]\) to a mixture of 1 and I\textsubscript{2} in pyridine, followed by heating to 115 °C for 5 min results in complete dissolution of the suspended product 7. Removal of the volatiles followed by toluene extraction allows isolation of the anion exchange product \([\text{Cr}_2(\mu-\text{I})(\text{py})_2(L^{\text{Me}})_2][\text{B(O}_6\text{H}(\text{t-Bu})_2)_2]\) (8) as a red powder in 40 % yield (Scheme 2.23). Single crystals of 8 were obtained but the X-ray diffraction data could not be solved so the formulation of 8 is evidenced by elemental microanalysis.

Scheme 2.23 Synthesis of chromium borate salt 8.

Since the sodium borate is added to a reaction mixture containing 6\textsubscript{py} and 7, it is conceivable that both these species could be converted into 8 by iodide abstraction and anion exchange processes respectively. If the yield of 8 were higher than that of 7, then this would indeed seem to be a reasonable conclusion. However, the yield of 8 is slightly reduced compared to that of 7. The ligands at the Cr(III) centre in 6\textsubscript{py} are expected to be reasonably inert due to the favourable ligand field stabilisation energy associated with their \(d^3\) electronic configuration and the abstraction of an iodide from 6\textsubscript{py} would involve separation of charge. Therefore it is suggested that 8 is formed exclusively by from 7 since exchange of the free iodide anion in 7 will have a much lower activation barrier than substitution of an axial iodide ligand in 6\textsubscript{py}.

2.5 Synthesis and reactivity of chromium alkyls

The use of organometallic catalysts to effect transformations of organic molecules is ubiquitous in industry and research. Transition metal alkyl complexes are essential intermediates in many of these processes, whether it be olefin polymerisation/oligomerisation, Pd-catalysed cross-couplings, hydroformylation or alkene metathesis, to mention but a few.76 Successful completion of these catalytic cycles relies on the ability of transition metal alkyls to undergo a variety of insertion, migration and
elimination reactions. The synthesis of transition metal alkyl complexes is desirable in order to study their structures and reactivity and gain insight into the function of heterogeneous industrial catalysts. This is particularly relevant to chromium which is employed as an industrial catalyst for the production of 1-hexene and high density polyethylene.

2.5.1 Reactions of \([\text{Cr}_2(\mu-\text{I})(\text{THF})(L^\text{Me})]\) with \(\text{ZnEt}_2\)

Initially reaction of the transmetallation reagent \(\text{ZnEt}_2\) with 6 was investigated. 6 was used as the starting material rather than 7 or 8 because it is soluble in both co-ordinating and non-co-ordinating solvents and may be prepared in high yield. \(\text{ZnEt}_2\) was chosen over the more highly reducing alkali metal alkylating reagents in order to decrease the likelihood of reduction of the Cr(III) centres to Cr(II).

2.5.1.1 Formation of \([\text{[Cr(Et)}_2(\mu-\text{I-ZnEt})(L^\text{Me})]\])

![Scheme 2.24 Suggested balanced equation for the formation of 9.](image)

Addition of a slight excess (1.1 equivalents) of \(\text{ZnEt}_2\) (1 M in hexanes) to a toluene solution of 6 resulted in an immediate colour change from red to dark green. Precipitation of pale solids, presumably \(\text{ZnI}_2\), was observed. These were removed and hexane was added to the filtrate which was stored at \(-30^\circ\text{C}\). A small number of highly air-sensitive large green crystals formed, one of which was analysed by single crystal X-ray diffraction. The product was identified as the mixed metal complex \([\text{[Cr(Et)}_2(\mu-\text{I-ZnEt})(L^\text{Me})]\]) (9) in which salt elimination has occurred to form two \(\text{exo}\) axial Cr-bound ethyl groups but a bridging iodide ligand is still present and is bound to a \(\text{[ZnEt]}\) moiety which has undergone partial transmetallation (Figure 2.20). In order to write a balanced equation for the formation of 9 from 6, 1.5 equivalents of \(\text{ZnEt}_2\) are required (Scheme 2.24). It is quite possible that more than 1.1 equivalents of \(\text{ZnEt}_2\) were added to the reaction since there would have been uncertainty in both the volume of \(\text{ZnEt}_2\) stock solution added and its concentration. Efforts were not made to isolate 9 on a preparative scale since the presence of alkyl groups bound to both chromium and zinc would necessarily complicate further reactivity studies.
Figure 2.20 Solid state structure of 9 showing side view (left) and view into jaws of macrocycle (right). The major orientation of the *meso* methyl groups is shown. The zinc atom is disordered over two sites and about the crystallographic C_2 axis meaning that there are four separate zinc sites. Only the major-occupied zinc site is shown and its symmetry generated equivalent (with dashed bonds) is shown on the right. Thermal ellipsoids are drawn at 50% probability. For clarity, H atoms and lattice solvent are omitted and the *meso* Me groups have been removed from the right hand structure.

Table 2.8 Selected distances (Å) and angles (°) for 9.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Distance/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1’</td>
<td>4.621(1)</td>
</tr>
<tr>
<td>mean Cr1-Nim</td>
<td>2.09</td>
</tr>
<tr>
<td>mean Cr1-Npyr</td>
<td>1.97</td>
</tr>
<tr>
<td>Cr1-N4 plane</td>
<td>+0.22</td>
</tr>
<tr>
<td>Cr1-C22</td>
<td>2.063(7)</td>
</tr>
<tr>
<td>Cr1···I1</td>
<td>3.126(1)</td>
</tr>
<tr>
<td>C22-C23</td>
<td>1.51(1)</td>
</tr>
<tr>
<td>I1-Zn1a</td>
<td>2.497(3)</td>
</tr>
<tr>
<td>Zn1a-C24</td>
<td>2.04(1)</td>
</tr>
<tr>
<td>Zn1b-I1</td>
<td>2.701(6)</td>
</tr>
<tr>
<td>Zn1b-C24</td>
<td>1.92(2)</td>
</tr>
<tr>
<td>C22-Cr1-I1</td>
<td>177.2(2)</td>
</tr>
<tr>
<td>Cr1-I1-Cr1’</td>
<td>95.34(3)</td>
</tr>
<tr>
<td>I1-Zn1a-C24</td>
<td>151.6(8)</td>
</tr>
<tr>
<td>I1-Zn1b-C24</td>
<td>143.4(8)</td>
</tr>
<tr>
<td>bite angle</td>
<td>71</td>
</tr>
<tr>
<td>twist angle</td>
<td>8</td>
</tr>
</tbody>
</table>

The structure of 9 is considerably different to the anticipated product [Cr$_2$(μ-Et)(Et)(THF)(L$^\text{Me}$)] which would be generated from 6 by direct iodide/ethyl exchange. At first glance, one might assume that the bridging iodide, which is sandwiched between the two Cr(III) centres within the macrocyclic cleft is inert to substitution. However, analysis of the geometric parameters of the structure indicates that this is not the case. The Cr1···I1 separation of 3.126(1) Å is greatly elongated compared to the Cr-(μ-I) bond lengths of 2.7131(7) (Cr1-I1) and 2.7883(7) Å (Cr2-I1) in 6 and the Cr-I-Cr angle is consequently reduced from 105.56(2)° to 95.34(3) °. The longest Cr-I bond reported to date is 3.068(2) Å, found in the Jahn-Teller distorted complex [Cr$^\text{II}$I$_2$(depe)$_2$] (depe =
diethylphosphinoethane),77 whilst the Cr2-I1 bond in 6 is in fact the longest of all reported CrIII-I bonds. Therefore it is questionable whether a bond actually exists between the Cr(III) centres and the \textit{endo} iodide in 9 or whether the compound is better considered as a host-guest complex in which, in the absence of a competitive donor, the \(\delta^-\) end of the [IZnEt] unit sits within the macrocyclic cleft between the \(\delta^+\) Cr(III) ions.

The metrics of the [IZnEt] unit do not bear close scrutiny due to the significant disorder of the Zn atom. The ethyl carbon atoms also have severely elongated thermal ellipsoids indicating further disorder which could not be resolved satisfactorily. Despite the application of appropriate restraints to the Zn-I and Zn-C\textsubscript{Et} distances the length of the Zn1a-I1 bond is improbably short at 2.497(3) Å compared to the Zn1b-I1 bond length of 2.701(6) Å and the geometries of the Zn1a and Zn1b containing components are dissimilar (Table 2.8). For comparison, IZnEt crystallises as an iodide-bridged co-ordination polymer and features a Zn-I separation of 2.640(6) Å, a Zn-C\textsubscript{Et} separation of 1.95(4) Å and an I-Zn-C angle of 144.4 (2)° within each IZnEt unit.78 The Cr-Et metrics of 9 are discussed in 2.5.2.

\subsection*{2.5.1.2 Formation of \{[Cr(Et)\textsubscript{2}(\textit{endo}-py)(L\textsubscript{Me})]\}}

In order to investigate the hypothesis that the [IZnEt] unit in 9 is weakly bound in the macrocyclic cleft, the reaction of 6 with ZnEt\textsubscript{2} was repeated in pyridine solvent. Removal of the volatiles from the mixture followed by consecutive extraction into toluene and recrystallisation from THF/hexane afforded single crystals of the \textit{endo}-pyridine adduct \{[Cr(Et)\textsubscript{2}(\textit{endo}-py)(L\textsubscript{Me})]\} (10) (Scheme 2.25). In 10 a single molecule of pyridine occupies the macrocyclic cleft, binding to just one of the Cr(III) ions, thus confirming that in the presence of a strong competing donor [IZnEt] is not incorporated. The solid state structure of 10 is shown in Figure 2.21 and the structural parameters are discussed in 2.5.2.
Chapter Two

Unfortunately it was found that the synthesis of 10 was not repeatable and could not be scaled to provide sufficient clean material for reactivity studies due to contamination of the product with zinc salts. The known complex [ZnI₂(py)₂] may well have some solubility in toluene and therefore may not be successfully excluded by extraction of the product, particularly if a small amount of residual free pyridine is present. A further complication is the likely formation of species such as [ZnI(Et)(py)₂] which would be expected to have much increased solubility in toluene.

2.5.2 Synthesis of [{Cr(Et)}₂(endo-THF)(L^Me)]

The Grignard reagent EtMgBr was identified as an alternative ethyl transfer agent to ZnEt₂. Magnesium halides typically have poor solubility in aromatic and ethereal solvents so separation of the salt by-product from the product should be easier to achieve. Furthermore, since a Grignard bears only one alkyl group, partial transmetallation to form a magnesium fragment analogous to [IZnEt] cannot occur.

![Scheme 2.26 Synthesis of 11.](image)

Addition of 2 equivalents of EtMgBr (1 M in THF) to a THF solution of 6 results in an immediate colour change from red to brown-green and precipitation of pale brown MgBrI from solution. Filtration followed by addition of hexanes and cooling to −30 °C allows the isolation of the magnesium free alkylation product [{Cr(Et)}₂(endo-THF)(L^Me)] (11) as dark green crystals in moderate (38 %) yield (Scheme 2.26). Again, one molecule of THF occupies the intermetallic cleft and ligates just one of the Cr(III) ions in much the same fashion as the pyridine molecule in 10. The ¹H NMR spectrum of 11 in C₆D₆ displays several very broad resonances between δ 21 and −42 ppm which cannot be assigned to individual ligand proton environments.
Figure 2.21 Solid state structures of 10 (left) and 11 (right). Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Table 2.9 Comparison of selected distances (Å) and angles (°) in the structures of 10 and 11.

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr2</td>
<td>4.550(1)</td>
<td>4.602(9)</td>
<td>Cr1-N9/O1</td>
<td>2.196(3)</td>
</tr>
<tr>
<td>mean Cr-N_im</td>
<td>2.11</td>
<td>2.10</td>
<td>Cr2···N9/O1</td>
<td>3.379(3)</td>
</tr>
<tr>
<td>mean Cr-N_pyr</td>
<td>1.98</td>
<td>1.98</td>
<td>C43-Cr1-N9/O1</td>
<td>177.5(1)</td>
</tr>
<tr>
<td>Cr1-N4 plane</td>
<td>−0.02</td>
<td>−0.03</td>
<td>Cr1-C43-C44</td>
<td>118.0(3)</td>
</tr>
<tr>
<td>Cr2-N4 plane</td>
<td>+0.27</td>
<td>+0.30</td>
<td>Cr2-C45-C46</td>
<td>115.7(2)</td>
</tr>
<tr>
<td>Cr1-C43</td>
<td>2.087(3)</td>
<td>2.087(4)</td>
<td>Cr1-N9-C49</td>
<td>164.8(1)</td>
</tr>
<tr>
<td>Cr2-C45</td>
<td>2.051(4)</td>
<td>2.064(4)</td>
<td>Cr2-N9-C49</td>
<td>87.5(1)</td>
</tr>
<tr>
<td>C43-C44</td>
<td>1.512(5)</td>
<td>1.520(6)</td>
<td>bite angle</td>
<td>71</td>
</tr>
<tr>
<td>C45-C46</td>
<td>1.513(5)</td>
<td>1.509(6)</td>
<td>twist angle</td>
<td>7</td>
</tr>
</tbody>
</table>

The solid state structures of 10 and 11 are very similar (Figure 2.21). In both cases one Cr(III) cation occupies each N₄ donor pocket of the macrocycle and is bound to one ethyl ligand in the exo axial co-ordination site. A single molecule of donor solvent (pyridine or THF) occupies the intermetallic cleft binding solely to Cr1. The resultant co-ordination geometries are octahedral about Cr1 and square based pyramidal about Cr2. This assignment is unambiguous since the Cr2···N9/O1 separations (3.379(3) / 3.345(3) Å) are much longer than the Cr1-N9/O1 bond lengths (2.196(3) / 2.359(3) Å) and the Cr2 cations are in fact displaced out of the N₄ plane away from the endo solvent molecule by 0.27 and 0.30 Å in 10 and 11 respectively. The Cr1-N9-C49 angle in 10 is 164.8(1) ° which is approaching the optimum pyridine-M co-ordination angle of 180 ° whilst the Cr2-N9-C49 angle of 87.5(1) Å is prohibitive to N9-Cr2 orbital overlap, assuming sp² hybridisation of the nitrogen orbitals.
It is interesting to note that the Cr1-O1 bond (2.359(3) Å) in 11 is longer than the Cr1-N9 bond (2.196(3) Å) in 10, when the reverse would be expected based on the smaller atomic radius of O (0.60 Å) compared to N (0.65 Å). It is likely that the planar pyridine molecule is incorporated within the macrocyclic cleft with less steric strain than the bent THF molecule allowing the N-donor to approach closer to Cr1 than the O-donor, in an analogous fashion to the xylyl and tert-butyl isocyanides in complexes 4 and 5.

In 10 and 11 the Cr1-C43 bond lengths of 2.087(3) and 2.087(4) Å, respectively, are longer than the Cr2-C45 bond lengths of 2.051(4) and 2.064(4) Å, respectively, indicating that the 5-co-ordinate Cr(III) ion has a slightly stronger interaction with the ethyl ligand than the octahedral Cr(III) ion. The Cr-C_{Et} bond length observed in the (IZnEt)-incorporated complex 9 of 2.063(7) Å (Table 2.8) is similar to the Cr2-C45 distances in 10 and 11 which supports the suggestion that the Cr····(endo-I) interaction is weak and that the Cr(III) centres are effectively 5-co-ordinate in 9. Reported Cr^{III}-C_{alkyl} distances range from 1.99 to 2.20 Å with a mean value of 2.10 Å so the observed Cr-C_{Et} distances in compounds 9 – 11 are within the normal range. The structurally similar, square-pyramidal imine/pyrrolide Cr(III)-Et complex 2AS reported by Gibson and co-workers (Figure 2.22, left) features a shorter Cr-C_{Et} interaction of 2.02(2) Å, though due to the larger uncertainty in the literature value, the difference from the observed Cr-C_{Et} bond lengths in 9 - 11 is not statistically significant.

![Figure 2.22 Examples of neutral Cr alkyl complexes synthesised by the Gibson (left), Gambarotta (centre), and Noels groups (right).](image)

Direct substitution of the iodide ligands in 6 for ethyl groups may have been expected to yield \([\text{Cr}_2(\mu-\text{Et})(\text{Et})(\text{sol})(\text{L}^{\text{Me}_3})]\) (sol = py or THF). However none of the chromium alkyl complexes 9 - 11 contain bridging ethyl groups; all feature only exo axial alkyls. There is certainly enough space for an ethyl group to be incorporated within the macrocyclic cleft and the formation of alkyl bridged chromium complexes is by no means unusual; a bis-(\(\mu\)-Et) Cr(II)/Cr(II) example from the Gambarotta group, 2AT, is shown in Figure 2.22. There are no structurally characterised binuclear chromium complexes containing a single bridging alkyl ligand. However, as discussed above, this was also the case for iodide bridged binuclear chromium complexes but the sterically constrained
Chapter Two

The macrocyclic environment enabled the isolation of the first mono-(µ-I) Cr(III)/Cr(III) complexes 6 and 7. Exertion of similar steric control could be reasonably expected to produce a mono-(µ-Et) Cr(III)/Cr(III) complex. The probable reason for the exclusive formation of terminal Cr-Et bonds in 9 – 11 is that in order to attain optimum orbital overlap between two Cr centres and a bridging R− group, the separation of the Cr centres needs to be shorter than is allowed by the Pacman ligand framework. In the alkyl-bridged Cr complex 2AT, the Cr···Cr distance is 2.3282(5) Å and the longest published Cr···Cr separation in an alkyl-bridged binuclear chromium complex is 2.662(1) Å, in the Cr(III)/Cr(III) metallated silylamide dimer 2AU (Figure 2.22, right). The Cr···Cr separations in 9 – 11 are 4.621(1), 4.550(1) and 4.602(9) Å and the shortest Cr···Cr separation that we have observed for a chromium Pacman complex with a low twist angle (required to allow bridging of the metal centres) is 3.5877(5) Å in 4. Therefore we suggest that the Cr(III) ions in the Pacman macrocycle are too distant to be bridged by an alkyl ligand.

Scheme 2.27 Probable equilibrium established in solution following reaction of 6 with excess ZnEt₂. Sol = py, THF. The ligand is shown in cartoon form.

The similarities in the structures and solvent co-ordination modes of 10 and 11 raises the question of whether THF would be a good enough competing donor to prevent formation of the [IZnEt] incorporated product 9 if the reaction between 6 and ZnEt₂ were carried out in THF. In the reaction between 6 and ZnEt₂ in toluene, there is one molar equivalent of THF present originating from the THF-ligated starting material and this does not displace the [IZnEt] unit from the cleft, possibly because all the available THF is bound to the various zinc-containing species present. However, it is likely that the presence of a large excess of THF could perturb the position of the equilibrium presented in Scheme 2.27 sufficiently to result in displacement of the zinc fragment.
2.5.3 Reactivity of ([Cr(Et)]_2(endo-THF)(L^Me))

Preliminary investigations into the reactivity of 11 have been carried out. It was found that a benzene solution of 11 does not react with either CO or H₂. Commonly, transition metal alkyl complexes do react with these gases to form acyl and hydride complexes respectively (Scheme 2.28). However, both of these reactions require a vacant site at the metal centre cis to the alkyl group for the substrate reagent to bind. The Pacman macrocycle motif prohibits ligand rearrangement of 11 so the only vacant co-ordination site is the endo in-cleft site (assuming that the endo THF ligand dissociates), which is trans to both Et⁻ ligands. Therefore it is not surprising that 11 does not show reactivity towards CO or H₂. In fact, the lack of a vacant cis co-ordination site likely increases the stability of 11 by also preventing β-hydride elimination.

Scheme 2.28 General reactions of CO (top) and H₂ (bottom) with a transition metal alkyl complex.

The reaction of 11 with the alkyl abstraction reagent [CPh₃][B(ArF)₄] (ArF = C₆F₅) was also investigated in the hope of synthesising a cationic alkyl chromium Pacman complex that may have enhanced reactivity with respect to neutral 11. One equivalent of [CPh₃][B(ArF)₄] was added to a dark green solution of 11 in C₆D₆. The mixture immediately turned brown and formation of oily brown solid was observed. The ¹H NMR spectrum of the mixture revealed that HCPh₃ and ethene were present in solution, implying that [CPh₃]⁺ abstracts a hydride rather than an ethyl group from 11 to form a chromium ethene complex, from which the ethene then dissociates (Scheme 2.29). The reaction was repeated in d₈-THF in the hope that all the products would be soluble. Initially a brown-red solution was formed but this was converted into a gel overnight, presumably by polymerisation of the THF solvent. This result indicates that the chromium species formed is indeed more reactive than the parent alkyl complex 11, which is prepared in THF.
The polar non-co-ordinating solvent dichloromethane was identified as an alternative solvent since it has been used successfully by the Theopold group for the isolation and catalytic testing of Cr(III) alkyl cations.31,32 Addition of one equivalent of \([\text{CPh}_3][\text{B(Ar}^\text{F})_4]\) to a green solution of 11 in \(\text{CD}_2\text{Cl}_2\) resulted in the formation of a red-brown solution. Once again \(\text{HCPh}_3\) and ethene were observed in the \(^1\text{H NMR}\) spectrum along with a set of broad, paramagnetically shifted resonances appearing between 18 and \(-50\) ppm assigned to the chromium containing product. The \(^{11}\text{B NMR}\) spectrum displays a singlet at \(-16.63\) ppm corresponding to the \([\text{B(Ar}^\text{F})_4]^-\) anion which is not shifted from the expected value. However the \(^{19}\text{F NMR}\) spectrum of the mixture contains three broadened resonances with no visible multiplicity at \(-133, -163\) and \(-167\) ppm. The relative intensities of these three resonances have been observed to vary between 12:2:2 and 5:2:3 for different repeats of the reaction but do not appear to change over time for a single reaction mixture. However, they are affected by changes in temperature. It is not clear whether all three resonances correspond to a single product, with the discrepancies in resonance intensity between different samples being a product of temperature differences and changes in the concentration of paramagnetic species present, or whether multiple products are formed.
Figure 2.23 Variable temperature 19F NMR spectra of the 11 + [CPh$_3$][B(ArF)$_4$] reaction mixture in CD$_2$Cl$_2$. Inset: example of a transition metal complex featuring the $\{\kappa^2$-F(C$_6$F$_5$)B(C$_6$F$_5$)$_3\}$ binding mode of [B(ArF)$_4$]$^-$.}

From the 19F NMR data we can deduce that the [B(ArF)$_4$]$^-$ anion cannot be truly non-co-ordinating in this reaction mixture otherwise only the NMR signals corresponding to free [B(ArF)$_4$]$^-$ would be observed. In fact, due to the addition of a slight excess of [CPh$_3$][B(ArF)$_4$] to the reaction, minor 19F resonances for free [B(ArF)$_4$]$^-$ are observed at \sim137, \sim154 and \sim162 ppm, which are distinct from the three major signals. Therefore it is likely that [B(ArF)$_4$]$^-$ interacts with a chromium species in solution. In recent years a handful of structures have been published in which a fluorinated borate anion co-ordinates to an early transition metal via one or two F atoms of a C$_6$F$_5$ ring (eg. 2AW, Figure 2.23, inset).}

In
solution the anion co-ordination is reported to be fluxional for all these complexes and the 19F NMR spectra display only one set of resonances. Fluxional chromium co-ordination by $[B(\text{Ar}^F)_{n}]^{-}$ would account for the observed loss of multiplicity and broadening of the 19F signals. A variable temperature NMR study was carried out on the reaction mixture in an attempt to probe the fluxional processes occurring (Figure 2.23). The 19F signals broaden as the temperature is lowered, being absorbed into the base line at 183 K but the low temperature limiting spectrum could not be resolved within the liquid range of the solvent. In light of these observations a plausible structure for the product of the reaction of 11 with $[\text{CPh}_3][B(\text{Ar}^F)_{n}]$ is the contact ion pair $[[\text{Cr(Et)}][\text{Cr(κ}^2-\text{F(C}_6\text{F}_5)\text{B(C}_6\text{F}_5)_{3})\text{(THF)}(\text{L}\text{Me})]]$ depicted in Scheme 2.29, but we have not been able to verify this by X-ray crystallography or elemental analysis.

Cationic Cr(III) alkyl complexes have been shown to be proficient in the activator-less polymerisation and oligomerisation of ethylene.32 With this in mind, an atmosphere of ethylene (1.0 bar) was introduced to the NMR tube containing the reaction mixture of 11 and $[\text{CPh}_3][B(\text{Ar}^F)_{n}]$ in CD$_2$Cl$_2$. No solid polyethylene was formed and no new organic oligomeric species were observed by 1H NMR spectroscopy, and the 19F spectrum of the mixture was unchanged. However the solution changed colour from red-brown to crimson red over 16 h and a new set of broad, paramagnetically shifted resonances were observed between 36 and -70 ppm. This could indicate that the mixture of 11 and $[\text{CPh}_3][B(\text{Ar}^F)_{n}]$ reacts stoichiometrically, rather than catalytically, with ethylene to produce a new chromium species but it is equally possible that a slow reaction with the CD$_2$Cl$_2$ solvent occurs leading to degradation.

The reaction between 11 in CD$_2$Cl$_2$ with ethylene in the absence of $[\text{CPh}_3][B(\text{Ar}^F)_{n}]$ was also evaluated. In this case NMR spectroscopy indicated that no reaction occurred over 48 h and no physical changes to the solution were noted. However the reaction mixture gradually turned crimson red over 2 weeks after which time new paramagnetically shifted resonances were observed in the 1H NMR spectrum between 16 and 0 ppm. Again, it cannot be determined whether 11 reacts very slowly with ethylene or whether it simply degrades in CD$_2$Cl$_2$ solution over long periods. Due to time restraints no further investigations into the reactivity of 11 have been undertaken.
2.6 Conclusions

Binuclear chromium(II) complexes of two different macrocyclic ligands, H₄Lˣ and H₄Lᴬ, have been synthesised. These represent the first structurally characterised early transition metal Pacman complexes that may be routinely and reproducibly prepared. The structure and reactivity of [Cr₂(Lˣ⁶)] (1) has been extensively studied.

The electronic structure of 1 has been probed by variable temperature magnetic susceptibility measurements and EPR spectroscopy to reveal that the ligand framework facilitates strong antiferromagnetic coupling between the high spin Cr(II) ions, though there is no direct Cr-Cr bond formation. Subjecting a single crystal of 1 to increasing pressure resulted in contraction of the crystal lattice but did not induce Cr-Cr bond formation; an increase in the torsional twist of the complex was observed and a long range η^6 interaction developed with the benzene lattice solvent but no reduction in macrocycle bite angle occurred. It appears that the macrocycle pockets cannot be forced close enough together to allow M-M bond formation.

The co-ordination chemistry of 1 may be rationalised by considering the steric demands of the different Lewis bases in concert with the restrictive environment of the Pacman macrocycle, and the co-ordination preferences of the d⁴ Cr(II) ion. Thus, formation of octahedral complexes is not observed and the OPPh₃ ligands in [Cr₂(OPPh₃)₂(Lˣ⁶)] (3), which necessarily occupy the exo axial sites due to their bulk, are labile in co-ordinating solvents. The less sterically demanding isocyanide ligands form the complexes [Cr₂(µ-CNR)(Lˣ⁶)] (R = Xyl 4, iBu 5) where the isocyanide occupies the intermetallic cleft. These are substantially less labile; the xylyl isocyanide dissociates from 4 only in pyridine solution whilst 5 is stable in the presence of pyridine or DMAP. The reduced lability of 5 is likely due to the stronger σ-donation from the alkyl isocyanide to the Cr(II) ions. The increased stability of 4 and 5 relative to 3 can be attributed to the “pincer” effect of two Cr(II) ions biting down on the isocyanide ligands and steric shielding of the endo isocyanides by the macrocycle. Bridging two chromium centres is an unprecedented binding mode for an isocyanide; it must be facilitated in this case by the pre-organisation of the two Cr(II) centres within the Pacman framework.

The oxidation of 1 with iodine yields [Cr₂(µ-I)(THF)(Lˣ⁶)] (6) or [Cr₂(µ-I)(py)₂(Lˣ⁶)][II] (7) when carried out in THF or pyridine respectively. These complexes provide two different possible structural models for the complexes [(MCl)₂(Lˣ⁶)] (M = Ti, V) which have been previously synthesised but not characterised in the solid state.⁸⁶ Again,
the \(\{\text{Cr}_2(\mu-I)\} \) binding motif has not been previously observed, emphasising the unique coordination environment established by the Pacman ligand. Iodides are desirable auxiliary ligands because they may be substituted for different groups by employing a salt elimination strategy, allowing several derivatives to be prepared. Furthermore the iodides in both 6 and 7 occupy two distinct environments: \emph{endo} and \emph{exo} in 6, \emph{endo} and counterion in 7. This non-equivalence was exploited in the synthesis of the anion exchange product \([\text{Cr}_2(\mu-I)(\text{py}_2)(\text{L}^{Me})][\text{B}\{\text{OC}_6\text{H}_5(\text{tBu})_2\}_2] \) (8) from 7. An interesting extension to the work presented here would be the synthesis of a series of mixed-ligand chromium Pacman complexes from 6 by the selective substitution of just one of the \(\Gamma^- \) ligands.

Formation of alkyl chromium Pacman complexes from 6 has been demonstrated employing either \(\text{ZnEt}_2 \) or \(\text{EtMgBr} \) as alkyl transfer reagents. Though use of \(\text{ZnEt}_2 \) facilitated the structural characterisation of \([\{\text{Cr}((\text{Et})_2(\mu-I-ZnEt))(\text{L}^{Me})\}] \) (9) an unusual mixed-metal alkyl species, and \([\{\text{Cr}((\text{Et})_2(\text{endo-py})(\text{L}^{Me})\}] \) (10), the Grignard was found to be the most synthetically useful alkyl source, allowing the isolation of pure \([\{\text{Cr}((\text{Et})_2(\text{endo-THF})(\text{L}^{Me})\}] \) (11). The ethyl ligands in these complexes bind exclusively in the \emph{exo} axial positions with either a solvent molecule or the organometallic fragment \(\{\text{IZnEt}\} \) trapped in the intermetallic cleft. The dialkyl complex 11 is unreactive towards \(\text{CO}, \text{H}_2 \) and \(\text{CH}_2\text{CH}_2 \) but does react rapidly with \([\text{CPh}_3][\text{B}(\text{ArF})_4] \), possibly generating an ion pair of the form \([\{\text{Cr}((\text{Et})_2(\text{Cr}(\kappa^2-F(\text{C}_6\text{F}_5))\text{B}(\text{C}_6\text{F}_5)_3)(\text{THF})(\text{L}^{Me})]) \). Further work is required to fully characterise the product of this reaction and it would also be interesting to investigate the use of different Grignard reagents to synthesise a series of alkyl chromium Pacman complexes. The potential of 11 to undergo useful organic transformations is hampered by the lack of an available co-ordination site \(\text{cis} \) to the alkyl groups.

Between the different structurally characterised chromium complexes of \(\text{H}_4\text{L}^{Me} \) the \(\text{Cr}\cdots\text{Cr} \) separation varies from 3.1221(1) \(\text{Å} \) to 4.621(1) \(\text{Å} \) and the bite angle of the complexes from 48° to 71°. The term “Pacman” was coined to describe the ability of a flexible bimetallic complex to “chew” upon substrates of different sizes; it is clearly an appropriate descriptor for complexes of the \(\text{H}_4\text{L}^{Me} \) macrocycle. The work described in this chapter represents the first study of the structure and reactivity of a series of early transition metal Pacman complexes and will hopefully serve as a blueprint for extending such investigations to other metals.
Chapter Two

2.7 References

Chapter Two

Chapter Two

(64) J. D. Lawrence, T. B. Rauchfuss, S. R. Wilson, \textit{Inorg. Chem.}, 2002, 41, 6193.

Chapter Three

Uranium Pacman Complexes
3.1 Introduction to uranium chemistry

Uranium is the heaviest naturally occurring element with an atomic number of 92. It was first identified in 1789 and named after the planet Uranus, also discovered in that year. However, it was not until the discovery of nuclear fission in the 1930s that the importance of uranium for nuclear energy generation was realised. Depleted uranium, the by-product of uranium enrichment for the nuclear industry, is utilised in academic laboratories to study the chemical reactivity of the element. The major isotope present in depleted uranium is ^{238}U (> 99.7 %) which is a long half-life α-emitter and may be handled safely without the need for special precautions.

![Figure 3.1 Illustration of the geometry of the uranyl dication (left) and the two U(II) complexes, 3A and 3B, isolated to date. Only one arm of the aryloxide ligand in 3B is represented in full, the others are identical.](image)

Uranium is an early actinide and the heaviest element in Group VI. It exhibits oxidation states from +6 to +2 in its compounds. This is in contrast to the lanthanides and late-actinides which exist almost exclusively in the +3 oxidation state. The 5f valence orbitals of uranium can participate more readily in bonding because of their high energy and large radial extent, which are attributed partly to the presence of a radial node and partly to the relativistic contraction of the shielding s and p outer core orbitals. In aerobic conditions the +6 oxidation state of uranium dominates, typified by the soluble, stable, linear, trans-dioxo uranyl dication, $[\text{UO}_2]^{2+}$ (Figure 3.1, left). One electron reduction of the uranyl dication in the environment affords the unstable uranyl monocation $[\text{UO}_2]^+$ which disproportionates back to $[\text{UO}_2]^{2+}$ and U(IV) species, which tend to be insoluble and can be problematic contaminants. U(III) can only be isolated in strictly anaerobic and anhydrous conditions. The +3 oxidation state was long thought to be the lowest accessible in uranium compounds, but in 2013 Evans reported the synthesis of the first U(II) complex (3A, Figure 3.1) by reduction of $[\text{U(C}_5\text{H}_4\text{SiMe}_3)_3]$ with K metal in the presence of 2.2.2.-cryptand, at low temperature. Following an identical methodology, the Meyer group prepared a second U(II) complex (3B, Figure 3.1) in 2014.
Chapter Three

In its complexes, uranium typically adopts high co-ordination numbers due to its large size, and exhibits a range of different co-ordination geometries. The formation of “-ate” salts, where more anionic ligands than are required for charge neutrality are co-ordinated to the metal centre as in complexes 3A and 3B, is commonly observed. The propensity of uranium cations to form “-ate” salts is attributed to their large size and high Lewis acidity.\(^4\)

The remainder of this introduction will focus on selected chemistry of U(III) compounds since the +3 oxidation state of uranium is most relevant in small molecule activation.

3.1.1 Uranium(III) precursors

The number of binary U(III) precursors available is very limited. Before 1989, U(III) chemistry was generally accessed via UCl\(_3\)(THF)\(_x\), UH\(_3\) or polymeric UI\(_3\). UCl\(_3\)(THF)\(_x\) must be generated \textit{in situ} and is an unstable and poorly understood material,\(^7,8\) whilst the preparation of UH\(_3\) and polymeric UI\(_3\) require harsh conditions and specialist equipment.\(^9,10\) However, the field of uranium(III) chemistry has exploded since 1989 when Sattelberger and co-workers published the first, straightforward, solution synthesis of a soluble U(III) precursor, UI\(_3\)(THF)\(_x\), by the reaction of uranium turnings with 1.5 equivalents of iodine in THF solution at 0 °C (Equation 3.1).\(^11,12\) Though the isolation of UI\(_3\)(THF)\(_x\) represented a significant advance, THF is not an ideal reaction solvent since the U(III) ions tend to ring open the cyclic ether, hence the requirement for low reaction temperatures to control side-product formation. Further improvements were reported by the Arnold\(^13\) and Kiplinger\(^14\) groups who repeated the reaction at room temperature in diethylether and 1,4-dioxane solvents to produce base free UI\(_3\) and UI\(_3\)(dioxane)\(_{1.5}\), respectively (Equation 3.1).

\begin{equation}
\text{U} + 1.5 \text{I}_2 \xrightarrow{\text{sol}} \text{UI}_3(\text{sol})_x
\end{equation}

The synthesis of UI\(_3\)(sol), has enabled the subsequent preparation of a wide range of U(III) complexes by salt elimination strategies. Uranium(III) aryloxides, silylamides and cyclopentadienyls have been prepared, as well as complexes of larger macrocyclic and chelating ligands.\(^15\) The utility of UI\(_3\) is underpinned by its stability. Not only is UI\(_3\) the only stable trivalent halide of uranium, it is also stable with respect to the U(IV) iodide, UI\(_4\). At room temperature UI\(_4\) decomposes to UI\(_3\) with the release of iodide.\(^16\)
3.1.1.1 Uranium(III) borohydrides

Another class of uranium compounds which display thermal instability of the U(IV) state with respect to the U(III) state is the uranium borohydrides. Ephritikhine and co-workers reported the thermal decomposition of U(BH₄)₄ in mesitylene solution at 150 °C to yield the U(III) arene complex [U(BH₄)₃(C₆H₃Me₃)] (3C, Scheme 3.1, left). The solid state structure of the hexamethylbenzene derivative [U(BH₄)₃(C₆Me₆)] (3D) features U···B separations of 2.49(4), 2.54(3) and 2.69(3) Å which are characteristic of three hydrides from each BH₄⁻ ligand bridging to the U(III) centre: a {(µ-H)₃BH} binding mode. In a related demonstration of the stability of U(III) borohydrides, Daly and Girolami reported that the reaction of UCl₄ with Na(H₃BNMe₂BH₃) exclusively formed the U(III) product [U(H₃BNMe₂BH₃)] (3E, Scheme 3.1, right). In complex 3E the U···B separations range from 2.842(6) to 2.935(6) Å and are consistent with {(µ-H)₂BHR} binding modes.

\[U(BH_4)_4 \xrightarrow{150 \, ^\circ C} \begin{array}{c} \cdot \stdlib{JPG}{316}{316}

\[U(BH_4)_4 \xrightarrow{4 \text{Na}(H_3BNMe_2BH_3)} UCl_4 \xrightarrow{Et_2O} \]

\[3E \]

3C

Scheme 3.1 Formation of U(III) borohydride complexes from U(IV) starting materials. The borohydride binding mode is only shown explicitly for one [H₃BNMe₂BH₃]⁻ ligand in 3E.

U(BH₄)₄ was originally targeted during the Manhattan project because of its volatility but its synthesis is non-trivial, prepared either by reaction of UF₄ with neat Al(BH₄)₃ or by vacuum milling of a solid mix of UCl₄ and LiBH₄. Therefore synthesis of U(BH₄)₄ followed by its thermal decomposition is not a convenient method of preparing U(III) borohydrides in most synthetic laboratories. The reaction of UH₃ with diborane in THF solution was reported to form [U(BH₄)₃(THF)] (3F, Figure 3.2), which was structurally characterised, but the reaction was slow and the yield (4 %) was poor. Reaction of NaBH₄ with in situ prepared UCl₃(THF)ₓ yielded red solids which were not fully characterised, though addition of the chelating phosphine dmpe allowed the isolation and structural analysis of [U(BH₄)₃(dmpe)] (3G, Figure 3.2).

The structures of the adducts 3F and 3G are dissimilar. The co-ordination geometry about U(III) is octahedral in 3F with the three BH₄⁻ ligands and three THF molecules in facial arrangements. The U···B distances range from 2.63 to 2.70 Å indicating that all three BH₄⁻ ligands bind through three bridging hydrides making 3F structurally analogous to the
Chapter Three

arene complex 3C. The U(III) ion in 3G exhibits pentagonal bipyramidal co-ordination with the two bidentate phosphines and one BH₄⁻ in the equatorial plane and the other two borohydrides in the axial positions. The axial U···B distances are 2.68(4) Å, corresponding to {[(µ-H)₂BH]} co-ordination but the equatorial U···B separation is longer at 2.84(3) Å and indicates a {[(µ-H)₂BH₂]} binding mode. Limited further reactivity of these U(III) borohydride complexes has been reported. In summary, BH₄⁻ is an attractive alternative supporting ligand to I⁻ for U(III) chemistry and has not been extensively explored.

Figure 3.2 Different Lewis base adducts of U(BH₄)₃.²¹,²²

3.1.2 Small molecule activation by uranium(III)

Uranium in the +3 oxidation state is highly reducing. U(III) complexes have been shown to activate diverse small molecules.²³ On-going research efforts are focussed on developing more selective and useful transformations with the ultimate aim of achieving novel catalysis.²⁴ An overview of the reactions of U(III) complexes with selected small molecules is given below, focussing on those of particular relevance to the experimental work presented in this thesis.

3.1.2.1 N₂

Early Haber-Bosch catalysts contained uranium, reflecting the significant reducing power of the element, but relatively few organometallic dinitrogen complexes of uranium have been reported. The first example was synthesised by Scott and co-workers who formed the side-on bound dinitrogen complex [{U(NN’₃)}₂(µ-η²:η²-N₂)] (3H) by exposure of the U(III) precursor to an atmosphere of N₂.²⁵ The N-N bond length in 3H of 1.109(7) Å is essentially unchanged from that of free N₂ (1.0976 Å) indicating a minimal degree of reduction and the N₂ ligand was found to dissociate under vacuum. Significant reduction of the N₂ ligand has been observed in other complexes. The N-N bond length is 1.232(10) Å in the pentalene-supported uranium dinitrogen complex 3J (Figure 3.3) which is considered to be a U(IV)/U(IV) complex bridged by (N₂)²⁻.²⁶ Despite this formal reduction, 3J also readily loses N₂ to reform the monomeric U(III) parent complex, presumably driven by relief of steric crowding. Reduction of dinitrogen to (N₂)²⁻ with concomitant oxidation of the U(III) centres to U(IV) was similarly observed in the formation of the dinitrogen complex 3K with
aryloxide ligands (Figure 3.3) which features N-N bond lengths of 1.190(18) and 1.236(5) Å, depending on the solvent of crystallisation.27 Complex 3K is stable under vacuum, though the N\textsubscript{2} unit may be displaced by addition of competing ligands.

\textbf{Figure 3.3} Side-on bridging dinitrogen complexes of uranium.25-27

A greater degree of N\textsubscript{2} activation was observed in the hetero-binuclear end-on bound dinitrogen complex 3L (Figure 3.4) which was formed by exposure of an equimolar toluene solution of [U{N(N'But)Ar\textsubscript{3}}(THF)] and [Mo{N(N'But)Ph\textsubscript{3}}] to an atmosphere of N\textsubscript{2}.28 The bond lengths of the \{U-N-N-Mo\} unit indicate a degree of multiple bonding in both the U-N and Mo-N bonds. Complex 3L is an unusual example of end-on co-ordination of dinitrogen at uranium. The Gambarotta group reported the remarkable complete cleavage of N\textsubscript{2} between two calix[4]tetrapyrrole supported U(III) centres upon addition of reducing equivalents of potassium naphthalenide.29 The product was the mixed-valence U(V)/U(IV) bis(nitride) bridged anion 3M (Figure 3.4).

\textbf{Figure 3.4} Uranium complexes containing strongly activated N\textsubscript{2} units.28,29 Ar = 3,5-C\textsubscript{6}H\textsubscript{3}Me\textsubscript{2}.

3.1.2.2 CO

CO is isoelectronic with N\textsubscript{2} but unlike N\textsubscript{2}, CO is a polar molecule. The C≡O bond is the strongest chemical bond known with a dissociation energy of 1072 kJmol-1 compared to 942 kJmol-1 for the N≡N bond. The polarity of CO enhances both its σ donor and π acceptor characteristics compared to N\textsubscript{2} and accounts for the rich co-ordination chemistry of CO in combination with transition metals.30 By contrast, stable actinide carbonyl complexes are rare due to the reduced π back-donation ability of f orbitals compared to d orbitals. Only three uranium carbonyl complexes are stable enough to have been isolated and structurally
Chapter Three

characterised (Scheme 3.2). The U(III) cyclopentadienyl carbonyl complexes 3N and 3P were formed by exposure of solutions of the corresponding U(III) metallocenes to CO gas. The CO co-ordination mode is approximately linear in both complexes and ν_{CO} is 1880 cm$^{-1}$ in 3N31 and 1922 cm$^{-1}$ in 3P32. Both these values are considerably reduced compared to that of free CO ($\nu_{\text{CO}} = 2143$ cm$^{-1}$) and therefore indicate that a degree of π back-donation occurs from U to C. Despite this, neither complex is stable under vacuum; CO dissociation occurs to regenerate the starting complexes. In 2005, the Meyer group reported that exposure of $[\text{U}^{\text{III}}\{\text{tacn(OAr}^{\text{th}}\text{)}\}_3]$ to CO gas resulted in formation of the unprecedented end-on CO bridged binuclear product 3Q (Scheme 3.2, right)33. Complex 3Q is the only uranium carbonyl complex which is stable under vacuum. It is assigned as a mixed-valence U(IV)/U(III) species containing a reduced CO unit and exhibits ν_{CO} at 2092 cm$^{-1}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme_3.2.png}
\caption{Structurally characterised uranium carbonyl complexes. Only one ligand arm is shown explicitly in 3Q; all three are identical.}
\end{figure}

Reductive coupling of CO with concurrent C-C bond formation has been demonstrated between U(III) centres. In 2008, Cloke and co-workers reported the reaction of a pentane solution of the mixed sandwich compound $[\text{U}\{\text{C}_8\text{H}_6(\text{Si}^{\text{Pr}}\text{)}_2\}(\text{C}_5\text{Me}_5)(\text{THF})]$ with 1 bar of CO gas to form complex 3R which contains the newly formed deltate dianion $(\text{C}_3\text{O}_3)^{2-}$ bridging between two U(IV) centres (Scheme 3.3).34 The triangular C$_3$ core of the deltate anion features two short C-C bonds and one longer C-C bond that forms an agostic interaction to one U(IV) centre. In solution, 3R appears symmetric by 1H NMR spectroscopy indicating that the deltate co-ordination mode is fluxional. It was discovered that modifying the reaction stoichiometry so that just 0.9 equivalents of CO were added to a toluene solution of $[\text{U}\{\text{C}_8\text{H}_6(\text{Si}^{\text{Pr}}\text{)}_2\}(\text{C}_5\text{Me}_5)(\text{THF})]$ allowed the isolation of a different product: the ynediolate $(\text{C}_2\text{O}_2)^{2-}$-bridged complex 3S.35 The Arnold27 and Liddle36 groups have also reported coupling of CO between U(III) centres to selectively form ynediolate complexes even in the presence of excess CO. The ynediolate core in 3S is essentially linear and the C-C distance is short (1.177(12) Å) which is consistent with a C≡C triple bond. Interestingly,
3S cannot be converted into 3R by the addition of further equivalents of CO. Fine tuning of the stéric of the starting sandwich complex was also observed to control the product distribution. Thus addition of CO gas (1 bar) to a toluene solution of \([U(C_8H_6(SiPr_3)_2)(C_5HMe_4)(THF)]\) at \(-30^\circ C\) resulted in formation of the squarate \((C_4O_4)_{2-}\)bridged binuclear U(IV)/U(IV) complex 3T.\(^{37}\) These reductive coupling reactions represent the selective transformation of CO, a C\(_1\) feedstock, to higher order C\(_n\) homologues, which is a vitally important industrial process. Liberation of the \((C_nO_n)_{2-}\) cores from the U(IV) centres has been demonstrated for some of the above and related complexes, indicating that once optimised these reactions could be of synthetic use.\(^{36,38}\)

![Scheme 3.3](image)

Scheme 3.3 Reductive coupling of CO by U(III) to form various \((C_nO_n)_{2-}\) anions.\(^{34,35,37}\)

3.1.2.3 \(CO_2\)

Another cheap and plentiful C\(_1\) source is carbon dioxide. CO\(_2\) is more susceptible to reduction than CO. Oxide abstraction and reduction of CO\(_2\) to CO was first demonstrated for a U(III) complex in 1991. Ephritikhine and co-workers reported that exposure of the U(III) metallocene complex \([U(C_7H_6SiMe_3)_3]\) to CO\(_2\) resulted in formation of the oxo-bridged U(IV)/U(IV) dimer \([(U(C_7H_6SiMe_3)_3)_2(\mu-O)]\).\(^{39}\) More recently, the Meyer group has illustrated the importance of stéric in determining the reaction outcome. Addition of CO\(_2\) to the ortho-\(^1\)Bu substituted U(III) aryloxide tacn complex \([U\{tacn(OAr^\text{tBu})_3\}]\) yields the oxo-bridged product 3U with elimination of CO gas (Scheme 3.4, left).\(^{33}\) By contrast, if the more stericly congested ortho adamantyl substituted U(III) tacn complex \([U\{tacn(OAr^\text{Ad})_3\}]\) is employed, the highly unusual monomeric CO\(_2\) complex \([U\{tacn(OAr^\text{Ad})_3\}(\eta^1-OCO)]\) (3V) is isolated (Scheme 3.4, right).\(^{40}\) The CO\(_2\) molecule in 3V co-ordinates to the uranium centre in a linear end-on fashion and has been singly reduced to a radical anion so the oxidation state of the U ion in the product is +4. Complex 3V is the only known example of a linear O-bound CO\(_2\) ligand. The authors suggest that oxo complex 3U is formed via a transient CO\(_2\)-bridged binuclear species from which CO is then eliminated. Monomeric CO\(_2\) complex 3V
can be isolated because the increased bulk of the adamantyl substituted ligand disfavours the approach of a second molecule of \([\text{U}\{\text{tacn(OAr}^{\text{Ad}})_{3}\}]\), preventing formation of a CO$_2$-bridged binuclear species followed by collapse to the oxo-bridged dimer.

![Scheme 3.4 Contrasting reactivity of different U(III) tacn complexes with CO$_2$.](image)

The Arnold group reported simultaneous oxo abstraction and CO$_2$ insertion into uranium-ligand bonds in the reaction of CO$_2$ with the aryloxide-supported dinitrogen-bridged dimer 3K (Scheme 3.5). Initial elevated temperatures were required to displace the dinitrogen unit. Following this, the two U(III) centres co-operatively reduced one molecule of CO$_2$ to form a bridging oxide between two U(IV) ions and CO gas. Two further equivalents of CO$_2$ inserted into two of the U-OAr bonds to form two bridging arylcarbonate groups in the product 3W.

![Scheme 3.5 Reaction of the veiled U(III) aryloxide complex 3K with CO$_2$.](image) Ar = 2,4,6-C$_6$H$_2$(tBu)$_3$.

Reductive disproportionation of CO$_2$ to CO$_3^{2-}$ and CO by uranium is also known. The Cloke, Meyer and Mazzanti groups have all reported the activation of CO$_2$ between two U(III) centres to form bridging carbonate complexes. Three examples of these are shown in Figure 3.5. Two distinct carbonate bridging modes are observed in these complexes: \(\mu\kappa'(O)\kappa^2(O',O'')\) in 3X and 3Y, and \(\mu\kappa^2(O,O')\kappa^2(O,O'')\) in 3Z. Although the carbonate bridging mode is asymmetric in the solid state for 3X and 3Y, only one set of ligand resonances is observed for both complexes in solution by 1H NMR spectroscopy.
indicating that carbonate co-ordination is fluxional, which is similar to the binding of the deltate dianion discussed above. It is suggested that carbonate formation proceeds via oxo abstraction to form a U(IV)/U(IV) bridging-oxo complex into which another molecule of CO\textsubscript{2} inserts to form the carbonate anion. This reaction pathway has been verified for the formation of 3Z. The ortho neopentyl substituted U(III) tacn complex \[\text{[U}\{\text{tacn(OAr}^{\text{neop})}\}_3]\] was exposed to an atmosphere of N\textsubscript{2}O gas allowing the isolation of the oxo-bridged binuclear complex \[\text{[(U}\{\text{tacn(OAr}^{\text{neop})}\}_3\}_2(\mu-O)]\]. Upon CO\textsubscript{2} addition the oxo-bridged complex was transformed cleanly into the carbonate complex \(3Z\). 43

\[\text{3Z}\]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{3.Z.png}
\caption{Examples of carbonate bridged uranium complexes reported by the Cloke (left),41 Mazzanti (centre)44 and Meyer (right)43 groups. Only one ligand arm is shown explicitly in \(3Z\); all three are identical.}
\end{figure}

3.1.2.4 \textit{S}\textsubscript{8}

Elemental sulphur is an oxidising small molecule so its activation is much less challenging than that of N\textsubscript{2}, CO or CO\textsubscript{2}. Nevertheless, sulphur co-ordination compounds are of interest because they can display unique binding modes and are useful comparative models for oxygen-containing compounds. In recent years, some novel uranium sulphur chemistry has been reported. In 2013, the Hayton group reported the stoichiometric oxidation of U(N″3) with S\textsubscript{8} to yield the sulphide-bridged binuclear U(IV)/U(IV) complex \(3AA\) (Scheme 3.6). 45 Sulphide bridged uranium complexes are not uncommon but trace amounts of a second product, the novel persulphide-bridged binuclear U(IV)/U(IV) complex \(3AB\) were also formed in the reaction. The S-S distance in the (S\textsubscript{2}2−) unit of \(3AB\) is 2.105(2) Å. The authors could not selectively prepare the persulphide complex but noted that the amount of \(3AB\) formed appeared to be increased by the presence of the metallated U(IV) impurity \[\text{[U(CH}_2\text{SiMe}_2\text{NSiMe}_3]}(\text{N}_{\text{V}}\text{)}_2\] in the U(N″3) starting material. However, reaction of
pure \([\text{U(CH}_2\text{SiMe}_3\text{NSiMe}_3\text{)(N″)}]_2\) with \(S_8\) did not produce \(3\text{AB}\) and therefore they do not speculate on the possible role played by the metallated impurity in the formation of \(3\text{AB}\). Furthermore \(3\text{AA}\) could not be converted into \(3\text{AB}\) by addition of \(S_8\) or \(S=\text{PPh}_3\) under any conditions.

![Scheme 3.6 Oxidation of \(\text{U}(\text{N″})_3\) with elemental sulphur.](image)

In 2014, Mazzanti and co-workers synthesised the first terminal uranium persulphide complex \([\text{U}\{(\text{SiMe}_2\text{NPh})_3\text{tacn}\}(\eta^2\text{-S}_2)\}] (3\text{AC}) by reaction of 0.25 equivalents of \(S_8\) with the \(\text{U(III)}\) tacn complex \([\text{U}\{(\text{SiMe}_2\text{NPh})_3\text{tacn}\}]\) (Scheme 3.7).\(^{46}\) The S-S bond length in \(3\text{AC}\) (2.050(8) Å) is consistent with a persulphide ion and spectral data also support the assignment of the uranium oxidation state as \(\text{U(V)}\). Addition of triphenylphosphine to a solution of \(3\text{AC}\) resulted in abstraction of a sulphide ion as \(S=\text{PPh}_3\). A mixture of reduced uranium products was observed including the sulphide bridged \(\text{U(IV)/U(IV)}\) complex \([\{\text{U}\{(\text{SiMe}_2\text{NPh})_3\text{tacn}\}\}_2(\mu-\text{S})]\) and a second example of a bridging uranium persulphide complex, \([\{\text{U}\{(\text{SiMe}_2\text{NPh})_3\text{tacn}\}\}_2(\mu-\text{S}_2)]\) (3\text{AD}), which could not be isolated but was characterised crystallographically. The observed S-S distance in \(3\text{AD}\) is identical to that in \(3\text{AB}\).

![Scheme 3.7 Formation of terminal and bridging uranium persulphide complexes. One ligand arm is shown explicitly in the starting complex; all others are identical.](image)

The ability of uranium to coordinate multiple sulphur atoms has been further illustrated by Meyer and co-workers in that the binuclear \(\text{U(IV)/U(IV)}\) bridged sulphide complex \(3\text{AE}\), prepared by stoichiometric reaction of \(S_8\) with the \(\text{U(III)}\) complex \([\text{U}\{({^\text{Ad}}\text{ArO})_3\text{N}\}(\text{DME})]\), readily incorporates three more sulphur atoms to form \([\{\text{U}\{({^\text{Ad}}\text{ArO})_3\text{N}\}\}_2(\mu-\text{S}_2)\}_2]\) (3\text{AF}, Scheme 3.8).\(^{47}\) The S-S bond lengths in \(3\text{AF}\) range from 2.044(2) to 2.053(2) Å. It is not possible to confidently assign the oxidation state of the U
centres in 3AF. The structural and spectral data are not inconsistent with an assignment of either a U(IV)/U(IV) complex with supersulphide ligands or a U(V)/U(V) complex with persulphides, though the authors note that no f-block supersulphide complexes have been reported. Selenium compounds analogous to 3AE and 3AF were also prepared by the same method. However, an extra intermediate member of the selenium series was isolated, the perselenide-bridged complex [(U((AdArO)₃N))₂(µ-Se₂)]. It was suggested that formation of 3AF from 3AE proceeds via the analogous persulphide complex [(U((AdArO)₃N))₂(µ-S₂)] but this was not observed.

Scheme 3.8 Synthesis of a bridging uranium sulphide complex and its reaction with further equivalents of S₈. One ligand arm is shown explicitly in the starting complex; all others are identical.

3.1.3 Binuclear uranium(III) complexes

A common aspect of the majority of the small molecule activations by U(III) detailed above is their co-operativity. Typically, one substrate molecule is bound and activated between two U(III) ions, which each contribute 1 e⁻ to effect an overall 2 e⁻ reduction. If the U(III) starting material is mononuclear this process necessitates a three-body collision. The synthesis of binuclear uranium(III) complexes is attractive and preorganisation of two U(III) centres within an organic framework at an appropriate separation should lead to enhanced rates of small molecule activation, since substrate activation becomes a two-body problem. In spite of these incentives, progress in this area has been limited.

The first structurally characterised binuclear U(III)/U(III) complex of a single ligand was reported earlier this year by Arnold and co-workers. The small cavity trans-calix[2]benzene[2]pyrrole macrocycle, H₂L’, was deprotonated using two equivalents of lithium amide and then two equivalents of U₁ were added to generate the binuclear complex [U₂L₂] (3AG) (Scheme 3.9). One U(III) ion is bound in an η⁵: η⁵ fashion between the pyrrolide rings and the other is bound κ¹: κ¹ to each pyrrolide nitrogen and η⁶: η⁶ between the two aryl rings of the macrocycle. A short U···U separation of 3.8639(5) Å is observed in 3AG. The synthesis of 3AG must be carried out with the rigorous exclusion of co-ordinating
solvents because exposure of 3AG to, for example, THF resulted in its partial dissociation to the mononuclear complex $[\text{UI}(L')(\text{THF})]$ (3AH) and UI_3 (Scheme 3.9, right). Unfortunately however, the binuclear complex 3AG is poorly soluble in arene and hydrocarbon solvents, which hampered further investigation into its reactivity.

Scheme 3.9 Synthesis of the binuclear U(III)/U(III) complex 3AG and its dissociation in co-ordinating solvent.49

The only other reported binuclear U(III)/U(III) complexes of a single ligand are the oligomeric uranium iodide Pacman compound $[(\text{UI})_2(L)]$ (1AA) and its borohydride derivative $[\{\text{U(BH}_4\}_2(L)]$, discussed in 1.5.3.50 Although 1AA was magnetically interesting, it was also of little further synthetic use due to its poor solubility. Therefore the chemistry of binuclear U(III)/U(III) complexes of preorganised ligands remains essentially unexplored. The aim of this project was to synthesise a well-defined U(III)/U(III) Pacman complex and to investigate its reactivity towards small molecules.
3.2 Metallation reactions using UI$_3$

Previous efforts to synthesise a binuclear uranium(III) Pacman complex were focussed exclusively on the ortho-phenyl hinged Pacman macrocycles. The proposed product structure contains bridging iodide ligands in both the exo site linking separate macrocycles and the endo site within the macrocyclic cleft. It was reasoned that the size of the macrocyclic cavity, as controlled by the aryl hinge groups, would impose geometric restraints on the endo bridging iodide and hence have a significant effect upon the stability and properties of the complex formed. Therefore the reaction of UI$_3$ with the deprotonated anthracenyl macrocycle was evaluated as a comparison.

3.2.1 Reaction of K$_4$LA with UI$_3$

The reaction was initially investigated on a small scale using NMR spectroscopy. H$_4$LA was combined with four equivalents of KN” in a THF/C$_6$D$_6$ mixture to form a bright orange suspension of K$_4$LA. The mixture was left to stand for ten minutes and then added to solid UI$_3$, forming a dark green solution containing a pale yellow precipitate, presumably KI. The 1H NMR spectrum of the solution displays twelve paramagnetically contact-shifted resonances attributable to a single product (12) which has a symmetric ligand environment (Figure 3.6). The four meso ethyl groups, which are equivalent in the free macrocycle, are desymmetrised in the product appearing as two sets of resonances, as highlighted in Figure 3.6, which is consistent with the separate exo and endo environments established when the macrocycle folds into the Pacman geometry.

![Figure 3.6 1H NMR spectrum of 12 formed by reaction between H$_4$LA, 4 KN” and 2 UI$_3$(dioxane)$_{1.5}$ in d$_5$-pyridine. Resonances corresponding to protio pyridine, dioxane and HN” are scored through. Highlighted resonances correspond to the exo and endo meso CH$_2$CH$_3$ environments of the macrocycle.](image)
Chapter Three

Formation of 12 is observed using either UI₃, UI₃(THF)₄ or UI₃(dioxane)₁.₅ as the uranium starting material and either THF/C₆D₆ or d₅-pyridine as the reaction solvent. It is expected that the co-ordinating reaction solvent employed will bind to the product. Henceforth, the THF and pyridine solvates of 12 will be designated 12_{THF} and 12_{py} respectively. If the initial deprotonation of the macrocycle is carried out using LiN" instead of KN" then the ¹H NMR spectrum acquired after addition of UI₃ displays only a small number of very low intensity resonances which cannot be assigned to a single product. Since the macrocycle can be effectively deprotonated by either base, the fact that the reaction employing LiN" does not proceed to yield the same product as that with KN" indicates either that the salt elimination of LiI does not proceed successfully or that a potassium cation is necessarily incorporated into the product. 12 could not be successfully isolated on a preparative scale. It was discovered that removal of the solvent from a solution of 12_{THF} resulted in decomposition to form insoluble yellow solids. Attempts to crystallise 12_{THF} at low temperature or by slow diffusion of hexane anti-solvent similarly yielded only intractable orange/yellow material. The pyridine solvate 12_{py} appeared to be more stable; removal of the solvent yielded sticky green solids which when analysed by NMR spectroscopy were still found to contain 12_{py}, in addition to unidentified by-products. Attempts to crystallise 12_{py} were also unsuccessful.

Figure 3.7 Proposed structures for 12_{THF} formed by the reaction of K₄L₈ with UI₃ in THF. The analogous pyridine solvates, 12_{py}, would be expected for the reaction in pyridine.

Two different structures for 12, are proposed (Figure 3.7), one in which KI is incorporated (I) and one with no alkali metal cation incorporation (II). The co-ordination number of uranium in both structures is 7 which is common for U(III), and in this case facilitated by solvent ligation. The binding of THF and pyridine to uranyl complexes of both the ortho-phenyl and anthracenyl macrocycles in the equatorial site between the macrocycle hinges has been observed previously. As yet no complexes of H₄L₈ containing two metal-bound solvent molecules within the cleft, as proposed in II, have been isolated but a
binuclear magnesium complex \([\text{Mg}_2(\text{py}_\text{exo})_2(\text{py}_\text{endo})(L^\text{A})]\) which features one bound pyridine molecule within the cleft has been structurally characterised.\(^{51}\) The \textit{endo} binding mode of the alkali metal cation proposed in \(\text{I}\) has been observed for the anthracenyl macrocycle with K\(^+\) and Na\(^+\) cations but not Li\(^+\) (see 3.4.1 below). There are no reports of binuclear uranium complexes containing a single bridging iodide ligand so it is difficult to predict whether the dimensions of the ligand could support the proposed bridging iodide in \(\text{I}\). Instead, the \{U_2(\mu-I)_2\} motif is the most common \(^{52-54}\) but the sterically restricted macrocyclic cleft is not expected to be able to incorporate two bulky iodide anions hence \{[U(\text{THF})]_2(\mu-I)_2(L^\text{A})]\} is not suggested as a structure for \(\text{12}\).

THF is a weaker Lewis base than pyridine. Therefore it may be feasible to remove bound THF from \(\text{12}_{\text{THF}}\) under reduced pressure but not bound pyridine from \(\text{12}_{\text{py}}\). The reduction in co-ordination number at U(III) may then destabilise the complex and induce decomposition. Since both \(\text{I}\) and \(\text{II}\) contain bound solvent molecules, the observation that \(\text{12}_{\text{THF}}\) is less stable under vacuum than \(\text{12}_{\text{py}}\) is consistent with both proposed structures, though the extent of destabilisation might be expected to be greater for the neutral structure \(\text{II}\) which features THF molecules bound within the macrocyclic cleft, insulating the two U(III) centres from each other. However, the observation that \(\text{12}\) cannot be synthesised from Li\(_2\)L\(^{\text{A}}\) supports the proposal of the “-ate” complex \(\text{I}\). The bridging iodide is expected to be stabilised by the incorporation in the cleft of the K\(^+\) counterion which is large enough to be bound symmetrically between the four pyrrolides of the macrocycle. It is anticipated that Li\(^+\) would be too small to occupy this binding pocket.

3.2.2 Structure of U(IV)/U(IV) decomposition product

On one occasion slow diffusion of hexane into a pyridine solution of \(\text{12}_{\text{py}}\) inside the glovebox resulted in the formation of single crystals of the decomposition product \{[(\text{UI})\text{py}][(\text{UOH})\text{py})(\mu-O)(L^\text{A})]\} \(\text{13}\) (Scheme 3.10), presumably through reaction with trace quantities of water and/or oxygen present in the glovebox atmosphere. The identification of this decomposition product allows us to infer that complex \(\text{12}\) is indeed a binuclear uranium complex containing at least one iodide ligand. Furthermore, the feasibility of co-ordinating a solvent molecule in the equatorial site between the ligand hinges is confirmed in this low oxidation state uranium Pacman complex.
Scheme 3.10 Formation of the decomposition product [{UI(py)}{U(OH)(py)}{(µ-O)(L₄)}] 13.

The solid state structure of 13 reveals that the two uranium ions occupy inequivalent pentagonal bipyramidal co-ordination sites (Figure 3.8). In addition to the four N donors of the macrocycle, U₁ is bound to an axial iodide, a molecule of pyridine solvent in the equatorial site between the ligand hinges and the bridging oxo, O₁. In addition to the macrocycle, U₂ binds to the bridging oxo, a hydroxide ligand and a molecule of pyridine. However in this case, the hydroxide occupies the equatorial site and the pyridine the axial site, presumably due to the much reduced steric bulk of OH⁻ vs pyridine and I⁻. The {U-(µ-O)-U} unit is essentially linear with a U₁-O₁-U₂ angle of 177.0(4)°.

Figure 3.8 Solid state structure of 13. Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted except for the hydroxide proton and the molecule of pyridine lattice solvent which hydrogen bonds to it.
The proton of the hydroxide ligand, was located in the residual electron density map during structure refinement and its inclusion is strongly supported by the orientation of one molecule of pyridine lattice solvent directly towards the proton with a N11-H2 separation of 2.05(4) Å, thus facilitating hydrogen bonding. With the identity of O2 confirmed as a hydroxide rather than oxide, charge balancing necessitates assignment of either a U(IV)/U(IV) complex or a mixed-valent U(III)/U(V) complex. The U1-I1 separation of 3.1032(8) Å is within the normal range for U(IV)-I bonds 55 and, though there are few structurally characterised U(IV) hydroxide complexes to facilitate comparison, the observed U2-O2 distance of 2.065(8) Å lies within the reported range of 2.040(2) Å in [U(OH)(OTf)₃(py)]₄ 56 to 2.147(1) Å in [U(OH)₂(Tpa)₃]²⁺ 57. Furthermore, the U-Nₚₚ distances at the two U centres are similar with values of 2.655(8) Å (U1-N10) and 2.629(7) Å (U2-N9). Therefore 13 is assigned as a U(IV)/U(IV) complex.

However one unusual feature of the structure of 13 is that the bridging oxo is not bound symmetrically between the two U centres: the U1-O1 separation of 2.047(7) Å is markedly shorter than the U2-O1 separation of 2.201 Å. Typically, the oxo group is symmetrically bound in oxo-bridged U(IV)/U(IV) complexes. For example, the U-O bond lengths in [(UC₃)₂O] are identical at 2.0881(4) Å 58 and [(U(N")₃)₂O] features U-O distances of 2.142(6) and 2.147(6) Å which are statistically indistinguishable. 59 However, both these complexes are symmetric upon inversion whereas the two U centres in 13 are in different chemical environments: U1 is bound to an axial iodide ligand and an equatorial pyridine ligand whilst U2 is bound to an axial pyridine ligand and an equatorial hydroxide. In contrast to the trans influence in transition metal complexes where a metal-ligand bond trans to a strong metal-ligand bond is weakened, an inverse trans influence is observed in actinide compounds with mutually trans metal-ligand bonds experiencing synergic thermodynamic stabilisation. The extent of this stabilisation has been linked to ligand σ-donor ability. 60 On this basis it is suggested that the presence of the axial iodide ligand at U1

<table>
<thead>
<tr>
<th>Table 3.1 Selected bond distances (Å) and angles (°) for 13.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>U1···U2</td>
</tr>
<tr>
<td>U1-I1</td>
</tr>
<tr>
<td>U1-N10</td>
</tr>
<tr>
<td>U1-O1</td>
</tr>
<tr>
<td>U2-O1</td>
</tr>
<tr>
<td>U2-O2</td>
</tr>
<tr>
<td>U2-N9</td>
</tr>
<tr>
<td>mean U1-Nₚₚ</td>
</tr>
<tr>
<td>mean U1-Nₚₚ</td>
</tr>
</tbody>
</table>

The proton of the hydroxide ligand, was located in the residual electron density map during structure refinement and its inclusion is strongly supported by the orientation of one molecule of pyridine lattice solvent directly towards the proton with a N11-H2 separation of 2.05(4) Å, thus facilitating hydrogen bonding. With the identity of O2 confirmed as a hydroxide rather than oxide, charge balancing necessitates assignment of either a U(IV)/U(IV) complex or a mixed-valent U(III)/U(V) complex. The U1-I1 separation of 3.1032(8) Å is within the normal range for U(IV)-I bonds 55 and, though there are few structurally characterised U(IV) hydroxide complexes to facilitate comparison, the observed U2-O2 distance of 2.065(8) Å lies within the reported range of 2.040(2) Å in [U(OH)(OTf)₃(py)]₄ 56 to 2.147(1) Å in [U(OH)₂(Tpa)₃]²⁺ 57. Furthermore, the U-Nₚₚ distances at the two U centres are similar with values of 2.655(8) Å (U1-N10) and 2.629(7) Å (U2-N9). Therefore 13 is assigned as a U(IV)/U(IV) complex.
strengthens and shortens the U1-O1 bond compared to the U2-O2 bond. It has also been shown that uranyl U-O bonds are weakened by increasing the number of equatorial anionic hydroxide ligands at the expense of neutral water donors.61 Therefore the presence of the equatorial hydroxide ligand O2 at U2, compared to the neutral equatorial pyridine donor N10 at U1, likely also contributes to the relative lengthening of the U2-O2 bond.

3.2.3 Attempted in situ reactions with 12

Although 12 was not successfully isolated, the formation in solution of a single, discreet compound, as indicated by NMR spectroscopy, was still a more promising result than the previously observed, poorly soluble, oligomeric compounds resulting from reactions of the ortho-phenyl macrocycle with UI\textsubscript{3}. Therefore a number of reactions were carried out with 12 formed in situ with the aim of preparing a more stable derivative. The reagents investigated and the results of the reactions as monitored by 1H NMR spectroscopy are summarised in Table 3.2.

Table 3.2 In situ reactions carried out with 12.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAP (2 eq.)</td>
<td>THF/C\textsubscript{6}D\textsubscript{6}</td>
<td>Decomposition.</td>
</tr>
<tr>
<td>CO (1 bar)</td>
<td>d\textsubscript{5}-pyridine</td>
<td>No reaction.</td>
</tr>
<tr>
<td>LiCl (xs)</td>
<td>THF/C\textsubscript{6}D\textsubscript{6}</td>
<td>Decomposition, formation of diamagnetic species.</td>
</tr>
<tr>
<td>KO'Bu (2 eq.)</td>
<td>d\textsubscript{5}-pyridine</td>
<td>Multiple paramagnetic products formed.</td>
</tr>
<tr>
<td>NaBH\textsubscript{4} (xs)</td>
<td>THF/C\textsubscript{6}D\textsubscript{6}</td>
<td>New paramagnetic resonances observed that could not be assigned to a Pacman product.</td>
</tr>
<tr>
<td>S\textsubscript{8} (xs)</td>
<td>d\textsubscript{5}-pyridine</td>
<td>Oxidation to multiple paramagnetic products.</td>
</tr>
<tr>
<td>KC\textsubscript{8} (2 eq.)</td>
<td>d\textsubscript{5}-pyridine</td>
<td>Slow formation of multiple paramagnetic products.</td>
</tr>
</tbody>
</table>

Despite investigation of a range of different reagents, including Lewis bases, ligand substitution reagents, oxidants and reductants, clean conversion of 12 to a single product was not observed in any of the reactions trialled. It would appear that the elusive solution species 12 does not provide a viable route into U(III) Pacman chemistry.
Chapter Three

3.3 Metallation reactions using \(\text{U(BH}_4 \text{)}_3 \)

\(\text{UI}_3 \) was not found to be a convenient starting material for the synthesis of stable, isolable \(\text{U(III)/U(III) Pacman} \) complexes. An investigation into the reactivity of the other commonly available \(\text{U(III) starting materials U(N"}_3 \text{)} \) and \(\text{U(OAr)}_3 \) (where \(\text{Ar} = 2,6-\text{C}_6\text{H}_3(\text{tBu})_2, 2,4,6-\text{C}_6\text{H}_2(\text{tBu})_3 \)) with \(\text{H}_4\text{L}_A \) swiftly revealed that neither of these complexes were suitable precursors: no reaction occurred between \(\text{U(N"}_3 \text{)} \) and \(\text{H}_4\text{L}_A \) or \(\text{U(OAr)}_3 \) and \(\text{Li}_4\text{L}_A \). Therefore \([\text{U(BH}_4 \text{)}_3(\text{sol})_x]\) was identified as a little-exploited, alternative \(\text{U(III)} \) starting material.

3.3.1 Synthesis of \([\text{U(BH}_4 \text{)}_3(\text{THF})_2]\)

As discussed in section 3.1.1.1, no convenient synthesis of \([\text{U(BH}_4 \text{)}_3(\text{sol})_x]\) from a \(\text{U(III)} \) starting material has been published. Therefore the feasibility of preparing \([\text{U(BH}_4 \text{)}_3(\text{sol})_x]\) from \(\text{UI}_3 \) was investigated. \(\text{UI}_3 \) was chosen as the starting material since it may be synthesised in a single step from uranium metal and allows for the implementation of salt elimination methodologies. Dr Joy Farnaby carried out initial NMR scale reactions between \(\text{UI}_3 \) and 3.3 equivalents of the different alkali metal borohydrides, \(\text{MBH}_4 \) (\(\text{M} = \text{Li, Na, K} \)), in \(d_8-\text{THF} \). Upon combination of \(\text{UI}_3 \) with either \(\text{LiBH}_4 \) or \(\text{NaBH}_4 \) in \(d_8-\text{THF} \) an immediate colour change occurred from deep blue to red. New, paramagnetically broadened and contact-shifted resonances were observed in the \(^1\text{H} \) and \(^{11}\text{B} \) NMR spectra of the \(\text{NaBH}_4 \) reaction mixture at 95 and 230 ppm respectively. By contrast no new resonances were observed in the NMR spectra of the \(\text{LiBH}_4 \) mixture. No immediate colour change was observed following addition of \(\text{KBH}_4 \) to \(\text{UI}_3 \) in THF, though the reaction mixture did gradually turn maroon over two weeks. The \(^1\text{H} \) NMR spectrum acquired after two weeks displayed broad contact shifted resonances at 70 and 20 ppm and two signals were also present in the \(^{11}\text{B} \) NMR spectrum at 270 and 250 ppm. On a larger scale, addition of THF to solid \(\text{UI}_3 \) with 3.3 equivalents of \(\text{NaBH}_4 \) or \(\text{LiBH}_4 \) immediately produced deep red mixtures. The \(\text{UI}_3/\text{NaBH}_4 \) mixture was a red solution containing a small amount of white precipitate, the excess \(\text{NaBH}_4 \). However microcrystalline red solid formed rapidly in the \(\text{UI}_3/\text{LiBH}_4 \) mixture. This may indicate that one of the products of the reaction between \(\text{UI}_3 \) and \(\text{LiBH}_4 \) is an "-ate" salt with reduced solubility, such as \([\text{Li(THF)}_x][\text{U(BH}_4 \text{)}_3(\text{THF})_y]\).

Equation 3.2

\[
\text{UI}_3 + 3 \text{NaBH}_4 \xrightarrow{\text{THF}} \text{U(BH}_4 \text{)}_3(\text{THF})_x + 3 \text{NaI}
\]

On the basis of these observations, \(\text{NaBH}_4 \) was selected since it reacts rapidly with \(\text{UI}_3 \) to generate a single, soluble species, presumably \([\text{U(BH}_4 \text{)}_3(\text{THF})_x]\) (Equation 3.2). A
trial NMR scale reaction in \(d_8 \)-THF was carried out between 2 equivalents of [U(BH\(_4\))\(_3\)(THF)\(_x\)], generated \textit{in situ} from UI\(_3\) and NaBH\(_4\), and K\(_2\)L\(^X\) \textit{in situ} from H\(_2\)L\(^X\) and KN". The \(^1\)H NMR spectrum of the resultant mixture displayed contact-shifted resonances assignable to a single symmetric macrocyclic product. Following this promising result it seemed worthwhile to isolate and fully characterise [U(BH\(_4\))\(_3\)(THF)\(_x\)] before embarking on further reactivity studies or preparative scale reactions.

In order to isolate [U(BH\(_4\))\(_3\)(THF)\(_x\)] it is necessary to separate it from the NaI by-product which is soluble in THF. [U(BH\(_4\))\(_3\)(THF)\(_x\)] was observed to have some solubility in both toluene and ether. Formation of [U(BH\(_4\))\(_3\)(sol)\(_x\)] by reaction in toluene or ether instead of THF, enabling the insoluble NaI to be removed by filtration, would have been convenient. However, no reaction occurred between UI\(_3\) and NaBH\(_4\) in toluene solvent. Similarly no reaction occurred in ether unless the dioxane adduct UI\(_3\)(dioxane)\(_{1.5}\) was used as the U(III) starting material. In this latter case, a slow, out-of-phase reaction occurred with formation of a purple-red insoluble product over several hours. The product was evidently contaminated with NaI, somewhat defeating the object of using ether as the reaction solvent.

It was concluded that [U(BH\(_4\))\(_3\)(THF)\(_x\)] must be synthesised in THF and then separated from NaI and excess NaBH\(_4\) by extraction. In order to minimise the volume of solvent required and reduce the risk of exposure of [U(BH\(_4\))\(_3\)(THF)\(_x\)] to air during a lengthy filtration procedure, the extraction was performed under continuous conditions using a Soxhlet apparatus fitted with a fine porosity glass frit (Figure 3.9). Initially toluene was employed as the extraction solvent in order to achieve the best separation of the product from NaI, necessitating temperatures of 160 °C in the reboil flask. After 16 hours white solids remained on the Soxhlet frit and the collection flask contained a red solution and a dark brown precipitate. The solution was decanted and the volatiles removed. \(^1\)H and \(^11\)B NMR analyses of the resulting solid residue confirmed the successful isolation of [U(BH\(_4\))\(_3\)(THF)\(_x\)] in 40 % yield (assuming \(x = 2 \), see below). However the dark precipitate from the reboil flask was found to
contain a mixture of the desired product \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\) and a second species characterised by resonances at 65 ppm in the \(^1\text{H}\) NMR spectrum and at 265 and 250 ppm in the \(^{11}\text{B}\) NMR spectrum. This species is very dark brown in colour and has reduced solubility compared to \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\). We suggest that its formation is due to the thermal decomposition of extracted \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\] which is exposed to high temperatures in the reboil flask. It was concluded that toluene was not a suitable extraction solvent since the solution yield of uncontaminated product was mediocre and would be expected to decrease further for larger scale preparations. Therefore the Soxhlet extraction was repeated using diethyl ether as the solvent. \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\] has improved solubility in ether compared to toluene enabling the extraction to be completed in 6 hours at the reduced reboil temperature of 60 °C. The collection flask contained a red solution and a dark red precipitate. NMR analysis of both the solution and solid products revealed the sole presence of \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\] with no evidence of decomposition products.

\([\text{U}(\text{BH}_4)_3(\text{THF})_2]\) \((14)\) is isolated as a microcrystalline red solid in 90 % yield by removal of the volatiles from the ether-extract. The degree of THF solvation was determined by NMR competition experiments: DME was added to a \(\text{C}_6\text{D}_6\) solution of \(14\) to liberate the co-ordinating THF molecules which were then integrated against \(\text{Si(SiMe}_3)_4\) as an internal standard. The resulting formulation of \([\text{U}(\text{BH}_4)_3(\text{THF})_2]\) is also supported by elemental microanalysis. The structure of the simple molecular \textit{tris}-THF adduct \([\text{U}(\text{BH}_4)_3(\text{THF})_2]\] has been reported \(^{21}\) but we have not determined the molecular structure of \(14\). On close inspection it was noted that the BH\(_4^-\) resonance in the \(^1\text{H}\) NMR spectrum of \(14\) in \(d_8\)-THF is shifted to lower frequency, by 10 ppm, than the corresponding resonance of \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\) formed \textit{in situ} in \(d_8\)-THF. The \(^{11}\text{B}\) NMR spectrum is unchanged. It is likely that some of the co-ordinating THF dissociates from \([\text{U}(\text{BH}_4)_3(\text{THF})_x]\] upon its exposure to high vacuum during experimental work-up to generate \(14\). It is possible that the apparent low co-ordination number of the U(III) centres in \(14\) may be augmented in the solid state by oligomerisation. However the B-H stretching region of the solid state IR spectrum of \(14\) is relatively simple displaying a strong band at 2446 cm\(^{-1}\) attributed to B-H(terminal) stretching and two overlapping bands at 2205 and 2147 cm\(^{-1}\) assigned to B-(\(\mu\)-H) stretches. The number and positioning of the bands is consistent with \{\((\mu\)-H\)_3BH\} binding modes for all three BH\(_4^-\) ligands. \(^{62}\) Therefore the IR spectrum of \(14\) is indicative of a monomeric complex since the presence of bridging and terminal BH\(_4^-\) ligands in an oligomeric structure would likely result in a complex series of overlapping B-H stretching bands. When all bridging hydrides are taken into account, the U(III) centres in monomeric \(14\) are formally 11 co-ordinate.
3.3.2 Solid state structures of [U(BH₄)ₓ(I)ₙ(sol)ₜ]

Various recrystallisations of isolated 14 were carried out in attempts to obtain single crystals that might yield structural insights and further supporting evidence for the successful synthesis of a uranium tris-borohydride complex. Single crystals were obtained from the recrystallisation of 14 from ether at 0 °C and also from the slow diffusion of hexane into a benzene solution of 14 containing a few drops of DME. In both cases rapid, destructive desolvation of most of the crystals was observed under the microscope during crystal mounting but one crystal from each batch was successfully mounted and analysed by X-ray diffraction. The crystal isolated from ether was found to be an ionic U(III) mixed borohydride/iodide compound [U(BH₄)₂(THF)₅][U₂(BH₄)₄.90(µ-I)₂(I)₀.10(THF)₃] (15) which has an empirical formula of [U(BH₄)₂.30(I)₀.70(THF)₂.7]. The crystal analysed from the C₆D₆/DME/hexane mixture was the mixed borohydride/iodide DME adduct [U(BH₄)₂.59(I)₀.41(DME)₂] (16). It is suspected that the incorporation of iodide into both these structures is due to imperfect experimental extraction resulting in the contamination of 14 with a small amount of NaI. Iodide/borohydride exchange may then occur during recrystallisation leading to the formation of various single crystals with different borohydride/iodide compositions. Since the elemental microanalysis results were satisfactory for 14 it must be concluded that 14 contains only trace amounts of NaI and thus 15 and 16 are not representative of the bulk composition of 14. Rather, it is likely that the single crystals containing the highest levels of iodide were more stable, did not desolvate as rapidly as the pure borohydride crystals and gave the strongest X-ray diffraction patterns, leading to their preferential X-ray analysis over pure [U(BH₄)₃(sol)ₜ] crystals, which may well also have been formed.

Complex 15 is an unusual example of a wholly U(III) ion pair, containing a monomeric U(III) cation and a dimeric U(III)/U(III) anion (Figure 3.10). The structure of the pentagonal bipyramidal cation [U(BH₄)₂(THF)₅]⁺ has been reported previously by Ephritikhine and co-workers, prepared by the protonation of U(BH₄)₃(THF)₃ with the acidic ammonium salt [HNEt₃][BPh₄] to form [U(BH₄)₂(THF)₃][BPh₄]. They have also isolated an unusual mixed U(III)/U(IV)/U(IV) ion pair [U(BH₄)₂(THF)₅][(BH₄)₃U(µ-η⁷,η⁷-C₇H₇)U(BH₄)₄] (3AJ, Figure 3.11) from the reaction of U(BH₄)₄ with K(C₇H₉). Similarly to 15, the ion pair 3AJ also features a dimeric uranium anion. The metrics of the cation in 15 are similar to those observed in the previously published structures. The co-ordination environment of the two U(III) centres in the anionic portion of 15 is pseudo-octahedral. The U(III) centres form a dimer by means of the two bridging I⁻ ligands. To our knowledge, only
one other compound containing this \(\{U^{III}(\mu-I)_{2}U^{III}\} \) motif has been structurally characterised: a dihydrobis(pyrazolyl)borate supported dimer featuring bridging and terminal \(\Gamma^{-} \) ligands (3AK, Figure 3.11). The U-(\(\mu-I \)) distances (mean 3.23 Å) and U···U separation (4.973(2) Å) observed in 3AK are similar to those found in 15 (mean U-(\(\mu-I \)) = 3.25 Å, U2···U3 = 4.9379(9) Å). The U-I_{term} distance in 3AK is 3.116(3) Å whereas the U2-I3 bond length in 15 was determined as 3.05(2) Å. However, the restraints necessarily imposed during the refinement of the part-occupied I3 resulted in a large standard uncertainty in the U-I bond length, giving a possible range of 2.99 – 3.11 Å. Likewise, positional refinement of the part-occupied borohydride B7 was challenging. However the resultant U2-B7 separation of 2.72(1) Å is similar to the other U-B separations in the anion (see Table 3.3). None of the borohydride protons could be located crystallographically but based on the U···B separations it is likely that all the borohydride ligands bind through three bridging hydrides in a \(\{(\mu-H)_{3}BH\} \) fashion. Generally U···B separations of greater than 2.80 Å are observed when two or fewer hydrides bridge between boron and uranium.

Figure 3.10 Solid state structure of 15. Both the terminal iodide (left) and terminal borohydride (right) anionic components are shown. The ratio of \(\Gamma^{-}BH_{4}^{-} \) occupancy is 0.1:0.9. B7 and I3 were refined isotropically. The cation is not duplicated. Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted.
Table 3.3 Selected bond distances (Å) and angles (°) for 15.

<table>
<thead>
<tr>
<th></th>
<th>Distance (Å)</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···B1</td>
<td>2.72(1)</td>
<td>U3···B1</td>
</tr>
<tr>
<td>U1···B2</td>
<td>2.79(1)</td>
<td>U3···I1</td>
</tr>
<tr>
<td>mean U1-O_THF</td>
<td>2.54</td>
<td>U2-O8</td>
</tr>
<tr>
<td>U2···U3</td>
<td>4.9379(9)</td>
<td>U3···O6</td>
</tr>
<tr>
<td>U2···B5</td>
<td>2.73(2)</td>
<td>U3···O7</td>
</tr>
<tr>
<td>U2···B6</td>
<td>2.69(2)</td>
<td>U2···U3</td>
</tr>
<tr>
<td>U3···B3</td>
<td>2.69(2)</td>
<td>U2···U3</td>
</tr>
<tr>
<td>U3···B4</td>
<td>2.63(2)</td>
<td>I1···U2···I2</td>
</tr>
<tr>
<td>U2···B7</td>
<td>2.72(1)</td>
<td>I1···U3···I2</td>
</tr>
<tr>
<td>U2··I1</td>
<td>3.330(1)</td>
<td>B6···U2···B7</td>
</tr>
<tr>
<td>U2··I2</td>
<td>3.240(1)</td>
<td>B3···U3···B4</td>
</tr>
<tr>
<td>U2··I3</td>
<td>3.05(2)</td>
<td>B1···U1···B2</td>
</tr>
</tbody>
</table>

In contrast to 15, 16 is a simple molecular complex with the co-ordination about U1 pentagonal bipyramidal (Figure 3.12). The equatorial sites are occupied by two DME molecules and a disordered borohydride/iodide ligand while two more borohydrides occupy the axial positions. The B1-U1-B1’ angle of 176.9(4)° is essentially linear and the U1-B1 separation of 2.78(1) Å indicates that the binding mode of the axial borohydrides is {(µ-H)₃BH}. Refinement of the mixed borohydride/iodide ligand was more straightforward for 16. Both I1 and B2 were successfully refined anisotropically and only the U1-B2 separation required restraining (to 2.80(2) Å, resulting in an observed U1-B2 separation of 2.82(2) Å); the observed U1-I1 distance of 3.097(4) Å is normal for a UIII-I bond. Due to the restraint employed, it is not possible to confidently assign the binding mode of the equatorial BH₄⁻ ligand but it is likely to be {(µ-H)₂BH₂} by analogy with the isostructural complex [U(BH₄)₃(DMPE)₂] (3G) discussed above. An interesting structural comparison to 16 is provided by the complex [UBr₃(DME)₂] (3AL, Figure 3.11) which dimerises through bromide bridges in the solid state. The U-O bonds of 16 (2.571(5), 2.609(7) Å) lie within
the reported range of U-O distances for the dimer (2.550(7) – 2.656(7) Å). The fact that 16 is monomeric in the solid state indicates that bridging is disfavoured for this system, either due to the greater steric bulk of I⁻/BH₄⁻ vs Br⁻ or perhaps because the bridging mode is less favourable for the BH₄⁻ anion.

Figure 3.12 Solid state structure of 16. Both the equatorial borohydride (left) and terminal iodide (right) containing components are shown. The ratio of I⁻:BH₄⁻ occupancy is 0.41:0.59. Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted.

Table 3.4 Selected bond distances (Å) and angles (°) for 16.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···B1</td>
<td>2.78(1)</td>
<td>176.9(4)</td>
</tr>
<tr>
<td>U1-O1</td>
<td>2.571(5)</td>
<td>63.5(2)</td>
</tr>
<tr>
<td>U1-O2</td>
<td>2.609(7)</td>
<td>91.6(2)</td>
</tr>
<tr>
<td>U1-I1</td>
<td>3.097(4)</td>
<td>67.5(3)</td>
</tr>
<tr>
<td>U1···B2</td>
<td>2.82(2)</td>
<td>82.9(1)</td>
</tr>
</tbody>
</table>

3.3.3 Reactions of [U(BH₄)₃(THF)₂] with H₄Lᴬ

Having developed a convenient, high yielding synthesis of 14 from Uᴵ₃ (albeit with a small degree of NaI contamination), salt elimination reactions of 14 with the different alkali metal salts of the anthracenyl macrocycle were investigated (Scheme 3.11). Reaction of two equivalents of 14 with in situ generated Li₄Lᴬ, Na₄Lᴬ, or K₄Lᴬ in THF resulted in each case in the formation of a single product. The products of the Li and Na reactions have almost identical ¹H and ¹¹B NMR spectra. Their ¹H NMR spectra display paramagnetically contact-shifted resonances corresponding to a symmetric ligand environment in which the ethyl groups at the meso carbons have become desymmetrised. The ¹¹B NMR spectra show two broad, contact-shifted resonances in a 1:2 intensity ratio (Figure 3.13). These data are consistent with the formation of the salts [M(THF)₄][{U(BH₄)}₂{µ-BH₄}(Lᴬ)(THF)₂] (17, M = Li, 18, M = Na), which contain one bridging and two terminal BH₄⁻ ligands. The bridging BH₄⁻ ligand is sandwiched between two U(III) centres resulting in a higher ¹¹B chemical shift of 212 ppm compared to that of the terminal BH₄⁻ ligands at 207 ppm. A broad resonance is observed at −70.1 ppm with W½ = 498 Hz in the ¹H NMR spectra which
sharpens to $W_\beta = 364$ Hz upon 11B decoupling. This is assigned to the protons of the terminal borohydride ligands. No resonances are observed for the bridging borohydride protons, even in the $^1\text{H}\{^{11}\text{B}\}$ NMR spectra.

The ^1H NMR spectrum of the product of the analogous potassium reaction (19) consists of a different set of paramagnetically contact-shifted resonances (Figure 3.13), again corresponding to a symmetric ligand environment with desymmetrised ethyl groups, though two ligand resonances are obscured by solvent signals. A broad resonance is observed at 31.8 ppm with $W_\beta = 441$ Hz which sharpens to $W_\beta = 376$ Hz upon 11B decoupling. The 11B NMR spectrum of 19 contains only a single broad resonance at 180 ppm. From this it might be concluded that a neutral complex is formed when the K salt of the ligand is employed, with no bridging BH_4^- moiety present. However addition of 18-crown-6 to 19 results in formation of a new species with very similar ^1H and 11B NMR data to 17 and 18, which rapidly precipitates from solution. This new species is assigned as $[\text{K}(18\text{-crown-6})][(\text{U}({\text{BH}_4})_3(\text{THF}))_2]$ (20) the crown-ether solvated potassium analogue of 17 and 18. Therefore 19 must also contain a K$^+$ ion and is formulated as $[(\text{U}({\text{BH}_4})_3(\text{µ-\text{BH}_4}(\text{L}_A})(\text{THF}))_2]$.
Chapter Three

$\text{BH}_4\text{K}(\text{L}^n\text{)(THF)}}_2$ in which the large K^+ cation is bound within the cleft of the macrocycle between the four pyrrolide rings and in proximity to its bridging BH_4^- counterion. This binding mode has been crystallographically verified for related complexes (see 3.4.1). By coincidence the chemical shifts of the terminal and bridging boron atoms are identical in 19. Complex 19 can be considered as a host-guest complex in which the macrocycle encapsulates one molecule of KBH_4, rather than as an ionic compound. The in-cleft binding mode is not favoured for the smaller Li^+ and Na^+ cations.

![Comparison of the 1H and ^{11}B (inset) NMR spectra of 18 (top, red) and 19 (bottom, blue). The terminal BH_4^- resonances are highlighted. Protio THF and HN$^+$ resonances are scored through.](image)

The sodium salt 18 was found to be the most convenient of the complexes to synthesise on a preparative scale for further reactivity investigations. The NaBH_4 by-product eliminated during synthesis is insoluble in THF and therefore can be readily separated from soluble 18. KBH_4 is also insoluble in THF but LiBH_4 is THF and ether soluble. 18 crystallises readily in bulk from THF at low temperature but crystalline 19 has not been
successfully obtained. The increased crystallinity of 18 may be attributed to its formal ionic nature compared to host-guest complex 19. It is also of interest to note that formation of 18 is favoured over formation of 19; the in situ trial reaction carried out between UI₃, NaBH₄ and K₄L⁴, in which both Na⁺ and K⁺ cations were present in solution, resulted in exclusive formation of the sodium salt 18. This indicates that the bonding enthalpy gained through the THF solvation of the small Na⁺ cation outweighs the K⁺-pyrrolide bonding enthalpy.

3.3.3.1 Structure of [(Na(py))₄][{U(BH₄)}₂(µ-BH₄)(L⁴)(py)]₂, 18ₓpy

![Image of solid state structure of 18ₓpy](image)

Figure 3.14 Solid state structure of 18ₓpy. Thermal ellipsoids are drawn at 50 % probability. Four molecules of pyridine solvent ligating Na1, lattice solvent and all H atoms except those of the BH₄ groups are omitted.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Distance/Angle (Å/°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2</td>
<td>5.9243(3)</td>
</tr>
<tr>
<td>U1-N9</td>
<td>2.698(4)</td>
</tr>
<tr>
<td>mean U-Nim</td>
<td>2.62</td>
</tr>
<tr>
<td>mean U-Npyr</td>
<td>2.49</td>
</tr>
<tr>
<td>U1···B1</td>
<td>2.681(9)</td>
</tr>
<tr>
<td>U1-B3-U2</td>
<td>177.8(3)</td>
</tr>
<tr>
<td>U1···B3</td>
<td>2.977(7)</td>
</tr>
<tr>
<td>B1-U1-B3</td>
<td>175.5(2)</td>
</tr>
<tr>
<td>U2···B3</td>
<td>2.949(7)</td>
</tr>
<tr>
<td>B2-U2-B3</td>
<td>169.3(2)</td>
</tr>
<tr>
<td>U2···B2</td>
<td>2.723(8)</td>
</tr>
<tr>
<td>Na1-B2-U2</td>
<td>134.1(3)</td>
</tr>
</tbody>
</table>

18 may be isolated as a dark green crystalline solid in 30 % yield from the reaction of two equivalents of 14 with Na₄L⁴ (generated in situ) in THF. Recrystallisation of 18 from

113
a pyridine/hexane solution yielded single crystals of the pyridine adduct \(\text{18}_{\text{py}} \) that were suitable for X-ray diffraction analysis. The solid-state structure revealed that the anthracenyl macrocycle adopts the classic Pacman geometry with one U(III) cation occupying each pyrrole/imine N\(_4\) donor pocket (Figure 3.14). The U(III) centres are pentagonal bipyramidal, with four of the equatorial donors provided by the imine and pyrrolide nitrogens of the macrocycle and the fifth site occupied by a pyridine molecule sandwiched between the aromatic hinges of the ligand. One terminal and one bridging BH\(_4^-\) occupy the axial sites. The \{BH\(_4^-\)-U-(µ-BH\(_4^-\))-U-BH\(_4^-\)\} core is essentially linear (see Table 3.5) and results in a U···U separation of 5.9243(3) Å. The borohydride hydrogens were located from the difference Fourier map and their positions refined (see 4.6.14 for details). The terminal BH\(_4^-\) groups (B1 and B2) are bound to U1 and U2 at separations of 2.681(9) and 2.723(8) Å, respectively, in a \{(µ-H)_3BH\} fashion while the central bridging BH\(_4^-\) (B3) binds to each U(III) centre at distances of 2.977(7) and 2.949(7) Å through two bridging hydrides in a \{(µ-H)_2B(µ-H)_2\} fashion. In the solid state, the sodium cation is co-ordinated to the remaining H of one terminal BH\(_4^-\) group (B2) and four pyridine molecules. This Na···BH\(_4^-\) co-ordination must be dynamic in solution since the \(^1\)H NMR spectrum shows a symmetric ligand environment.

If NMR spectroscopy or X-ray or neutron diffraction are not amenable, IR spectroscopy is often employed to determine the binding mode of BH\(_4^-\) in metal complexes since the symmetries of the different bridging motifs give rise to characteristic groupings of bands.\(^{62}\) This method is effective for complexes bearing a single BH\(_4^-\) ligand but IR spectra swiftly become complicated when two or more BH\(_4^-\) ligands are present, as such, the IR spectrum of \(\text{18} \) displays several overlapping bands in the region from 2500 to 2100 cm\(^{-1}\) consistent with multiple BH\(_4^-\) binding modes.

3.3.4 Reactions of \([\text{U(BH}_4\text{)}_3(\text{THF})_2]\) with H\(_4\)L\(_{\text{Me}}\)

Achieving the successful double metallation of the anthracenyl macrocycle H\(_4\)L\(_{\text{Me}}\) using \([\text{U(BH}_4\text{)}_3(\text{THF})_2]\) encouraged us to re-visit the ortho-phenyl macrocycle H\(_4\)L\(_{\text{Me}}\). Again, reactions of \(\text{14} \) with the different alkali metal salts of H\(_4\)L\(_{\text{Me}}\) were investigated. Reaction of two equivalents of \(\text{14} \) with \(\text{Na}_4\text{L}_{\text{Me}}\) or \(\text{K}_4\text{L}_{\text{Me}}\) in THF solution formed mixtures containing multiple paramagnetic products. However the reaction with \(\text{Li}_4\text{L}_{\text{Me}}\) resulted in the formation of \([\text{Li(THF)}_4][\{\text{U(BH}_4\text{)}_2(\mu-(\text{BH}_4\text{})_2(\text{L}_{\text{Me}})] (\text{21}) \) and a small quantity of bright orange precipitate (Scheme 3.12). The \(^1\)H NMR spectrum of \(\text{21} \) displays seven paramagnetically contact-shifted resonances corresponding to a symmetric ligand environment with desymmetrised meso methyl groups and a broad resonance at 63 ppm (\(W_{\frac{1}{2}} = 702 \) Hz) which
is assigned to the terminal BH$_4^-$ ligands. In the 11B NMR spectrum the bridging BH$_4^-$ appears at 325 ppm while the terminal BH$_4^-$ ligands have a chemical shift of 212 ppm.

![Scheme 3.12 Synthesis of 21.](image)

21 may be isolated as dark brown crystals in 24 % yield from the filtered reaction mixture stored at −30 °C. The somewhat mediocre isolated yield is attributed partly to the concomitant formation of the insoluble orange material but also to the fact that the THF solution of 21 can only be concentrated to a certain degree before an oily intractable mixture is formed, likely due to the presence of three equivalents of LiBH$_4$ in solution. The composition of the insoluble orange material is unknown; it could not be dissolved in d_5-pyridine for NMR spectroscopic analysis. On account of its poor solubility, it is suggested that the orange material may be polymeric. Its structure may be similar to that previously proposed for the oligomeric material of composition [{U(BH$_4$)$_2$(L$_{Et}$)$_2$}] obtained by reaction of [{U(I)$_2$(L$_{Et}$)$_2$}] with KBH$_4$.50

![Figure 3.15 Solid state structure of the anionic portion of 21.](image)

Figures 3.15 Solid state structure of the anionic portion of 21. Thermal ellipsoids are drawn at 50 % probability. Lattice solvent and H atoms are omitted.
Table 3.6 Selected bond distances (Å) and angles (°) for 21.

<table>
<thead>
<tr>
<th></th>
<th>U1···U2</th>
<th>U2···B3</th>
<th></th>
<th>Mean U-N_im</th>
<th>Mean U-N_pyr</th>
<th>U1···B1</th>
<th>B1-U1-B3</th>
<th>Mean U-N (imine)</th>
<th>Mean U-N (pyrrolide)</th>
<th>U1···B3</th>
<th>B2-U2-B3</th>
<th>Mean U-N (pyrrolide)</th>
<th>Mean U-N (imine)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.7884(3)</td>
<td></td>
<td></td>
<td>2.50</td>
<td>2.58</td>
<td>2.630(9)</td>
<td>158.7(3)</td>
<td>2.50</td>
<td>2.58</td>
<td>2.915(7)</td>
<td>158.6(3)</td>
<td>2.911(7)</td>
<td>2.640(9)</td>
</tr>
</tbody>
</table>

Single crystals of 21 suitable for X-ray diffraction analysis were grown by slow cooling a saturated THF solution from 70 °C to room temperature. The structure (Figure 3.15) reveals that the complex does not adopt the classic Pacman geometry where the ortho-phenyl rings of the macrocycle act as hinges, but instead the ligand flexes at the meso carbons, adopting a bowl-shaped geometry.\(^{65}\) Each U(III) ion is pseudo-octahedral and bound in the equatorial plane to the two ortho imine nitrogens of one aryl ring of the macrocycle and to the two adjacent pyrrolide nitrogens, whilst two BH\(_4^-\) ligands, one terminal (B1/B2) and one bridging (B3), occupy the axial sites. The mean U-N(imine) distance of 2.50 Å is shorter than the mean U-N(pyrrrolide) distance of 2.58 Å. This is the opposite of what would be expected on the grounds of electrostatic interaction and is also the reverse of what is generally observed in Pacman geometry complexes; in 18 the mean U-N(pyrrrolide) bond length of 2.49 Å is shorter than the mean U-N(imine) bond length of 2.62 Å. Therefore it is concluded that the observed U-N distances are imposed by the bowl conformation of the ligand.

![Diagram of the {U-{µ-BH\(_4\)}-U} cores of 18 and 21 showing the different hydride bridging modes.](image)

The \{BH\(_4^-\)-U-(µ-BH\(_4\))-U-BH\(_4^-\}\) core of 21 is significantly bent. The bridging angle U1-B3-U2 is 110.5(3) ° and the \{BH\(_4^-\)-U-(µ-BH\(_4\))\} units also deviate from linearity with B-U-B angles of 158.7(3) ° and 158.6(3) °. The BH\(_4^-\) protons could not be located crystallographically but the U1···B1 and U2···B2 distances of 2.630(9) Å and 2.640(9) Å, respectively, are consistent with \{(µ-H)_2BH\} binding modes for the exo BH\(_4^-\) ligands, B1 and B2.\(^{22}\) The endo BH\(_4^-\) protons bridge the two metal centres with longer U1/2···B3 separations of 2.915(7) Å and 2.911(7) Å. These distances are consistent with a \{(µ-H)_2BH(µ-H)\} interaction averaged over the two U(III) centres by rotation (Figure 3.16, right). By adopting the bowl conformation, the U1···B3···U2 interaction is optimized since the two U(III) cations can achieve greater separation (U1···U2 = 4.7884(3) Å) than is seen in
archetypal Pacman complexes of this ligand (M···M range: 3.1 – 4.2 Å). The increased U1···U2 separation enables a more obtuse bridging angle at B3, approaching the optimum linear geometry observed in 18. It has also been observed that larger metal cations favour adoption of the bowl conformation rather than the Pacman geometry (see 1.3.3).

Isolated 21 cannot be re-dissolved in THF unless a suitable reagent is added (see 3.4.3). Dissolution of the complex in pyridine results in decomposition. This is in contrast to 18, which simply forms the pyridine solvate 18py, upon dissolution in pyridine by displacement of the THF ligands. However there is no accessible site for solvent to co-ordinate to the U(III) centres in 21 due to the bowl conformation of the ligand. The co-ordination numbers of the U(III) cations in 18 and 21 are 7 and 6 respectively. The lack of extra co-ordinated solvent molecules in 21 and the lengthened U-N(pyrrrolide) interactions must destabilise the complex to such a degree that it is vulnerable to decomposition upon addition of pyridine.

Complexes 18 and 21 are highly unusual. Firstly, they are only the second and third structurally characterised examples of binuclear U(III)/U(III) complexes of a single ligand, the first being [U₂L₄(L')] (3AG). Furthermore 18 and 21 are rare examples of complex U(III) co-ordination compounds bearing ancillary BH₄⁻ ligands. Until this point, the only structurally characterised U(III) borohydride compounds were complexes of U(BH₄)₃ with various neutral donors such as [U(BH₄)₃(THF)₃], [U(BH₄)₃(dmpe)₂]²⁻ and [U(BH₄)₃(C₆Me₆)]. The only exception as far as we are aware is the mixed valence U(III)/U(IV) organometallic salt [Na(THF)₆][U(Cp*)(BH₄)₃]₂ which was formed by consecutive reaction of UCl₄ with excess NaH, 3 equivalents of NaBH₄ and [Th(Cp*)(PPh₂)₂], a somewhat convoluted reaction pathway. Finally, while the solid state structures of U⁴⁺(BH₄)₄ are oligomeric with bridging BH₄⁻ groups, 18 and 21 are the first compounds to contain the {U³⁺-(μ-BH₄)-U³⁺} moiety. Indeed, the ability of BH₄⁻ to effectively bridge two U(III) centres in the intermetallic cleft appears to provide important stabilisation to these binuclear complexes and may explain their improved stability compared to the iodide complex 12.
Chapter Three

3.4 Reactivity of uranium(III) Pacman complexes

The isolation of compounds 18 and 21 presents a unique opportunity to explore both the reactivity of two U(III) cations bound in proximity within a macrocyclic framework and also the reactivity of BH₄⁻ ligands in terminal and bridging co-ordination sites at U(III). In particular, in order to investigate the co-operative activation potential of the U(III) centres it would be desirable to remove the bridging BH₄⁻ ligand to leave a vacant co-ordination site for substrate activation between the two U(III) centres.

3.4.1 Ligand substitution: synthesis of [(U(OAr))₂(endo-BH₄K)(Lᴬ)]

Various ligand substitution reactions of 18 or crude 19 with amide, alkoxide, aryloxide, cyclopentadienyl, alkyl and allyl alkali metal salts were investigated on a small scale in d₈-THF solution (see 4.3.11). The only reactions which appeared promising by ¹H NMR spectroscopy were those between 18 and two equivalents of the aryloxides MOAr where M = K, Na and Ar = 2,4,6-C₆H₃(tBu)₃. The ¹H NMR spectra of both reaction mixtures were very similar and each displayed a new set of very broad, paramagnetically shifted resonances of low intensity, which nevertheless appeared to correspond to a single, symmetric Pacman ligand environment. A large quantity of dark green crystals formed over 4 h in the 18/KOAr reaction mixture. Analysis of these by X-ray diffraction revealed their composition to be [(U(OAr))₂(endo-BH₄K)(Lᴬ)(THF)]₂ (22) in which the two exo BH₄⁻ ligands have been exchanged for bulky aryloxides and the Na⁺ cation of 18 has been exchanged for a K⁺ cation which binds within the macrocyclic cleft. A few single crystals also formed in the 18/NaOAr reaction mixture, but only after standing for two weeks. These were found to be the analogous Na⁺ containing product [(U(OAr))₂(endo-BH₄Na)(Lᴬ)(THF)]₂ (23) in which, in contrast to 18, the Na⁺ cation is also located within the macrocyclic cleft (Scheme 3.13). Interestingly, no reaction occurred between 18 and two equivalents of LiOAr and the reaction between two equivalents of KOAr and 21 in d₈-THF resulted in the formation of multiple paramagnetic products and was not investigated further.

On a preparative scale, reaction of 18 with KOAr in THF allows crystalline 22 to be isolated in 59 % yield. A preparative synthesis of 23 was not attempted due to its comparatively slow crystallisation in the NMR scale reaction. Isolated, crystalline 22 is insoluble in THF and pyridine but partially soluble in toluene and hot benzene. The ¹H NMR spectrum of 22 in C₆D₆ is sharper than that of the crude in situ formed product in d₈-THF and paramagnetically shifted resonances corresponding to a symmetric macrocycle and two equivalent aryloxide ligands are present. One resonance that integrates to 18H is observed at
Chapter Three

4.1 ppm for the two para-^1^Bu groups and one of integral 36H at −0.1 ppm for the four ortho-^1^Bu groups of the two aryloxides. The resonance corresponding to the four equivalent meta protons of the aryloxides cannot be distinguished from the macrocycle resonances of equal integral. A single broad resonance appears in the 11B NMR spectrum at 188 ppm.

Scheme 3.13 Synthesis of the exo ligand exchange products 22 and 23.

22 crystallises in the orthorhombic space group $Pnma$. The asymmetric unit consists of half the macrocycle; the other half is generated by reflection through the horizontal mirror plane which passes through B1 and K1, perpendicular to the planes of the anthracene hinges. 23 crystallises in the monoclinic space group $C2/c$. Again the asymmetric unit consists of half the macrocycle but this time the other half is generated by rotation about the C_2 axis which passes through B1 and the centre of the Na1/Na1’ positions (Figure 3.17).

The co-ordination environments of the U(III) ions in 22 and 23 are very similar (Table 3.7). In both structures, five equatorial donors are provided by the four nitrogens of the macrocycle and one molecule of THF solvent, which sits between the macrocycle hinges. The aryloxide ligand occupies the exo axial co-ordination site and a BH$_4^-$ group (hydrogens not located) sits within the macrocyclic cleft between the two U(III) centres. The geometry of each U(III) centre can be described as either distorted pentagonal bipyramidal or pentagonal based pyramidal depending on whether the U1⋯B1 interaction is considered a true bonding interaction or not.

119
Figure 3.17 Solid state structures of 22 (left) and 23 (right), showing side view (top) and view into the jaws of the macrocycle (bottom). The major orientation of the ‘Bu groups in 22 is shown and the symmetry generated cation Na1’ is only shown in the bottom view of 23. The meso ethyl groups, aryloxide substituents and THF molecules have been removed from the bottom structures for clarity. Thermal ellipsoids are drawn at 50% probability. H atoms and lattice solvent are omitted.
Table 3.7 Comparison of selected distances (Å) and angles (°) in the structures of 22 and 23.

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>U1···U1′</td>
<td>6.5881(3)</td>
</tr>
<tr>
<td>2.</td>
<td>mean U1-N$_{im}$</td>
<td>2.65</td>
</tr>
<tr>
<td>3.</td>
<td>mean U1-N$_{pyr}$</td>
<td>2.50</td>
</tr>
<tr>
<td>4.</td>
<td>U1-N$_4$ plane</td>
<td>+0.70</td>
</tr>
<tr>
<td>5.</td>
<td>U1-O1</td>
<td>2.231(5)</td>
</tr>
<tr>
<td>6.</td>
<td>U1···B1</td>
<td>3.312(1)</td>
</tr>
<tr>
<td>7.</td>
<td>U1-O2</td>
<td>2.554(5)</td>
</tr>
<tr>
<td>8.</td>
<td>B1···M1</td>
<td>3.036(11)</td>
</tr>
<tr>
<td>10.</td>
<td>U1-B1-U1′</td>
<td>168.2(4)</td>
</tr>
<tr>
<td>11.</td>
<td>O1-U1-B1</td>
<td>178.3(2)</td>
</tr>
<tr>
<td>12.</td>
<td>U1-O1-C$_{ipso}$</td>
<td>154.0(5)</td>
</tr>
</tbody>
</table>

The aryloxide rings are perpendicular to the anthracenyl hinges of the macrocycle and the bend at the O atom (U1-O1-C$_{ipso}$ = 154.0(5) ° (22), 153.3(6) ° (23)) orients the ortho-
'tBu groups away from the THF donor. The U(III) ions are considerably displaced out of the macrocycle N$_4$ donor planes, out of the intermetallic cleft, by 0.70 Å in 22 and 0.69 Å in 23, and the sum of the four N-U-N angles in the two structures is 337.9(8) ° and 338.1(8) ° respectively. The separation of the bulky aryloxide ligand from the N$_4$ plane of the macrocycle is imposed by steric. Therefore the displacement of the U(III) centres out of the N$_4$ plane is a compromise between optimised U-OAr and U-N bond lengths. The resulting mean U-N(imine) separations of 2.65 Å in both complexes and the mean U-N(pyro)lido separations of 2.50 Å (22) and 2.51 Å (23) are lengthened compared to those observed in 18 (2.62 Å and 2.49 Å). The U1-O1 bond lengths in 22 and 23 are 2.231(5) Å and 2.245(6) Å respectively. These are longer than the UIII-OAr distances in [U{O(2,6-C$_6$H$_3$[Pr$_2$]$_3$}$_3$]$_2$ and [U{O(2,6-C$_6$H$_3$[Bu]$_3$}]$_2$]$_2$ which range from 2.149(4) to 2.214(7) Å but similar to the mean U-OAr distance of 2.22 Å observed by Meyer and co-workers in the series of constrained aryloxide tacn complexes [U{tacn(OArR)$_3$}]$_2$.74,75

The main difference between the structures of 22 and 23 is the binding mode of the K$^+$ and Na$^+$ cations within the cleft. The larger K$^+$ ion is sandwiched symmetrically between all four pyrroline rings (Figure 3.17, bottom left) with K1-[pyr]centroid separations of 3.154(2) Å and 3.153(2) Å. By contrast the smaller Na$^+$ ion is disordered over two sites about the crystallographic C$_2$ axis, presumably because it cannot effectively bridge all four pyrrolides. This results in three short Na1-[pyr]centroid distances of 2.85(4), 3.04(2) and 3.08(4) Å and one long, non-bonding separation of 3.61(2) Å. K$^+$ is clearly a better size match for the Pacman macrocyclic cleft than Na$^+$. On the basis of the M1···B1 separations,
the M···BH₄ interactions are true bonds. Reported terminal K···BH₄ separations range from 2.947(3) Å to 3.091(4) Å with a mean value of 3.00 Å, while terminal Na···BH₄ separations range from 2.600(6) Å to 2.841(2) Å with a mean value of 2.68 Å. The K1···B1 (3.036(11) Å) and Na1···B1 (2.747(2) Å) separations in 22 and 23 lie within these ranges, close to the mean values. The elongated K1·B1 distance means that the BH₄⁻ group sits further back into the molecular cleft in 22 and the U1·B1-U1' angle in 22 (168.2(4)°) is more acute than that in 23 (173.0(6)°).

The effect of the out-of-cleft distortion of the U(III) centres is a marked lengthening of both the U···U and the U···(endo-BH₄) separations. U1···U1' is 6.5881(3) Å in 22 and 6.5265(7) Å in 23 compared to 5.9243(3) Å in 18. U1·B1 is 3.312(1) Å in 22 and 3.269(1) Å in 23 compared to 2.977(7) Å and 2.949(7) Å in 18. The U-B distances in 18 are the longest observed for any uranium borohydride complex, with the next longest being 2.927(7) Å in [U(BH₄)L'] (L' = trans-calix[2]benzene[2]pyrrolide). This raises the question of whether there is a bond between the U(III) ions and the endo BH₄⁻ group in 22 and 23 or whether the BH₄⁻ group is held within the cleft by association with its M⁺ counterion. The observed ¹¹B NMR shift of the endo BH₄⁻ group in 22 is 188 ppm which is considerably contact shifted from that of free KBH₄ (~40 ppm) indicating that there is some electronic overlap between the U(III) centres and the BH₄⁻ group. It is likely that in-cleft cation binding in 22 and 23 is necessary to stabilise very weak, long range U···(BH₄⁻)·U interactions.

3.4.2 Further reactivity of [(U(OAr))₂(endo-BH₄K)(L⁺)]

3.4.2.1 With 18-crown-6

It was hoped that the weakening of the U···(endo-BH₄)·U interaction observed in 22 could be exploited to remove the central BH₄⁻ group to leave two proximate U(III) centres ideally aligned for small molecule activation. 18-crown-6 has already been shown to effect the abstraction of the in-cleft bound K⁺ cation from 19. Therefore excess 18-crown-6 was added to a suspension of 22 in C₆D₆ to probe the fate of the endo-BH₄⁻ group following removal of the stabilising K⁺ counterion.

The ¹¹B NMR spectrum of the resulting mixture did not contain any resonances, indicating that abstraction of the K⁺ cation from 22 by 18-crown-6 causes the endo BH₄⁻ ligand to be released as insoluble [K(18-crown-6)][BH₄]. The ¹H NMR spectrum displayed contact-shifted resonances assignable to a new symmetric Pacman product (24). The resonances were considerably sharper than those in the spectrum of 22 due to the improved solubility of 24 in benzene. Five contact-shifted signals attributable to two aryloxide ligands
were observed in the ratio 18:18:18:2:2, four of which were significantly broader than the other resonances in the spectrum (Figure 3.18, highlighted resonances). This differs from the starting material 22, which displayed only three aryloxide resonances in the ratio 36:18:4. The observed NMR data is consistent with a structure for 24 in which the exo aryloxide ligands have rotated about the U-O and O-C_{ipso} bonds so that the aryl rings are now coplanar with the anthracenyl hinges of the macrocycle (Scheme 3.14). In such a structure the two ortho-t-Bu groups (orange resonances) of each macrocycle are inequivalent since one is oriented between the macrocycle hinges while the other points towards the meso ethyl groups. The two meta protons (green resonances) of the aryloxides are similarly desymmetrised but the two pockets of the macrocycle remain equivalent, as do both para-t-Bu groups of the two aryloxides. The broadening of the ortho-t-Bu and meta-H resonances implies that they are in fluxional exchange on the NMR timescale by rotation of the rings about the O-C_{ipso} bonds. For the aryloxides to adopt this binding geometry, it is expected that the THF ligands which occupied the fifth equatorial co-ordination sites in the starting material 22 must have dissociated (see 3.4.2.2).

Figure 3.18 ¹H NMR spectrum of 24 formed by the reaction of 22 with excess 18-crown-6 in C₆D₆. The resonances of the aryloxide ligands are highlighted. Resonances assigned to residual protio solvent, THF, excess 18-crown-6 and trace HN⁺ are scored through.
Single crystals of 24 were not obtained and neither was bulk material successfully isolated, preventing compositional or structural analysis of the complex. Therefore, it is not known whether any species is bound within the intermetallic cleft in place of KBH₄. As discussed in 3.1.2.1, co-operative N₂ binding by U(III) aryloxides has been demonstrated. Since the reaction between 22 and 18-crown-6 was carried out under a nitrogen atmosphere, it is possible that N₂ may be bound between the U(III) centres in 24. To date, the only dinitrogen binding mode observed in binuclear uranium complexes is the side-on bridging mode. The side-on bridging mode necessitates a shorter M···M separation than the end-on bridging mode commonly observed in transition metal complexes. In the structurally characterised binuclear uranium dinitrogen complexes, U···U separations range from 4.572(4) Å in [(U(OSiMes₃)₃)₂(μ-η²:η²-N₂)] to 4.7035(4) Å in [(U(NN′₃)₃)₂(μ-η²:η²-N₂)] (3H).²⁵ If the U···U separation observed in 22 (6.5881(3) Å) were maintained in 24 then the U(III) centres would be too distant to bind N₂ side-on between them. However, one attribute of the Pacman macrocycles is their flexibility, which leads to a wide range of bite angles and M···M distances in their complexes. The shortest U···U separation observed in a binuclear uranium complex of (L°)⁴⁺ is 4.1927(3) Å (see 3.5.1) while the shortest U···U separation measured in a binuclear uranium complex of (L°)⁴⁺ with exo aryloxide ligands is 5.1571(5) Å (see 3.4.2.2). Therefore side-on dinitrogen binding may be geometrically feasible in 24. However it should be noted that all previously reported uranium dinitrogen complexes were prepared with the exclusion of co-ordinating solvents. 24 is synthesised in benzene but two equivalents of THF are present in 22 so it is also possible that THF may occupy the
intermetallic cleft. Unfortunately, attempts to carry out the reaction between 22 and 18-crown-6 in the absence of nitrogen to probe whether N₂ is bound in 24 were unsuccessful due to equipment malfunction.

\[\text{Scheme 3.15 In situ reactions attempted with 24 showing target products. Conditions: 1.0 bar gas pressure, C₆D₆ solvent.}\]

Regardless of whether N₂, THF or no molecule occupies the intermetallic cleft in 24, it is expected to be a reactive complex. Since 24 could not be isolated it was formed in situ in an NMR tube and its reactivities towards carbon monoxide, dihydrogen and carbon dioxide were investigated. Scheme 3.15 shows the target products that it was hoped might be formed in each of these reactions. The binuclear \((\text{C}_n\text{O}_n)^{2-}\) bridged U(IV)/U(IV) complexes formed by the reductive coupling of CO (see 3.1.2.2) contain U···U separations of 7.2214(2) Å or longer which probably could not be supported by the Pacman framework. However the end-on CO-bridged binuclear U(III)/U(IV) complex reported by the Meyer group (3Q) features a U···U separation of 6.3868(4) Å. This binding motif could likely be incorporated between the U(III) centres of the Pacman complex and might be expected to be favoured by the pre-organisation of the U(III) ions at an appropriate distance. Unfortunately 24 was unreactive towards CO.

\[\text{Scheme 3.16 Reversible addition of dihydrogen across a U(III)/U(III) dimer.}\]

Reversible oxidative addition of dihydrogen across two U(III) centres to form two U(IV) hydrides was demonstrated by the Marks group who reported that an equilibrium is established between the \([\text{Cp}^*\text{U}^{\text{III}}(\mu-\text{H})]_2\) and \([\text{Cp}^*\text{U}^{\text{IV}}\text{H}(\mu-\text{H})]_2\) dimers, its position depending on the applied H₂ pressure (Scheme 3.16). Both equilibrium components have
been isolated and structurally characterised by Evans and co-workers. Complex 24 does not exhibit similar chemistry and is unreactive towards H₂.

The Cloke, Meyer, and Mazzanti groups have all reported the activation of CO₂ between two U(III) centres to form bridging carbonate complexes (see 3.1.2.3). Two distinct carbonate bridging modes have been observed in these complexes: μ-κ¹(O):κ²(O',O'″) and μ-κ¹(O,O′):κ²(O,O″), which result in approximate U⋯U separations of 6.28 Å and 5.26 Å, respectively. The flexible Pacman macrocycle could probably allow intermetallic carbonate incorporation in either bridging mode. Addition of CO₂ to a dark green benzene solution of 24 resulted in an immediate colour change to pale orange. The ¹H NMR spectrum of the mixture displayed several very low intensity, paramagnetically contact-shifted resonances which could not be assigned to a single product. This indicates that decomposition or multiple product formation occurred, rather than selective formation of a single, well-defined oxidised species.

3.4.2.2 With S₈: synthesis of \([\{U(OAr)\}_2(\mu-S_2)(L^A)\]\

The reactivity of 22 towards small molecules was also investigated. It was reasoned that since the KBH₄ unit is only weakly bound within the macrocyclic cleft in 22, addition of a suitable substrate could result in KBH₄ displacement, negating the requirement for additional 18-crown-6. This indeed proved to be the case. Thus addition of excess S₈ to a suspension of 22 in C₆D₆ resulted in immediate formation of a pale orange solution and a pale yellow precipitate. The ¹H NMR spectrum of the mixture displayed contact-shifted resonances corresponding to a single symmetric Pacman environment and two equivalent aryloxide ligands. As was observed in the NMR spectrum of 24, the aryloxide protons appear as 5 distinct resonances in an 18:18:18:2:2 ratio, implying that the aryloxide rings are coplanar with the macrocycle anthracene hinges. The two ortho-tBu signals at 29.51 and −31.72 ppm are slightly broadened compared to the para-tBu resonance at 15.09 ppm. However, the meta proton signals are not significantly broadened making it impossible to distinguish them from the macrocycle resonances of the same intensity. No resonances were observed in the ¹¹B NMR spectrum indicating that displacement of KBH₄ from the cleft and its precipitation from solution had occurred. Addition of hexane to the filtered reaction mixture resulted in the deposition of orange crystals of \([\{U(OAr)\}_2(\mu-\eta^2:S_2)(L^A)\] (25) in 43 % yield (Scheme 3.17). Both uranium centres in complex 25 have been oxidised to U(IV) and the intermetallic cleft is occupied by a bridging persulphide ion, \((S_2)^2^-\).
Complex 25 crystallises in the monoclinic space group \(C2/c \). The asymmetric unit consists of half the macrocycle and the other half is generated by rotation about the crystallographic \(C_2 \) axis. In the solid state the U(IV) ions in 25 are seven co-ordinate, binding to the four N donors of the macrocycle, the \textit{exo} aryloxide ligand and both S atoms of the \textit{endo} bridging persulphide ion (Figure 3.19). The solid state structure of 25 confirms that, in contrast to 22, the aryloxide rings are indeed approximately coplanar with the anthracene hinges of the macrocycle with one \textit{ortho}-tBu group on each ring sitting between the hinges. Also, the two THF molecules which were bound to the U centres in the equatorial sites in 22 have dissociated during formation of 25. The U1-O1 bond length in 25 is 2.091(3) Å, which is reduced from 2.231(5) Å in 22 and is consistent with the oxidation of the U(III) centres to U(IV). The angle at the O atom of the aryloxides in 25 (U1-O1-C\textsubscript{ipso} = 169.0(3) \(^\circ\)) is less acute than that observed in 22 (154.0(5) \(^\circ\)). The mean U1-N(pyrrolide) distance has contracted from 2.50 Å in 22 to 2.41 Å in 25, though the difference in the mean U1-N(imine) distances is less marked (2.65 Å in 22 vs 2.63 Å in 25).

\textbf{Scheme 3.17} Oxidation of 22 with \(S_8 \) to the U(IV)/U(IV) persulphide complex 25.
Figure 3.19 Solid state structure of 25 showing side view (left) and view into jaws of macrocycle (right). The alternative, symmetry generated S2 position, S2' (dashed bonds), is only shown in the right hand structure and the macrocycle *meso* ethyl groups and aryloxide *ortho* 'Bu groups have been removed from this figure for clarity. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Table 3.8 Selected bond distances (Å) and angles (°) for 25.

<table>
<thead>
<tr>
<th></th>
<th>U1···U1’</th>
<th>O1-U1-S1</th>
<th>125.7(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean U-N<sub>Im</sub></td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean U-N<sub>pyr</sub></td>
<td>2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1-N<sub>4</sub> plane</td>
<td>−0.07</td>
<td>U1-S2-U1’</td>
<td>135.0(1)</td>
</tr>
<tr>
<td>U1-O1</td>
<td>2.091(3)</td>
<td>S1-S2-U1</td>
<td>70.40(8)</td>
</tr>
<tr>
<td>U1-S1</td>
<td>2.8229(8)</td>
<td>S2-S1-U1</td>
<td>64.62(8)</td>
</tr>
<tr>
<td>U1-S2</td>
<td>2.707(3)</td>
<td>U1-(S<sub>2</sub>cent-U1’</td>
<td>165.4</td>
</tr>
<tr>
<td>S1-S2</td>
<td>2.118(3)</td>
<td>U1-O1-C<sub>ipso</sub></td>
<td>169.0(3)</td>
</tr>
</tbody>
</table>

The (S₂)^{2−} unit is equidistant from the two U(IV) centres (as determined by the crystal symmetry) but the U1-S1 bond length of 2.8229(8) Å is longer than the U1-S2 length of 2.707(3). S2 was found to be disordered over two sites related by rotation about the C₂ axis and the occupancy of each site was fixed as 0.5. U1, U1’, S1 and S2 are not coplanar but instead the {U₂S₂} unit forms a bent diamond with a U1-(S₂centroid-U1’ angle of 165.4 °.
Bridging persulphide uranium complexes are rare. The only two examples have been reported in the last two years and both feature a persulphide ion bridging two U(IV) centres. Hayton and co-workers reported the structure of \([\{U(N^\prime\prime)\}_3(\mu-\eta^2:\eta^2-S_2)\}] (3AA)\(^45\) whilst the Mazzanti group crystallised \([\{U((SiMe_2NPh)_3tacn)\}_2(\mu-\eta^2:\eta^2-S_2)\}] (3AD)\(^46\). The S1-S2 bond length in 25 of 2.118(3) Å is slightly longer than those in the other published U(IV) persulphides (Table 3.9, entry 1.) and the mean U-S separation is slightly shorter (entry 2.). The diamond \(\{U_2S_2\}\) unit in 25 is the most bent, with the U-(S\(_2\))centroid-U angle 175.8° in 3AA while the \(\{U_2S_2\}\) unit is planar in 3AD (entry 3.) Associated with this reduction in bend is an increase in the U⋯U separation from 5.1571(5) Å in 25 to 5.3638(7) Å in 3AD (entry 4.). However the most significant difference between 25 and the other U(IV) persulphide complexes is that 25 is formed solely and selectively by reaction of excess S\(_8\) with 22 whereas 3AA is a by-product which cannot be rationally synthesised and 3AD is one of a number of products formed by reduction of the U(V) persulphide \([U((SiMe_2NPh)_3tacn)(\eta^2-S_2)]\} (3AC) with PPh\(_3\). The Meyer group have reported the U(IV)/U(IV) bridged perselenide complex \([\{U(N(OAr))_3\}_2(\mu-\eta^2:\eta^2-Se_2)\}] but were unable to prepare the sulphur analogue.\(^47\) Therefore 25 is the only U(IV)/U(IV) persulphide complex which may be reliably and rationally prepared from the corresponding U(III)/U(III) starting material.

<table>
<thead>
<tr>
<th></th>
<th>25</th>
<th>3AA</th>
<th>3AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>S-S (Å)</td>
<td>2.118(3)</td>
<td>2.105(2)</td>
</tr>
<tr>
<td>2.</td>
<td>mean U-S (Å)</td>
<td>2.76</td>
<td>2.80</td>
</tr>
<tr>
<td>3.</td>
<td>U-(S(_2))centroid-U (°)</td>
<td>165.4</td>
<td>175.8</td>
</tr>
<tr>
<td>4.</td>
<td>U⋯U (Å)</td>
<td>5.1571(5)</td>
<td>5.3037(4)</td>
</tr>
</tbody>
</table>

3.4.2.3 With CS\(_2\)

Selective formation of a single Pacman product was observed in the oxidation of 22 with S\(_8\) while multiple products resulted from the oxidation of 24 with CO\(_2\). Therefore the reaction of CS\(_2\), another sulphur-containing small molecule, with 22 was investigated in the hope that a well-controlled reaction would occur which might shed light upon the interaction of 22 and/or 24 with CO\(_2\). Addition of excess CS\(_2\) to a suspension of 22 in \(d_8\)-toluene resulted in a slow colour change from dark green to orange-brown over the course of 10 min and formation of orange precipitate. The \(^1\)H NMR spectrum of this mixture indicated that a single asymmetric Pacman species was formed in which the two pockets of the macrocycle are inequivalent. The two aryloxide ligands are also inequivalent appearing as nine signals: five of intensity 9H corresponding to five of the six tBu groups (the resonance of the sixth
group is assumed to be concealed by the solvent resonances) and four of intensity 1H corresponding to each meta proton. Again, it is deduced that the aryloxide rings are coplanar with the macrocycle hinges. No resonances are observed in the \(^{11} \text{B} \) NMR spectrum. On the basis of this spectroscopic evidence it is suggested that the species formed initially on combination of 22 with \(\text{CS}_2 \) is \([\{\text{U(OAr)}\}_{2}(\mu-\text{CS}_2)(L^z)\}] \) (26) in which the carbon disulphide reagent has been reduced to a bent \((\text{CS}_2)^{2-}\) unit that binds asymmetrically between the two U(IV) centres, thus rendering the top and bottom macrocycle pockets and the two exo aryloxides non-equivalent (Scheme 3.18).

Scheme 3.18 Reaction of 22 with \(\text{CS}_2 \) to form the asymmetric, \(\text{CS}_2 \)-bridged product 26.

Carbon disulphide-bridged uranium complexes are rare but two examples have been characterised in the solid state. In 1986, Andersen and co-workers reported the structure of \([\{\text{U(MeC}_5\text{H}_4)\}_{3}(\mu-\eta^1(S):\eta^2(C,S)-\text{CS}_2)\}] \) (3AM) while the Mazzanti group reported that of \([\{\text{U(OSi(OtBu)}_{3})\}_{2}(\mu-\eta^1(S):\eta^2(S,S)-\text{CS}_2)\}] \) (3AN) in 2012 (Figure 3.20). Both of these complexes feature reduced, bent \((\text{CS}_2)^{2-}\) ions bound asymmetrically between two U(IV) centres and were synthesised by reaction of the corresponding U(III) precursors with \(\text{CS}_2 \). The \(^1\text{H} \) NMR spectra of 3AM and 3AN each display two distinct sets of signals for the cyclopentadienyl and siloxide ligands indicating that the asymmetric \((\text{CS}_2)^{2-}\) binding mode is preserved in solution and not averaged by fluxional processes. The different bridging geometries of the \((\text{CS}_2)^{2-}\) unit in 3AM and 3AN give rise to \(\text{U} \cdots \text{U} \) separations of 6.396(1)\(\text{Å} \) and 5.4056(5)\(\text{Å} \), respectively. On the basis of the \(\text{U} \cdots \text{U} \) separation observed in 25 (5.1571(5)\(\text{Å} \)), the structure of which is very similar to that proposed for 26, it is suggested that the
(CS$_2$)$_2^{2-}$ bridging mode in 26 is the same as that observed in 3AN, namely \{µ-η^1(C,S):η^1(S,S)-CS$_2$\}.

![Figure 3.20](image)

Figure 3.20 Structurally characterised binuclear (CS$_2$)$_2^{2-}$ uranium complexes reported by the Andersen (left)44 and Mazzanti (right)44 groups. The Me substituents have been omitted from the C$_5$H$_4$Me rings in 3AM for clarity. R = 'Bu.

The toluene solution of 26 was filtered and hexane allowed to slowly vapour diffuse into the filtrate. Block-shaped orange crystals formed after five days. To our surprise X-ray diffraction analysis of the crystals revealed that they were not the asymmetric, (CS$_2$)$_2^{2-}$ bridged complex 26 but instead the symmetric, sulphide-bridged compound \{[U(OAr)$_2$(µ-S)(LA)]\} (27). The co-ordination environment about the two U(IV) ions in 27 is distorted octahedral (Figure 3.21). The four N donors of the macrocycle occupy the equatorial plane and the exo aryloxide and endo bridging sulphide ligands occupy the axial sites. There is, however, a large deviation from idealised octahedral geometry; the angles between the trans axial ligands O1-U1-S1 and O2-U2-S2 are 143.2(2) $^\circ$ and 140.1(2) $^\circ$, respectively. The aryloxides are likely tilted back toward the hinges of the macrocycle to avoid unfavourable steric interactions between their ortho-ortho'Bu groups and the exo meso ethyl groups of the macrocycle. At 2.594(2) Å and 2.608(2) Å, the U-S bond lengths in 27 are reduced by ca. 0.16 Å compared to the mean U-S distance observed in the persulphide complex 25. The geometry of the \{U-(µ-S)-U\} core in 27 is approaching linear (U1-S1-U2 is 172.0(1) $^\circ$) and the U1···U2 separation is 5.1899(5) Å. Other mono-sulphide bridged complexes prepared to date include \{[U(N$^\eta$)$_3$]$_2$(µ-S)\} (3AA),45 \{[U(OAr)$_3$]$_2$(µ-S)\} (Ar = 2,6-C$_6$H$_3$(t-Bu)$_2$)85 and \{[U((AdArO)$_3$N)(DME)]$_2$(µ-S)\} (3AE)48 In these compounds the U-S bond lengths range from 2.588(1) Å to 2.736(2) Å, the U···U separations vary from 5.176(3) Å to 5.4407(6) Å and the U-S-U angles range from 165.2(2) $^\circ$ to 180 $^\circ$. The structural parameters of the \{U-(µ-S)-U\} unit in 27 lie within these limits and so the confined environment of the Pacman macrocycle does not appear to cause unusual distortion.
Figure 3.21 Solid state structure of 27 showing side view (left) and view into the jaws of the macrocycle (right). The meso ethyl groups and ortho aryloxide substituents have been removed from the right-hand structure. Thermal ellipsoids are drawn at 50% probability. For clarity, H atoms and lattice solvent are omitted.

Table 3.10 Selected bond distances (Å) and angles (°) for 27.

<table>
<thead>
<tr>
<th>Bond/Plane</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2</td>
<td>5.189(5)</td>
<td></td>
</tr>
<tr>
<td>mean U-N$_{im}$</td>
<td>2.59</td>
<td>U2-O2</td>
</tr>
<tr>
<td>mean U-N$_{pyr}$</td>
<td>2.42</td>
<td>U1-S1-U2</td>
</tr>
<tr>
<td>U1-N$_4$ plane</td>
<td>−0.10</td>
<td>O1-U1-S1</td>
</tr>
<tr>
<td>U2-N$_4$ plane</td>
<td>−0.03</td>
<td>S1-U2-O2</td>
</tr>
<tr>
<td>U1-O1</td>
<td>2.081(6)</td>
<td>U1-O1-C$_{ipso}$</td>
</tr>
<tr>
<td>U1-S1</td>
<td>2.594(2)</td>
<td>U2-O2-C$_{ipso}$</td>
</tr>
</tbody>
</table>

Complex 27 must logically have been formed by the slow reductive cleavage of the bound CS$_2$ molecule in 26 to form S$_2^2$− and release CS during recrystallisation (Scheme 3.2, step (ii)). To probe whether this transformation could be accelerated by heating, a solution of 26 in C$_6$D$_6$ was refluxed for 2.5 hours forming an orange solution and a brown precipitate. The subsequent 1H NMR spectrum displayed a new major set of contact-shifted resonances assignable to a single, symmetric Pacman product and was therefore consistent with the transformation of 26 into 27. A few other low intensity resonances were also observed which could not be assigned, indicating that other minor products were also formed. The 1H NMR
spectrum of 27 exhibits just five aryloxide resonances in the ratio 18:18:18:2:2, as was seen for the similar symmetric persulphide complex 25.

Transition metal complexes have been shown to effect the reductive cleavage of CS₂ to S²⁻ and CS, and can also promote the disproportionation of CS₂ to (CS₃)²⁻ and CS. However cleavage of CS₂ by actinides remains rare and, to our knowledge, there are only two reported examples. The Th(II) synthon [Th(Cp')₂(2,2-bipy)] (3AP, Cp' = C₅H₅(²Bu)₂) reacted with one equivalent of CS₂ to form the bis(sulphide)-bridged product [(Th(Cp')₂μ-S₂)₂] (3AQ), or with excess CS₂ to generate a bis(thiocarbonate)-bridged dimer 3AR (Scheme 3.19, top). The authors do not report whether addition of further equivalents of CS₂ to the isolated bis(sulphide) bridged complex 3AQ generated the thiocarbonate complex 3AR. The reaction of CS₂ with the U(III) aryloxide complex 3AS formed the bridged U(IV)/U(IV) thiocarbonate complex 3AT, which the authors suggest proceeds via formation of the sulphide bridged intermediate 3AE (Scheme 3.19, bottom). A second product, a bridged U(IV)/U(IV) thio-oxalate complex, was also formed in the reaction.

Scheme 3.19 Examples of CS₂ activation by actinide complexes reported by Zi and Walter (top) and Meyer (bottom). The ²Bu groups are omitted from the Cp rings in the top scheme and the tethered aryloxide ligand is shown in cartoon form in the bottom scheme.

Since excess CS₂ was employed in the reaction with 22, it is interesting to note that the eventual product is the sulphide complex 27 and not a thiocarbonate complex. This may be controlled by steric; the Pacman macrocycle may not be able to accommodate a thiocarbonate ion. The U···U separation in 3AT is 6.2019(6) Å, and is considerably greater than that observed in the Pacman sulphide complex 27 (5.1899(5) Å). The KBH₄ incorporated Pacman complex 22 has a larger U···U separation of 6.5881(3) Å, but its
structure is considerably different to that of 27 since it features orthogonal aryloxide rings and an extra equatorial THF donor. Therefore it is unclear whether the U⋯U separation of 27 could expand sufficiently to incorporate a bridging thiocarbonate ion. Whether the CS$_3^{2-}$ ion could fit between the jaws of the macrocycle must also be considered. The separation of the macrocycle pockets is, in large part, pre-determined by the anthracene hinges of the macrocycle and does not vary significantly with the position of the uranium ions. The S⋯S separation measured in 3AT is 2.956(2) Å. Combining this with the Van der Waals radius of sulphur (1.80 Å) yields an effective axial Van der Waals radius for the CS$_3^{2-}$ ion of 6.56 Å at a separation of 2.32 Å from the U-U vector (Figure 3.22, left). Assuming that the bridging geometry of a CS$_3^{2-}$ ion in a uranium Pacman complex would be the same as that in 3AT, the sulphur atom which is directly bound to both U(IV) centres would have to point towards the aryl hinges of the macrocycle leaving the other two sulphurs oriented towards the mouth of the macrocycle to prevent their clashing with the aryloxide 'Bu groups which sit between the anthracene hinges. The separation between the planes of the macrocycle pockets at a distance of 2.32 Å from the U(IV) centres in the direction of the meso carbons, was measured as 6.27 Å in structure 27 (Figure 3.22, right). Therefore binding of CS$_3^{2-}$ in the intermetallic cleft would cause overlap between the sulphur atoms and the carbon and nitrogen atoms of the macrocycle pockets. In conclusion, the Pacman macrocycle could not accommodate a CS$_3^{2-}$ ion in the cleft without considerable distortion so the reaction of the sulphide bridged complex 27 with another equivalent of CS$_2$ is disfavoured.

![Figure 3.22](image)

Figure 3.22 Structural metrics of the {U-{µ-CS$_3$}-U} core in 3AT and the macrocyclic cleft in 27. Only the relevant fragments of the macrocycle pockets are shown. All distances are in Å.

The cleavage of CO$_2$ by two U(III) ions to form O$_2^-$ and CO has been demonstrated (see 3.1.2.3), there are several examples of carbonate formation from CO$_2$ in low oxidation state uranium systems, and [U(C$_5$H$_4$Me)$_2$(THF)] has been shown to abstract S$^2-$ from OCS to form [[U(C$_5$H$_4$Me)$_2$]$_2$(µ-S)] and CO. In all of these reactions CO, a stable gaseous molecule containing the very strong C=O bond, is eliminated. By contrast, CS is an
unstable and short-lived species which undergoes spontaneous polymerisation. Indeed the brown precipitate observed during formation of 27 is likely (CS)$_n$. The reduced stability of CS compared to CO explains the relative scarcity of sulphide and thiocarbonate complexes derived from CS$_2$ compared to oxide and carbonate complexes derived from CO$_2$.

Scheme 3.20 Synthesis and interconversion of the different sulphur-containing uranium Pacman complexes. In all cases the solvent is C$_6$D$_6$. The ligand is shown in cartoon form. The equatorial THF ligands are omitted from 22.

As discussed in 3.1.2.4, Meyer and co-workers reported the reaction of the sulphide bridged U(IV)/U(IV) complex 3AE with elemental sulphur to generate complex 3AF, which contains two bridging (S$_2$)$_n^-$ units. We were therefore curious to investigate the reactivity of 27 towards S$_8$. Accordingly, excess S$_8$ was added to in situ generated 27 in C$_6$D$_6$ and the reaction monitored by 1H NMR spectroscopy. The mixture did not undergo an obvious colour change and the 1H NMR spectrum acquired two hours after sulphur addition displayed only resonances corresponding to 27. However, a second spectrum of the mixture acquired after 7 days revealed the presence of the sulphide complex 27 and the persulphide complex 25 in a 2:1 ratio. The mixture was then refluxed for 6 h after which the persulphide complex 25 was observed exclusively (Scheme 3.20, step (iii)). Therefore we have demonstrated that similarly to 3AF, the sulphide complex 27 reacts with elemental sulphur, though in this case only one further sulphur equivalent is taken up to yield the persulphide complex 25. In contrast to the formation of 25 from 22 and S$_8$, which is complete within
minutes, the reaction of 27 with S_8 is slow and must be driven to completion by heating. This is unlikely to be a steric effect since in both reactions the S_8 molecule must be inserted into the macrocyclic cleft and cleaved. Instead, it is suggested that oxidation of the U(III) centres in 22 to U(IV) in 25 and the reduction of elemental sulphur with concurrent formation of four U-S bonds provides a good enthalpic driving force for the reaction. In contrast, the oxidation state of the uranium centres does not change in the transformation of 27 to 25; rather a comproportionation reaction takes place between the sulphide ion and elemental sulphur to generate persulphide and two new U-S bonds. The new U-(S$_2^-$) bonds in 25 are longer and weaker than the U-(S$^2-$) bonds in 27 so there is likely not a large enthalpic gain in the reaction.

3.4.2.4 With O_2

Having explored the reactivity of the KBH$_4$ incorporated U(III)/U(III) Pacman complex 22 with S_8, CO$_2$, and CS$_2$, it was logical to also investigate its reaction with O_2. It was hoped that in the absence of moisture, the U-OAr bonds in 22 would be preserved upon addition of O_2 and that the resulting product would contain an endo oxo or peroxo group, i.e an oxygen analogue of complex 27 or 25. When an atmosphere of O_2 (1.0 bar) was introduced to an NMR tube containing a dark green suspension of 22 in C$_6$D$_6$ the solution immediately turned dark red. The 1H NMR spectrum of the mixture contained many peaks in both the paramagnetic and diamagnetic regions indicating that multiple products had been formed. Due to the large number of resonances present, it was not possible to assign any set of resonances to a single product. However when the tube was left to stand for 4 days, dark red single crystals formed which were analysed by X-ray diffraction and found to be the bis(uranyl)(VI) Pacman complex $\{UO_2\}_2(L^\Lambda)(THF)_2$ (28) (Scheme 3.21). The analogous pyridine solvate $\{UO_2\}_2(L^\Lambda)(py)_2$ (1IV) has previously been synthesised and fully characterised from the reaction of H$_4$L$^\Lambda$ with two equivalents of $[UO_2(N''_2)py]_2$ in pyridine.93 U(VI) is the most stable oxidation state of uranium in aerobic conditions and within U(VI) compounds the uranyl motif is ubiquitous. It is therefore not surprising that a certain amount of the bis(uranyl) complex was formed from 22 in the presence of excess O_2. The fate of the aryloxide ligands is unknown; they may be incorporated into other reaction products or trace water in the O_2 gas may have caused hydrolysis.
Scheme 3.21 Oxidation of 22 with O₂ to form the bis(uranil) complex 28 and other unidentified products.

Figure 3.23 Solid state structure of 28 showing side view (left) and view into the jaws of the macrocycle (right). For clarity, the meso ethyl groups and the THF carbons have been removed from the right hand structure. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Table 3.11 Selected bond distances (Å) and angles (°) for 28.

<table>
<thead>
<tr>
<th>Bond/Plane</th>
<th>Distance/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1⋯U2</td>
<td>5.6727(5)</td>
</tr>
<tr>
<td>mean U-N_{im}</td>
<td>2.56</td>
</tr>
<tr>
<td>mean U-N_{pyr}</td>
<td>2.43</td>
</tr>
<tr>
<td>U1-N₄ plane</td>
<td>+0.09</td>
</tr>
<tr>
<td>U2-N₄ plane</td>
<td>+0.18</td>
</tr>
<tr>
<td>U1-O₁</td>
<td>1.772(3)</td>
</tr>
<tr>
<td>U1-O₂</td>
<td>1.754(3)</td>
</tr>
<tr>
<td>U2-O₃</td>
<td>1.762(3)</td>
</tr>
<tr>
<td>U2-O₄</td>
<td>1.774(3)</td>
</tr>
<tr>
<td>U1-O₅</td>
<td>2.457(3)</td>
</tr>
<tr>
<td>U1-O₆</td>
<td>2.470(3)</td>
</tr>
<tr>
<td>O₂⋯O₃</td>
<td>2.707(5)</td>
</tr>
<tr>
<td>O₁-U₁-O₂</td>
<td>176.4(2)</td>
</tr>
<tr>
<td>O₃-U₂-O₄</td>
<td>175.6(2)</td>
</tr>
</tbody>
</table>

The solid state structure of 28 (Figure 3.23) is very similar to that of the pyridine solvate. The U(VI) cations display pentagonal bipyramidal geometries in which the four N donors of the macrocycle and a THF molecule occupy the equatorial plane with the two
mutually trans oxo ligands in the axial sites. The mean U-N(imine) and U-N(pyrrolide) distances are not significantly reduced from those found in the U(IV) Pacman complexes 25 and 27, which is attributed to the geometry of the macrocycle, but the U-O(THF) distances (2.457(3), 2.470(3) Å) are shortened compared to those in the U(III) complexes 22 and 23 (2.554(5), 2.592(6) Å), supporting the oxidation of the uranium centres. The linear \{UO\} units (O1-U1-O2 = 176.4(2) °, O3-U2-O4 = 175.6(2) °) feature short U-O bond lengths ranging from 1.754(3) Å to 1.774(3) Å which are consistent with the +6 oxidation state of uranium. The absence of a bridging group between the two U(VI) centres allows the macrocycle pockets to slip past each other (twist angle 19 °); this twisting is essential to maximise the separation of the two endo oxo groups, O2 and O3. Even so, the O2···O3 separation of 2.707(5) Å in 28 is short, and is identical within error to that reported for the pyridine solvate (2.709(6) Å).

3.4.3 Protonolysis reactions

In the ligand substitution reaction of the borohydride complex 18 with KOAr to form the exo aryloxide complex 22, the exo BH\(_4^-\) ligands behaved as pseudo halides, undergoing salt elimination. However, unlike the halides, BH\(_4^-\) is also basic in nature. For example, Ephritikhine and co-workers have demonstrated the protonation of [U(BH\(_4\))\(_3\) (THF)\(_3\)] with the acidic ammonium salt [HNEt\(_3\)][BPh\(_4\)] to form the unusual cationic U(III) compound [U(BH\(_4\))\(_2\) (THF)\(_3\)][BPh\(_4\)]. Therefore we investigated the reactivity of 18 towards a mild acid, expecting that neutral or cationic derivatives of the Pacman anion in 18 would exhibit enhanced reactivity.

![Scheme 3.22 Protonolysis of the anionic uranium borohydride complex 18 with successive equivalents of [HNEt\(_3\)][BPh\(_4\)]. The ligand is shown in cartoon form and the equatorially bound THF molecules are omitted from each complex.](image)

One equivalent of [HNEt\(_3\)][BPh\(_4\)] was added to a dark green solution of 18 in \(d_8\)-THF. No obvious colour change occurred but effervescence was observed. The \(^1\)H NMR
spectrum of the mixture displayed twenty-one contact shifted resonances corresponding to a single Pacman product with magnetically inequivalent pockets (one ligand resonance is assumed to be obscured by solvent signals). A single broad borohydride proton resonance was observed at −76.8 ppm. The spectral data are consistent with the protonolysis of one BH\textsubscript{4}− ligand. The presence of a low intensity, sharp signal at 4.59 ppm in the 1H NMR spectrum confirmed that dihydrogen was formed in the reaction. The other by-products of protonolysis, H\textsubscript{3}B\textbullet\textsuperscript{NET\textsubscript{3}} and NaBPh\textsubscript{4} were most clearly evidenced in the 11B NMR spectrum, appearing as a quartet at −13.0 ppm and a singlet at −6.64 ppm, respectively. A stoichiometric quantity of NE\textsubscript{3} is formed in the reaction whereas THF is present in large excess as the solvent. Therefore it is interesting to note that the amine-borane adduct, H\textsubscript{3}B\textbullet\textsuperscript{NET\textsubscript{3}}, is observed exclusively (the H\textsubscript{3}B•THF adduct would be readily distinguished by its 11B chemical shift of −1.1 ppm). The 11B NMR spectrum also contains two broad signals of equal intensity shifted to high frequency at 234 and 178 ppm. The asymmetry of the Pacman macrocycle and the presence of two contact shifted resonances in the 11B NMR spectrum indicate that one of the \textit{exo} BH\textsubscript{4}− ligands has been removed. The product is therefore assigned as the neutral complex [\{U(BH\textsubscript{4})\}(U(THF))(\mu-BH\textsubscript{4})(L\textsc{A})(THF)]\textsubscript{2} (29, Scheme 3.22, centre). It is assumed that a THF molecule will occupy the \textit{exo} axial site vacated by the BH\textsubscript{4}− ligand.

Addition of a second equivalent of [HNET\textsubscript{3}][BPh\textsubscript{4}] to the NMR tube containing 29 resulted in further effervescence. The 1H NMR spectrum of the resultant mixture displayed half the number of resonances indicating that the two macrocycle pockets are equivalent. The 11B NMR spectrum contained just one signal at very high frequency (334 ppm). These data suggest that the remaining \textit{exo} BH\textsubscript{4}− group has been removed to form the symmetric, cationic, U(III)/U(III) borohydride-bridged complex [\{U(THF)\}(\mu-BH\textsubscript{4})(L\textsc{A})(THF)]\textsubscript{2}[BPh\textsubscript{4}] (30, Scheme 3.22, right). No further reaction occurred upon addition of excess [HNET\textsubscript{3}][BPh\textsubscript{4}], indicating that the remaining (\mu-BH\textsubscript{4}) group is not susceptible to protonolysis. This is not entirely surprising since the electrostatic repulsion induced by the formation of two cationic U(III) centres confined within one Pacman ligand is expected to be prohibitive.

Single crystals of 29 or 30 could not obtained from THF/hexane solution. Instead, precipitation of pale solids occurred, possibly indicating decomposition. Synthesis of 30 in DME was investigated in the hope that the neutral bidentate ligand would stabilise the cationic complex by binding to the U(III) centres in both the inter-hinge equatorial site and the \textit{exo} axial site. The 11B NMR spectrum displayed one contact shifted resonance at 246
ppm which suggests successful formation of \([\{\text{U(DME)}\}_2(\mu-\text{BH}_4)(L^\Lambda)\]\) but single crystals were not obtained. In a similar strategy, 2,2-bipyridyl was added to a solution of \(30\) in \(d_8\)-THF but in this case immediate decomposition occurred with no product resonances visible in the \(^1\text{H}\) NMR spectrum.

![Diagram](image)

Scheme 3.23 Protonolysis of the anionic uranium borohydride complex \(21\) with successive equivalents of \([\text{HNEt}_3][\text{BPh}_4]\). The ligand is shown in cartoon form.

Ligand substitution reactions of the \(\text{U(III)/U(III)}\) complex of the ortho-phenyl macrocycle, \(21\), had proved unsuccessful but this was not the case with protonolysis reactions. Addition of one equivalent or excess \([\text{HNEt}_3][\text{BPh}_4]\) to a dark green suspension of \(21\) in \(d_8\)-THF resulted in immediate dissolution of the solids, with effervescence, to form a dark green solution. The reactivity of \(21\) was analogous to that of \(18\). Thus the product of the reaction with one equivalent of \([\text{HNEt}_3][\text{BPh}_4]\) is assigned as the neutral complex \([\{\text{U(BH}_4)\}{\text{U(THF)}}(\mu-\text{BH}_4)(L\text{Me}^\Lambda)\] (\(31\), Scheme 3.23, centre). The remaining \(\text{exo BH}_4^-\) ligand appears at 205 ppm in the \(^{11}\text{B}\) NMR spectrum and the bridging \(\text{BH}_4^-\) group at 370 ppm. The \(^1\text{H}\) NMR spectrum of this binuclear uranium borohydride complex is unique in that resonances are observed for both the terminal and bridging \(\text{BH}_4^-\) protons, at 85.3 ppm and 61.1 ppm respectively, assigned on the basis of selective \(^{11}\text{B}\) decoupling experiments.

![Diagram](image)

Figure 3.24 Cartoon illustrating the different \(\text{meso methyl environments in asymmetric Pacman (left) and bowl (right) complexes.}\)

\(^1\text{H}\) NMR spectroscopy also confirms that the bowl co-ordination geometry of the macrocycle in \(21\) is retained upon protonolysis to form \(31\). For symmetric complexes, the bowl and Pacman geometries are indistinguishable by NMR spectroscopy but if the two metal binding pockets are inequivalent, the two geometries give rise to different splitting
patterns of the *meso* methyl groups. In the Pacman geometry all four *meso* methyl groups become inequivalent if the two binding pockets are different and so give rise to four signals of relative integral 3H, yielding a total of fourteen ligand resonances. However, in the bowl geometry the two *endo* and two *exo* Me groups retain their equivalence even when the metal pockets are inequivalent (Figure 3.24) and therefore give rise to two signals of integral 6H and a total of twelve ligand resonances, as is observed in the 1H NMR spectrum of 31.

The product of the reaction of 21 with excess [HNEt$_3$][BPh$_4$] is assigned as the symmetric cationic U(III)/U(III) compound [(U(THF))$_2$(µ-BH$_4$)(L$_{Me}$)][BPh$_4$] (32, Scheme 3.23, right), which is assumed to retain the bowl geometry. Resonances corresponding to the (µ-BH$_4$) group are observed at 80.7 and 432 ppm in the 1H and 11B NMR spectra, respectively. Single crystals of 31 and 32 have not been obtained. These series of protonolysis reactions illustrate the considerable power of heteronuclear NMR spectroscopy for structure determination in paramagnetic systems, where the amount of information that can be extracted from 1H NMR spectra is reduced. In particular, the 11B NMR spectra of compounds 18, 29 and 30, and 21, 31 and 32, besides yielding information on the number of borohydride ligand environments, display a strong correlation with the charge of the uranium complex. As the charge changes from 1$^-$, to neutral, to 1+, there is a concurrent shift to higher frequency of the (µ-BH$_4$) resonance in both series of compounds (Figure 3.25).

![Figure 3.25](image)

Figure 3.25 11B NMR spectra (d_8-THF) of the anionic (blue), neutral (green) and cationic (red) uranium borohydride Pacman complexes of (L$_{A}^{4-}$) (left) and (L$_{Me}^{4-}$) (right).

Due to time constraints, preparative syntheses of compounds 29 - 32 were not developed but some reactivity studies were carried out with the cationic complexes 30 and 32 formed *in situ* in d_8-THF. It was discovered that 30 does not react with H$_2$ but a slow reaction occurs between 30 or 32 and CO. In both cases many low intensity paramagnetic resonances were observed in the 1H NMR spectra of the reaction mixtures indicating that
multiple product formation and/or decomposition had occurred. The anionic complex 18 was unreactive towards CO, so although the cationic complex 30 does not react with CO in a selective manner, there can be no doubt that it displays enhanced reactivity.

3.5 Metallation reactions using UCl$_4$

As an alternative to UI$_3$ and [U(BH$_4$)$_3$(THF)$_2$], UCl$_4$ was also investigated as a low oxidation state precursor for the formation of binuclear uranium Pacman compounds. Although U(III)/U(III) Pacman compounds are expected to be most reactive towards inert small molecule targets, it was reasoned that a U(IV)/U(IV) Pacman complex might be more stable and easier to synthesise and may then provide an alternative route into U(III)/U(III) Pacman chemistry via reduction.

3.5.1 Synthesis of [Li(THF)$_4$][(UCl)$_2$(μ-Cl)$_3$(L$^\Lambda$)]

Deprotonation of the anthracenyl macrocycle H$_4$L$^\Lambda$ with four equivalents of LiN$^-$ in THF solution followed by addition of two equivalents of UCl$_4$ resulted in the precipitation of [Li(THF)$_4$][(UCl)$_2$(μ-Cl)$_3$(L$^\Lambda$)] (33) as a microcrystalline orange solid in up to 39% yield (Scheme 3.24). Complex 33 is an “-ate” salt with one equivalent of LiCl incorporated. Attempts to prepare the K$^+$ analogue were unsuccessful, resulting in mixtures of paramagnetic products. The salt 33 is insoluble in THF but is soluble in pyridine. The 1H NMR spectrum of 33 in d_5-pyridine displays contact-shifted resonances assignable to a symmetric Pacman ligand environment with desymmetrised meso ethyl groups. One signal is observed in the 7Li NMR spectrum at 3.5 ppm arising from the solvated counterion [Li(py)$_4$]$^+$. This is not much shifted from the value expected for LiCl indicating that in solution there is little association between the cation and the paramagnetic Pacman anion.

![Scheme 3.24 Metallation of H$_4$L$^\Lambda$ with UCl$_4$ to form the U(IV)/U(IV) Pacman complex 33.](image-url)
Figure 3.26 Solid state structure of the anionic portion of 33_{py}, showing side view (left) and view into the jaws of the macrocycle (right). For clarity, the meso ethyl groups have been removed from the right hand structure, and H atoms and lattice solvent are omitted.

Table 3.12 Selected bond distances (Å) and angles (°) for 33_{py}

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2</td>
<td>4.1927(3)</td>
</tr>
<tr>
<td>mean U-N$_{\text{im}}$</td>
<td>2.61</td>
</tr>
<tr>
<td>mean U-N$_{\text{pyr}}$</td>
<td>2.38</td>
</tr>
<tr>
<td>U1-N$_4$ plane</td>
<td>-0.57</td>
</tr>
<tr>
<td>U2-N$_4$ plane</td>
<td>-0.65</td>
</tr>
<tr>
<td>U1-C11</td>
<td>2.595(1)</td>
</tr>
<tr>
<td>U2-C12</td>
<td>2.610(2)</td>
</tr>
<tr>
<td>mean U-(µ-Cl)</td>
<td>2.86</td>
</tr>
<tr>
<td>mean U1-(µ-Cl)-U2</td>
<td>94.9</td>
</tr>
</tbody>
</table>

Single crystals of the pyridine solvate 33_{py} were grown by slow diffusion of toluene into a pyridine solution of 33. In the solid state 33_{py} is a discrete ion pair though one of the ligating pyridine rings of the [Li(py)$_4$]$^+$ cation sits between the anthracene hinges of the Pacman macrocycle and engages in π-stacking with a mean C(py)-C(hinge) separation of 3.74 Å to one hinge and 4.06 Å to the other. In the anion, the U(IV) centres occupy pseudo equivalent eight co-ordinate sites, binding to the four N donors of the macrocycle, one exo axial chloride (Cl1/Cl2) and three endo bridging chlorides (Cl3, Cl4, Cl5) (Figure 3.26). There are no additional pyridine ligands in the equatorial sites between the macrocycle hinges. The terminal U-Cl distances (U1-C11 = 2.595(1) Å, U2-C12 = 2.610(2) Å) are significantly shorter than the bridging U-Cl distances (mean U-(µ-Cl) = 2.86 Å). This is in keeping with the trend observed in the handful of other U(IV) complexes containing the {U$_2$(µ-Cl)$_3$} core that have been structurally characterised. The mean terminal and bridging U-Cl distances reported for 3AU (Figure 3.27, left) are 2.64 Å and 2.83 Å, respectively.\(^{94}\)
Complex 3AV (Figure 3.27, centre) contains only bridging chlorides but these occupy three distinct environments with associated distinct U-Cl bond lengths: (1) \{U(\mu-Cl)\}Li, U-Cl = 2.68 Å, (2) \{U_2(\mu-Cl)\}, U-Cl = 2.82 Å and (3) \{U_2(\mu^3-Cl)\}Li, U-Cl = 2.84 Å.\(^9\)

![Figure 3.27 Examples of An(IV) complexes containing \{An\}_2(\mu-Cl)_3\} cores.\(^9\) The [Li(THF)]\(^+\) cation is omitted from 3AW.

The \{U_2(\mu-Cl)\} core in 33\(_{pp}\) is pentagonal bipyramidal with the three chloride ions located at the equatorial vertices and the two U(IV) ions at the axial apexes. C14 is oriented between the anthracene hinges on the macrocycle while C13 and C15 are angled sideways and forwards, out of the macrocyclic cleft. The presence of the three endo bridging chlorides and their acute bridging angles (mean U1-(\mu-Cl)-U2 = 94.9 °) results in a U1···U2 separation of 4.1927(3) Å, which is the shortest observed in any of the uranium complexes of (L\(^A\))^\(^+\). The U(IV) ions are therefore considerably displaced out of the N\(_4\) planes of the macrocycle, into the cleft, by an average of −0.61 Å. Dr Rebecca White synthesised the Th(IV) analogue of 33, [Li(THF)]\(_4\)[\{ThCl\}_2(\mu-Cl)_3(L\(^A\))] (3AW, Figure 3.27, right) by reaction of two equivalents of ThCl\(_4\) with in situ generated Li\(_4\)L\(^A\).\(^9\) The solid state structure of 3AW is very similar to that of 33\(_{pp}\). However, all the Th-Cl bonds in 3AW are slightly lengthened compared to the U-Cl bonds in 33\(_{pp}\) (mean terminal Th-Cl = 2.68 Å, mean Th(\mu-Cl) = 2.89 Å). This is consistent with the larger radius of Th(IV) compared to U(IV). As a result of the elongated Th-Cl bonds, the Th···Th separation in 3AW is also lengthened to 4.252(5) Å and the magnitude of the out-of-plane displacement of the Th(IV) ions is reduced to −0.59 Å.

3.5.2 Reactivity of [Li(THF)]\(_4\)[\{UCl\}_2(\mu-Cl)_3(L\(^A\))]

Having synthesised a novel binuclear U(IV)/U(IV) Pacman complex we were keen to explore its reactivity, the reduction of complex 33 and the formation of a uranium alkyl derivative being areas of particular interest. However we were hampered by the negligible solubility of the complex in aromatic or ethereal solvents. Nevertheless, reduction of a
suspension of 33 in THF with soluble potassium naphthalenide was attempted. The 1H NMR spectrum of the resultant mixture did not contain any paramagnetic resonances but it was impossible to say whether this was due to decomposition of 33 caused by the reducing agent or whether the complex had never gone into solution. Compound 33 will only dissolve in pyridine. This is an unsuitable solvent for potassium reductions or reactions with alkali-metal alkylating agents since these reagents react with pyridine. Therefore initial efforts were concentrated on synthesising a more soluble derivative of 33 for use in further reactivity studies.

3.5.2.1 Ligand substitution: structure of $\left[\{ U(O^tBu)(Cl) \} \{ U(O^tBu)(py) \} \{ \mu-Cl \} (L^A) \right]$

Various ligand substitution reactions of 33 with amide, alkoxide, aryloxide, cyclopentadienyl, and acetylacetonate alkali metal salts were investigated on a small scale in d_5-pyridine solution (see 4.3.26). The only reaction that appeared promising was that of 33 with two equivalents of KOtBu. In this case the 1H NMR spectrum of the mixture displayed twenty-two contact-shifted resonances assigned to an asymmetric Pacman ligand and two resonances of relative integral 9H at 85.95 ppm and 69.74 ppm, indicating that the product contained two non-equivalent (OtBu)$^-$ ligands. The product did indeed have improved solubility compared to 33; after removal of the d_5-pyridine solvent from the NMR sample, the solid residues were re-dissolved in benzene. Yellow single crystals of $\left[\{ U(O^tBu)(Cl) \} \{ U(O^tBu)(py) \} \{ \mu-Cl \} (L^A) \right]$ (34) were obtained by vapour diffusion of hexane into the benzene solution (Scheme 3.25).

\[\text{Scheme 3.25 Ligand substitution reaction of ionic 33 to form neutral alkoxide complex 34.} \]
Figure 3.28 Solid state structure of 34 showing the major orientation of the tert butyl groups. Thermal ellipsoids are drawn at 50 % probability and lattice solvent and H atoms are omitted.

Table 3.13 Selected bond distances (Å) and angles (°) for 34.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Value (Å)</th>
<th>Bond/Distance</th>
<th>Value (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1•••U2</td>
<td>5.4155(8)</td>
<td>U2-Cl1</td>
<td>2.826(5)</td>
</tr>
<tr>
<td>mean U-N_{im}</td>
<td>2.56</td>
<td>U1-N9</td>
<td>2.52(1)</td>
</tr>
<tr>
<td>mean U-N_{pyr}</td>
<td>2.42</td>
<td>U2-Cl2</td>
<td>2.700(6)</td>
</tr>
<tr>
<td>U1-N4 plane</td>
<td>-0.02</td>
<td>U1-Cl1-U2</td>
<td>150.8(2)</td>
</tr>
<tr>
<td>U2-N4 plane</td>
<td>+0.03</td>
<td>O1-U1-Cl1</td>
<td>177.7(4)</td>
</tr>
<tr>
<td>U1-O1</td>
<td>2.049(11)</td>
<td>O2-U2-Cl1</td>
<td>176.7(4)</td>
</tr>
<tr>
<td>U2-O2</td>
<td>2.012(12)</td>
<td>C59-O1-U1</td>
<td>164(1)</td>
</tr>
<tr>
<td>U1-Cl1</td>
<td>2.771(5)</td>
<td>C63-O2-U2</td>
<td>165(1)</td>
</tr>
</tbody>
</table>

The solid state structure of 34 reveals that the two U(IV) ions occupy inequivalent pseudo pentagonal bipyramidal binding sites and is therefore consistent with the observed solution structure. U1 binds to the four N donors of the macrocycle and one molecule of pyridine in the equatorial plane, one exo axial alkoxide ligand and the endo bridging chloride, Cl1. U2 is ligated by the macrocycle nitrogens, one terminal chloride (Cl2) in the equatorial plane between the anthracene hinges of the macrocycle, one exo axial alkoxide and the endo bridging chloride, Cl1. The U1-O1 and U2-O2 bond lengths of 2.049(11) Å and 2.012(12) Å, respectively, are similar to those observed in other neutral U(IV) tert-butoxide complexes and are slightly reduced compared to the U^{IV}-OAr distances in complexes 25 and 27, where the shortest U-OAr distance is 2.081(6) Å. This is consistent with the increased Lewis basicity of the alkoxide compared to the aryloxide, and its reduced steric
bulk. The axial ligands are linearly disposed with O1–U1–Cl1 and O2–U2–Cl1 angles of 177.7(4)° and 176.7(4)°, respectively. The bridging chloride ligand, Cl1, is bound unsymmetrically between the U(IV) centres; the U1–Cl1 bond (2.770(4) Å) is shorter than the U2–Cl1 bond (2.826(4) Å). However, both U(µ-Cl) bonds in 34 are shorter than any of the U(µ-Cl) interactions in 33 (mean 2.86 Å). This change is to be expected upon reduction of the number of bridging chlorides, as is the more obtuse U1–Cl1–U2 bridging angle of 150.8(2)° in 34 compared to an average of 94.9° in 33. These structural changes allow the U(IV) ions to relax back into the planes of the macrocycle N₄ donor pockets and result in an increased U···U separation of 5.4155(8) Å. Interestingly the terminal U2–Cl2 bond length of 2.700(6) Å is considerably elongated compared to those in complex 33 (mean 2.60 Å).

Binuclear uranium complexes featuring a single bridging chloride ligand are quite rare, the {U₂(µ-Cl)}₂ and {U₂(µ-Cl)(µ-OR)} motifs being far more common. Two neutral {U⁴₂(µ-Cl)}-containing complexes, 3AX and 3AY, have been structurally characterised (Figure 3.29). Complexes 3AX and 3AY are similar to complex 34 in that the two U(IV) centres are inequivalent in each structure and this is reflected in asymmetric bridging U–Cl distances (Table 3.14, entry 2.). A comparison of the structural metrics of the {U₂(µ-Cl)} units in 34, 3AX and 3AY (Table 3.14) reveals that all three are very similar and thus the Pacman macrocycle can readily incorporate a single bridging chloride between two U(IV) ions without imposing any structural distortion.

![Figure 3.29](image-url) Mono(chloride-bridged) uranium complexes reported by the Evans (left) and Liddle (right) groups. Ar = 4-C₆H₄(t-Bu).

Table 3.14 Comparison of selected structural parameters of 34, 3AX and 3AY.

<table>
<thead>
<tr>
<th></th>
<th>34</th>
<th>3AX</th>
<th>3AY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. U···U (Å)</td>
<td>5.4155(8)</td>
<td>5.4412(7)</td>
<td>5.5011(6)</td>
</tr>
<tr>
<td>2. U(µ-Cl) (Å)</td>
<td>2.770(4), 2.826(4)</td>
<td>2.728(3), 2.921(3)</td>
<td>2.812(2), 2.881(2)</td>
</tr>
<tr>
<td>3. U–Cl–U (°)</td>
<td>150.8(2)</td>
<td>148.1(1)</td>
<td>150.17(7)</td>
</tr>
</tbody>
</table>

Complex 34 is formed from 33 by substitution of both *exo* chloride ligands for alkoxides, cleavage of two of the three chloride bridges and spontaneous loss of the equivalent of incorporated LiCl (Scheme 3.25). Compound 34 is a neutral complex with two solubilising tert-butyl groups. Therefore its improved solubility compared to ionic 33 is not
difficult to rationalise. However it is not clear why loss of the incorporated equivalent of LiCl in 33 is favoured during the formation of 34. A possible explanation is that exo axial co-ordination of two tert-butoxide ligands is not compatible with maintenance of the \(\{ U_2(\mu-Cl)_3 \} \) core because the in-to-cleft displacement of the U(IV) ions imposed by three bridging chlorides would result in a steric clash between the bulky alkoxide 'Bu groups and the ligand framework. Therefore we suggest that exo alkoxide co-ordination cleaves two of the chloride bridges and that one of these chlorides then dissociates in order to recombine with its Li\(^+\) counterion. This dissociation is likely due to competitive displacement by the strongly Lewis basic pyridine solvent. In light of this, it is interesting to note that this reaction does not proceed in THF solvent to yield the THF solvate \(34_{\text{THF}} \) but instead forms a poorly defined mixture of products.

![Figure 3.30 Suggested structures of minor products formed by reaction of 33 with KO'Bu.](image)

Attempts were made to synthesise 34 on a preparative scale. Compound 33 was combined with two equivalents of KO'Bu in pyridine and stirred for one hour before the volatiles were removed and the resulting yellow-brown solids extracted with toluene. Storage of the concentrated extract at \(-30^\circ\text{C}\) resulted in precipitation of yellow solids. NMR analysis of the solids revealed that the major component was indeed 34 but at least two other minor products were also present. None of these minor products have been identified but three suggested structures are shown in Figure 3.30. The observation of a very low intensity resonance in the \(^7\text{Li}\) NMR spectrum of the mixture at 4 ppm may suggest that one of the minor products is an “-ate” salt (left). If a slight excess of KO'Bu had been employed then over-substitution of the chloride groups may have occurred to form products with more than two alkoxide ligands (centre). It is also possible that exo alkoxides might be compatible with a symmetric \(\{ U_2(\mu-Cl)_2 \} \) motif (right). Unfortunately, attempts to obtain analytically pure 34
by recrystallisation were unsuccessful and thus further study of the reactivity of 34 was not undertaken.

3.5.2.2 Cation exchange

Another strategy investigated to improve the solubility of the salt 33 was exchange of the small and highly polarising Li$^+$ cation for a larger, more soluble counterion. To this end, one equivalent of bis(triphenylphosphine)iminium chloride was added to a solution of 33 in d_5-pyridine (Scheme 3.26, left). Multiple, very low intensity resonances were observed in the paramagnetic region of the resultant 1H NMR spectrum, indicating that decomposition had occurred. Excess tetrabutylammonium bromide was mixed with 33 in THF and then the solvent was removed and the solid residue re-suspended in C_6D_6. Signals only slightly shifted from those of 33 in d_5-pyridine were observed in the 1H NMR spectrum of the C_6D_6 sample, along with large resonances arising from the [NBu$_4$]$^+$ cation. Since 33 is completely insoluble in benzene, this indicates that at least partial cation exchange of Li$^+$ for [NBu$_4$]$^+$ has occurred (Scheme 3.26, right). Therefore with judicious choice of reagent it appears possible to better solubilise complex 33. Due to time constraints this investigation was not pursued further, but it would be interesting to explore whether addition of Bu$_4$NBr could be used to catalyse reactions of 33 in solvents in which the Li$^+$ salt is poorly soluble.

![Scheme 3.26 Reactions of 33 with different cation exchange agents.](image)

3.6 Conclusions

The first investigation into the reactivity of low oxidation state uranium precursors with the anthracene-hinged Pacman macrocycle, H$_4$L$^\Lambda$, has been carried out. The halide precursors UI$_3$ and UCl$_4$ both react with the deprotonated macrocycle to form binuclear uranium Pacman complexes. The Pacman product (12) of the reaction of UI$_3$ with K$_4$L$^\Lambda$ was unstable and could not be isolated in the solid state. The product of the reaction of UCl$_4$ with Li$_4$L$^\Lambda$ was the “-ate” salt [Li(THF)$_4$][{UCl$_2$(μ-Cl)$_3$(L$^\Lambda$)}] (33) which has been isolated and structurally characterised. The increased stability of 33 compared to 12 is not unexpected;
Chapter Three

the +4 oxidation state of uranium is far less reducing than the +3 state and U-Cl bonds are considerably stronger than U-I bonds. The unique steric requirements of the Pacman macrocycle must also be considered. Given the other results described in this chapter, it is likely that complex 12 is an “-ate” salt, probably of general formula \[\text{[K(sol)}_x\{\text{U(I)}_2(\mu-I)(L^A)(\text{sol})_y]_n\] necessitating \textit{endo} binding of an iodide ion within the macrocyclic cleft. Previous work has shown that [Zn_2(L^A)] selectively binds chloride over iodide in the \textit{endo} site and calculations have confirmed that an iodide-incorporated complex would have greatly reduced thermodynamic stability.\(^{101}\) Therefore, the \textit{endo} iodide in 12 would be a poor size match for the macrocyclic cleft and would destabilise the complex. Unfortunately complexes 12 and 33 were of limited further synthetic usefulness.

A new, convenient, high-yielding synthesis of the alternative U(III) precursor \[\text{[U(BH}_4)_3(\text{THF})_2] (14)\] has been developed, and its synthetic versatility has been demonstrated. It is hoped that 14 will prove a valuable addition to the limited stock of existing U(III) precursors and will be of benefit to the uranium research community. Although 14 has not been structurally characterised the structures of two iodide substituted complexes \[\text{[U(BH}_4)_2(\text{THF})_3][\text{U}_2(\text{BH}_4)_{1.90}(\mu-I)_2(\text{I})_{0.10}(\text{THF})_3] (15)\] and \[\text{[U(BH}_4)_2(\text{I})_{0.41}(\text{DME})_2] (16)\] were obtained. Complex 15 was isolated from ether solution and serves to illustrate the complexity of uranium aggregation in weakly co-ordinating solvents. By contrast, addition of the strongly co-ordinating chelator DME resulted in isolation of the simple molecular complex 16.

Two distinct types of U(III)/U(III) Pacman “-ate” complex were identified from the reactions of 14 with \(M_4L^A\) (M= Li, Na, K): the salts \[\text{[M(THF)}_4\{\text{[U(BH}_4)}_2(\mu-BH}_4)(L^A)(\text{THF})_2\] (M = Li, 17, Na, 18) and the host-guest complex \[\text{[{U(BH}_4)}_2(\mu-BH}_4K)(L^A)(\text{THF})_2\] (19), in which the \(K^+\) counterion sits between the four pyrrolide rings of the macrocycle due to an adventitious size match between cavity and cation. Compound 14 also facilitated the isolation and structural characterisation of the bowl-shaped “-ate” complex \[\text{[Li(THF)}_4\{\text{[U(BH}_4)}_2(\mu-BH}_4)(L^Me)\] (21) from the lithium salt of the \textit{ortho}-phenyl macrocycle, \(H_4L^Me\). Complex 21 is a discreet ionic complex in contrast to the previously reported poorly-defined oligomeric materials of composition \[\text{[{U(BH}_4)}_2(L^D)}_n\].\(^{50}\) Complexes 18 and 21 represent the second and third structurally characterised examples of binuclear U(III)/U(III) complexes of a single ligand.\(^{50}\) They are also the first compounds to feature the \{U\text{III}-(\mu-BH}_4)\text{-U}\text{III}\} motif and therefore provide structural insight that may well be valuable in the future design of uranium complexes incorporating borohydride ligands.
Chapter Three

The isolation of complexes 18 and 21 has allowed the first study into the reactivity of binuclear U(III)/U(III) Pacman complexes. The distinct exo and endo borohydride environments in 18 and 21 resulted in differing reactivity, which was exploited in selective transformations. The exo BH₄⁻ ligands were susceptible to protonolysis whereas the endo BH₄⁻ ligands were not. Reaction of 18 with the bulky aryloxides MOAr (M = K, Na) resulted in exclusive substitution of the exo BH₄⁻ ligands and formation of the host guest complexes \([\{\text{U(OAr)}_2(\text{endoorBH}_4\text{M})(\text{L}^\text{A})(\text{THF})_2\} (\text{M} = \text{K, Na, 23})\]. It is clear from a comparison of the solid state structures of 22 and 23 that the K⁺ cation is an optimum size match for the macrocyclic cleft while the Na⁺ cation is too small and cannot bind symmetrically to all four pyrrolide rings of the macrocycle.

Complex 22 may be regarded as a synthon for a U(III)/U(III) Pacman complex with a vacant intermetallic site because the endo BH₄⁻ ligand is weakly bound, as evidenced by the abstraction of KBH₄ upon addition of 18-crown-6. As such, the reactivity of 22 towards the small molecules O₂, S₈, CO₂ and CS₂ was investigated. The reactions with the oxygen-containing reagents were rapid and unselective. However, the reactions with S₈ and CS₂ resulted in the formation of \([\{\text{U(OAr)}_2(\mu-S)_2(\text{L}^\text{A})\} (25)\) and \([\{\text{U(OAr)}_2(\mu-S)(\text{L}^\text{A})\} (27)\), respectively. The selectivity of these two transformations is unique; oxidation of U(III) by sulphur usually forms a bridging sulphide and previously only CS₂-complexation or thiocarbonate and thio-oxalate formation has been observed upon reaction of CS₂ with U(III) complexes.⁴⁴,⁸⁴,⁸⁹ The unusual reactivity of 22 is attributed to the uniquely restrictive steric environment imposed by the Pacman macrocycle. It is concluded that the endo persulphide ion may be comfortably incorporated in 25 but further equivalents of sulphur cannot be taken up. Similarly the sulphide ion bridges the U(IV) centres effectively in 27 but in-cleft formation of the bulky thiocarbonate ion is disfavoured. Complex 27 can be converted into complex 25 by the addition of S₈, which is consistent with the reported reactivity of related U(III) systems.³⁷ The selectivity of the S₈ and CS₂ reactions compared to the O₂ and CO₂ reactions is likely due to the reduced affinity of uranium for sulphur vs oxygen and the lower strength of the U-S bond compared to the U-O bond. Upon introduction of a sulphur based oxidant, the strong U-N(macrocycle) and U-O(aryloxide) bonds are maintained thereby directing the substrate to the intermetallic cleft where good steric control is exerted on the reactivity. However, the addition of excess O-based oxidants may compromise the integrity of the uranium Pacman complex and result in demetallation or decomposition.
As was observed with the chromium Pacman complexes of the ortho-phenyl macrocycle, the uranium Pacman complexes of the anthracenyl macrocycle also display impressive flexibility. U···U separations ranging from 4.1927(3) Å to 6.5881(3) Å have been measured and many different endo ligands and bridging modes have been observed. One theme which has emerged in this work is the effect of varying the alkali metal cation on reaction outcome. Thus metallation was only achieved using UI₃ in combination with the potassium salt of the ligand, K₄L₄, while UCl₄ only reacted successfully with the lithium salt, Li₄L₄. [U(BH₄)₃(THF)₂] underwent successful metallation with all three alkali metal salts of the anthracene ligand, though the products were different for Li and Na compared to K, but only reacted with the lithium salt of the ortho-phenyl macrocycle, Li₄L₄Me. The speed of crystallisation of the aryloxide complexes 22 and 23 was determined by the goodness of fit of the K⁺ or Na⁺ cation within the macrocyclic cleft; 22 crystallised in hours while 23 required weeks and the Li⁺ analogue could not be prepared. While it may be difficult to predict the effect of changing the alkali metal counterion, the work described in this chapter reinforces the importance, and subtlety, of cation selection in uranium chemistry.

3.7 References

(4) N. Kaltsoyannis, P. Scott The f elements; Oxford University Press, 1999.

Chapter Three

Chapter Three

Chapter Three

(79) S. Trzaska, F. Olbrich, Private Communication.

Chapter Three

Chapter Four

Experimental Procedures
4.1 General methods and instrumentation

Unless otherwise stated all reactions were carried out under an atmosphere of dry N₂ using standard Schlenk and glovebox techniques. Solvents were dried by passage through a column of activated sieves (hexane), passage through a column of activated alumina (diethyl ether, THF, toluene), being refluxed over potassium and distilled (pyridine, benzene, 1,4-dioxane, DME) or being stirred over CaH₂ and distilled (fluorobenzene). All solvents were stored over freshly activated 4 Å molecular sieves and degassed prior to use. Deuterated solvents (C₆D₆, d₈-toluene, d₈-THF, d₅-pyridine) were refluxed over potassium or stirred over CaH₂ and distilled (CD₂Cl₂), then distilled, freeze-pump-thaw degassed three times and stored in a glovebox.

¹H NMR spectra were recorded on either Bruker AVA 400, AVA 500 or PRO 500 spectrometers at operating frequencies of 399.90 and 500.23 MHz and referenced internally to residual protio solvent resonances. Where the solvent is listed below as (THF/C₆D₆) the sample was dissolved in THF and a couple of drops of C₆D₆ were added to enable the spectrometer to lock the sample. A ¹H NMR spectrum was then acquired without suppression of the THF resonances since it was found that this could also result in suppression of sample signals. ⁷Li, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker PRO 500 spectrometer at operating frequencies of 194.71, 160.49 and 470.39 MHz respectively and were referenced to the external standards 1 M LiCl in D₂O, BF₃•OEt₂ and CCl₃F, respectively. ³¹P{¹H} NMR spectra were recorded on a Bruker AVA 400 spectrometer at an operating frequency of 161.92 MHz and referenced to the external standard 85 % phosphoric acid.

IR spectra were acquired on a Jasco 410 FT-IR spectrophotometer as nujol mulls between KBr or BaF₂ plates (w = weak, m = medium, s = strong intensity). Variable temperature magnetic measurements (SQUID) and EPR spectroscopy were carried out by Dr Floriana Tuna and Prof. Eric McInnes at the National EPR service at Manchester University. Elemental analyses were performed by Mr Stephen Boyer at London Metropolitan University.

\[H_2L^{Me,¹} \quad H_2L^{³} \quad [Cr(N^{″})_2(THF)_2]^{³} \quad UI_3^{⁴} \quad UI_3(dioxane)_{1.5}^{⁵} \quad UCl_4(THF)_x^{⁶} \quad \text{xylyl isocyanide}^{⁷} \quad \text{and} \quad [\text{Na(THF)}_2][\text{B}((\text{OC}_3\text{H}_2\text{Bu})_2)_2]^{⁸} \]

were synthesised by published methods. [NEt₃H][BPh₄] was synthesized by reaction of NEt₃HCl with NaBPh₄ in water and recrystallised from methanol. NaN" and KN" were synthesised by reaction of NaN or KH with HN(SiMe₃)₂ in toluene followed by toluene recrystallisation. NaN and KH were purchased as dispersions in mineral oil and washed with hexane before use. LiN" was
purchased from Alfa Aesar and recrystallised from hexane before use. Tert-butyl isocyanide was purchased from Sigma Aldrich, dried over activated 4 Å molecular sieves, distilled and degassed prior to use. Naphthalene, 2,4,6-tri-tert-butylphenol, 1,2-dimethylimidazole, Si(SiMe₃)₂, tri-tert-butylbenzene, KO'Bu and NaO'Bu were sublimed before use. NaBH₄ and K(OTb) were dried at 100 °C for 16 h. K(OTb) was donated by Rebecca White who synthesised it by reaction of HOTb with K metal in THF. Anhydrous CrCl₂, OPPh₃, I₂, EtMgBr (1.0 M in THF), ZnEt₂ (1.0 M in hexanes), 18-crown-6, adamantyl azide, DMAP, KCp*, [CPh₃][B(ArF)₄] and MgMe₂ were purchased and used without further purification.

4.2 Synthetic procedures for Chapter Two: Chromium Pacman Complexes

Note on reporting of NMR data: Due to their paramagnetism, the ¹H NMR spectra of Cr(II) and Cr(III) complexes display only extremely contact-shifted and broadened resonances. Spectral data are recorded only to allow the differentiation of the various Cr(II) and Cr(III) complexes and are not exhaustively analysed. Width at half-height, $W_{1/2}$, values are given for those resonances for which they can be accurately determined; otherwise the resonances are simply described as “very broad” (v br). It is often not possible to reliably integrate the resonances and no attempt is made to assign specific environments since for no single complex are the required number of ligand proton environments observed.

4.2.1 Synthesis of [Cr₂(LMe)₂], 1

Method A: A solution of [Cr(N")₂(THF)₂] (390 mg, 0.754 mmol) in toluene (10 mL) was added to a solution of H₂LMe (250 mg, 0.378 mmol) in toluene (10 mL). The resulting brown solution was stirred for 2 h and then stored at -30 °C overnight to afford the product as dark brown microcrystals which were isolated by filtration, washed with hexane (2 x 3 mL) and dried under vacuum. The filtrate was concentrated to afford a second crop. Combined yield: 206 mg, 72%.

Method B: A solution of KN" (2.52 g, 12.63 mmol) in THF (30 mL) was added to a stirred solution H₂LMe (2.09 g, 3.16 mmol) in THF (50 mL). The mixture was stirred for 16 h and then transferred onto a suspension of CrCl₂ (0.78 g, 6.35 mmol) in THF (40 mL). The dark red mixture was stirred for a further 24 h before being filtered. The volatiles were removed from the filtrate and the resulting brown solid dried overnight under reduced pressure. The solid was extracted with hot toluene (150 mL). The filtrate was concentrated to quarter volume and stored at -30 °C to afford the product as dark brown crystals which were
isolated by filtration, washed with hexane (2 x 15 mL) and dried under vacuum. Yield: 1.73 g, 72 %.

1H NMR (d_5-pyridine): δ 16.9 (br, W_1 1084 Hz, 4H), 14.0 (br, W_1 838 Hz, 4H), 6.7 (br, W_1 142 Hz, 12H), −29.2 (br, W_1 400 Hz, 4H), −97.7 (br, W_1 868 Hz, 4H) ppm. 1H NMR (THF/C_6D_6): δ 21.1 (br, W_1 649 Hz, 4H), 14.9 (br, W_1 444 Hz, 6H), 5.81 (br, W_1 130 Hz, 12H), −44.1 (br, W_1 438 Hz, 4H), −58.9 (br, W_1 745 Hz, 4H) ppm.

1H NMR (C_6D_6): δ 18.0 (br, W_1 978 Hz, 6H), 4.2 (br, W_1 185 Hz, 24H), −22.7 (br, W_1 643 Hz, 4H), −35.3 (br, W_1 949 Hz, 4H) ppm.

Evans’ method magnetic moment (THF/C_6D_6, 298 K): 6.34 μ_B.

Elemental Analysis: Found: C, 66.10; H, 5.17; N, 14.68 %, $C_{42}H_{40}Cr_2N_8$ requires: C, 66.30; H, 5.30; N, 14.73 %.

Single crystals suitable for X-ray diffraction analysis were obtained from a saturated benzene solution.

Author’s note: Method B is preferred due to the low literature yield of Cr(N")$_2$(THF)$_2$ and its extreme air and moisture sensitivity.

4.2.2 Synthesis of [Cr$_2$(LA)$_2$], 2

A purple solution of [Cr(N")$_2$(THF)$_2$] (270 mg, 0.522 mmol) in THF (5 mL) containing a small quantity of decomposed solids was filtered onto a solution of H_4LA (165 mg, 0.192 mmol) in THF (5 mL) and the resulting red suspension stirred overnight. The supernatant was decanted and the remaining solid washed with toluene (3 mL) and dried under reduced pressure to afford the product as a red powder. Yield: 110 mg, 60 %.

1H NMR (C_6D_6): δ 26 (v br), 14 (v br), 11 (v br), 9 (v br), 6 (v br), 3.64 (br, W_1 115 Hz, THF), 1.66 (br, W_1 23 Hz, THF), −50 (v br), −56 (v br) ppm. 1H NMR (THF/C_6D_6): δ 21.1 (br, W_1 649 Hz, 4H), 14.9 (br, W_1 444 Hz, 6H), 5.81 (br, W_1 130 Hz, 12H), −44.1 (br, W_1 438 Hz, 4H), −58.9 (br, W_1 745 Hz, 4H) ppm. 1H NMR (C_6D_6): δ 18.0 (br, W_1 978 Hz, 6H), 4.2 (br, W_1 185 Hz, 24H), −22.7 (br, W_1 643 Hz, 4H), −35.3 (br, W_1 949 Hz, 4H) ppm.

Elemental Analysis: Found: C, 72.29; H, 5.19; N, 11.46 %, $C_{58}H_{48}Cr_2N_8$ requires: C, 72.49; H, 5.03; N, 11.66 %.

Single crystals suitable for X-ray diffraction analysis were obtained from an NMR scale reaction in THF.

Author’s note: Although [Cr$_2$(LA)] precipitates from THF solution, once dry, it may be re-dissolved to form a dilute solution in C_6D_6.

4.2.3 Synthesis of [Cr$_2$(OPPh$_3$)$_2$(LMe)], 3

Toluene (10 mL) was added to a dry mix of [Cr$_2$(LMe)] (140 mg, 0.18 mmol) and triphenylphosphine oxide (105 mg, 0.38 mmol). The mixture was stirred for 2 h, during which time a dark red microcrystalline solid formed, and then stored at −30 °C overnight. The red crystals were isolated, washed with hexane (3 x 3 mL) and dried under vacuum. Yield: 153 mg, 63 %.

1H NMR (C_6D_6): δ 17.6 (br, W_1 870 Hz), 7.7 (br, W_1 218 Hz), 6.9 (br, W_1 34 Hz), 4.6 (br, W_1 154 Hz), −26 (br, W_1 978 Hz), −42 (v br) ppm. 1H NMR (THF/C_6D_6): δ 17.9 – 16.9 (2
Chapter Four

overlapping, br, [Cr₂(L^{Me})], 7.46 (br, W₆, 31 Hz, Ph-H, free OPPh₃), 7.13 (s, Ph-H, free OPPh₃), 6.1 (br, W₆, 116 Hz, Ph-H, free OPPh₃), −41.2 (br, W₆, 440 Hz, [Cr₂(L^{Me})]), −64 (br, W₆, 624 Hz, [Cr₂(L^{Me})]) ppm. ³¹P{¹H} NMR (C₆D₆): no resonances observed. ³¹P{¹H} NMR (d₅-THF): no resonances observed. ³¹P{¹H} NMR (d₅-THF), 203 K: δ 24 (br, W₆, 4245 Hz, free OPPh₃) ppm. Elemental Analysis: Found: C, 70.81; H, 5.45; N, 8.40 %, C₇₈H₇₀Cr₂N₈O₂P₂ requires: C, 71.11; H, 5.36; N, 8.51 %. Single crystals suitable for X-ray diffraction analysis were obtained from an NMR scale reaction in toluene.

4.2.4 Synthesis of [Cr₂(µ-CNₓyl)(L^{Me})], 4

A solution of xyl isocyanide (35 mg, 0.27 mmol) in benzene (5 mL) was added to a dark brown suspension of [Cr₂(L^{Me})] (200 mg, 0.26 mmol) in benzene (5 mL). The resultant dark green mixture was stirred and briefly refluxed to ensure complete dissolution of [Cr₂(L^{Me})]. On standing overnight dark red crystals formed which were isolated, washed with hexane (2 x 3 mL) and dried under vacuum. Yield: 170 mg, 73 %.

¹H NMR (C₆D₆ or THF/C₆D₆): no resonances observed. ¹H NMR (d₅-pyridine): resonances corresponding to [Cr₂(L^{Me})] observed, δ 1.8 (br, free CNₓyl) ppm. IR (nujol mull, KBr): ν (C≡N) 1990, 1970 cm⁻¹. Elemental Analysis: Found: C, 68.45; H, 5.42; N, 13.96 %, C₅₁H₄₉Cr₂N₉ requires: C, 68.67; H, 5.54; N, 14.13 %. Single crystals suitable for X-ray diffraction analysis were obtained from an NMR scale reaction carried out in fluorobenzene.

4.2.5 Synthesis of [Cr₂(µ-CN¹Bu)(L^{Me})], 5

A solution of tert-butyl isocyanide in benzene (5 mL, 1.1 M) was added by syringe to a suspension of [Cr₂(L^{Me})] (270 mg, 0.35 mmol) in benzene (15 mL) in a Teflon-tapped ampoule and the mixture refluxed for 48 h. The resultant deep red solution was filtered and the filtrate dried under vacuum forming a sticky red solid. This was washed with hexane (2 x 5 mL) and dried under reduced pressure to afford the product as a red powder. Yield: 250 mg, 83 %.

¹H NMR (C₆D₆): δ 20 (br, W₆, 3607 Hz), 2.3 (br), −50 (br, W₆, 4600 Hz) ppm. IR (nujol mull, KBr): ν(C≡N) 2150 cm⁻¹. Evans’ method magnetic moment (C₆D₆, 298 K): 4.75 μₜ. Elemental Analysis: Found: C, 66.78; H, 5.81; N, 14.86 %, C₄₇H₄₉Cr₂N₉ requires: C, 66.89; H, 5.85; N, 14.94 %. Single crystals suitable for X-ray diffraction analysis were obtained from an NMR scale reaction in a THF/C₆D₆ mixture.

161
4.2.6 Reactions of \([\text{Cr}_2(\text{L}^\text{Me}))]\), 1, with Lewis bases

4.2.6.1 \(\text{PPh}_3\)

\([\text{Cr}_2(\text{L}^\text{Me}))\] (9 mg, 0.012 mmol) and \(\text{PPh}_3\) (7 mg, 0.027 mmol) were combined in \(\text{C}_6\text{D}_6\) (0.5 mL) in a Teflon-tapped NMR tube, forming a brown suspension. \(^1\text{H NMR (C}_6\text{D}_6): \delta 7.39\) (br, 10H, Ph-H), 7.16 (br, 5H, para-Ph-H), 7.04 (br, 10H, Ph-H) ppm. \(^{31}\text{P}[^{1}\text{H}] \text{NMR (C}_6\text{D}_6): \delta 4.3\) (br, \(W_\frac{1}{2} 1617 \text{ Hz}, \text{PPh}_3\)) ppm.

A few drops of THF were added to dissolve the suspension forming a red-brown solution. \(^1\text{H NMR (THF/C}_6\text{D}_6): \delta 20.1\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 15.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 7.23-7.10 (m, \text{PPh}_3), 5.9 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 3.54 (br, THF), 1.57 (br, THF), −43.8 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −59.4 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm. \(^{31}\text{P}[^{1}\text{H}] \text{NMR (THF/C}_6\text{D}_6): \delta 2.8\) (br, \(W_\frac{1}{2} 537 \text{ Hz}, \text{PPh}_3\)) ppm.

4.2.6.2 \(\text{PMe}_3\)

Excess \(\text{PMe}_3\) (0.1 mL, 1.0 M in toluene) was added to a suspension of \([\text{Cr}_2(\text{L}^\text{Me}))\] (11 mg, 0.014 mmol) in \(\text{C}_6\text{D}_6\) (0.5 mL) in a Teflon-tapped NMR tube forming a red-brown suspension. \(^1\text{H NMR (C}_6\text{D}_6): \delta 7.13-7.02\) (m, PhMe), 2.11 (s, PhMe), 1.83 (br, \(W_\frac{1}{2} 60 \text{ Hz}, \text{PMe}_3\)) ppm. \(^{31}\text{P}[^{1}\text{H}] \text{NMR (C}_6\text{D}_6): \delta 19.9\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 14.3 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 8.76 (br, \(W_\frac{1}{2} 53 \text{ Hz, py}), 7.22\) (m, imidazole-H and py), 6.62 (br, \(W_\frac{1}{2} 147 \text{ Hz, py}), 3.40\) (br, \(W_\frac{1}{2} 24 \text{ Hz, N-Me}), 2.80\) (br, \(W_\frac{1}{2} 69 \text{ Hz, C-Me}), −28.8\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −98.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm. \(^{31}\text{P}[^{1}\text{H}] \text{NMR (THF/C}_6\text{D}_6): \delta 16.7\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 14.0 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 8.76 (br, \(W_\frac{1}{2} 53 \text{ Hz, py}), 7.22\) (m, imidazole-H and py), 6.62 (br, \(W_\frac{1}{2} 147 \text{ Hz, py}), 3.40\) (br, \(W_\frac{1}{2} 24 \text{ Hz, N-Me}), 2.80 (br, \(W_\frac{1}{2} 69 \text{ Hz, C-Me}), −28.8\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −98.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm.

4.2.6.3 1,2-dimethylimidazole

Excess 1,2-dimethylimidazole (9 mg, 0.094 mmol) was added to a solution of \([\text{Cr}_2(\text{L}^\text{Me}))\] (11 mg, 0.014 mmol) in \(\text{C}_6\text{D}_6\) (0.5 mL) in a Teflon-tapped NMR tube forming a red-brown suspension. \(^1\text{H NMR (d}_5\text{-pyridine): \delta 16.7\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 14.0 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 8.76 (br, \(W_\frac{1}{2} 53 \text{ Hz, py}), 7.22\) (m, imidazole-H and py), 6.62 (br, \(W_\frac{1}{2} 147 \text{ Hz, py}), 3.40\) (br, \(W_\frac{1}{2} 24 \text{ Hz, N-Me}), 2.80 (br, \(W_\frac{1}{2} 69 \text{ Hz, C-Me}), −28.8\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −98.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm. \(^{31}\text{P}[^{1}\text{H}] \text{NMR (THF/C}_6\text{D}_6): \delta 16.7\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 14.0 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 8.76 (br, \(W_\frac{1}{2} 53 \text{ Hz, py}), 7.22\) (m, imidazole-H and py), 6.62 (br, \(W_\frac{1}{2} 147 \text{ Hz, py}), 3.40\) (br, \(W_\frac{1}{2} 24 \text{ Hz, N-Me}), 2.80 (br, \(W_\frac{1}{2} 69 \text{ Hz, C-Me}), −28.8\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −98.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm.

4.2.6.4 Adamantyl azide

Adamantyl azide (7 mg, 0.039 mmol) was added to a solution of \([\text{Cr}_2(\text{L}^\text{Me}))\] (14 mg, 0.018 mmol in \(\text{THF/C}_6\text{D}_6\) (0.5 mL) in a Teflon-tapped NMR tube. The red-brown solution turned dark brown. \(^1\text{H NMR (THF/C}_6\text{D}_6): \delta 16.7\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 14.0 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), 8.76 (br, \(W_\frac{1}{2} 53 \text{ Hz, py}), 7.22\) (m, imidazole-H and py), 6.62 (br, \(W_\frac{1}{2} 147 \text{ Hz, py}), 3.40\) (br, \(W_\frac{1}{2} 24 \text{ Hz, N-Me}), 2.80 (br, \(W_\frac{1}{2} 69 \text{ Hz, C-Me}), −28.8\) (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]), −98.5 (br, \([\text{Cr}_2(\text{L}^\text{Me}))\]) ppm. The sample was layered with hexane in the NMR tube but single crystals were not obtained.
4.2.7 Reactions of \([\text{Cr}_2(\text{L}^\text{Me})]\), 1, with gases

4.2.7.1 \(\text{CO}_2\)

\([\text{Cr}_2(\text{L}^\text{Me})]\) (13 mg, 0.017 mmol) was dissolved in THF (0.5 mL) in a Teflon-tapped NMR tube and one drop of \(\text{C}_6\text{D}_6\) was added as a reference. The mixture was freeze-pump-thaw degassed three times and then an atmosphere of \(\text{CO}_2\) (1.0 bar) was introduced and the tube shaken vigorously. No colour change was observed. \(^1\text{H}\) NMR spectra were acquired immediately, after 4 h and after heating the mixture at 70 °C for 4 h. In all cases only resonances corresponding to \([\text{Cr}_2(\text{L}^\text{Me})]\) were observed.

4.2.7.2 \(\text{CO}\)

\([\text{Cr}_2(\text{L}^\text{Me})]\) (12 mg, 0.016 mmol) was dissolved in THF (0.5 mL) in a Teflon-tapped NMR tube and one drop of \(\text{C}_6\text{D}_6\) was added as a reference. The mixture was freeze-pump-thaw degassed three times and then an atmosphere of \(\text{CO}\) (1.0 bar) was introduced and the tube shaken vigorously. No colour change was observed. The \(^1\text{H}\) NMR spectra acquired immediately and after 24 h showed only resonances corresponding to \([\text{Cr}_2(\text{L}^\text{Me})]\).

4.2.7.3 \(\text{O}_2\)

\([\text{Cr}_2(\text{L}^\text{Me})]\) (12 mg, 0.016 mmol) was dissolved in \(d_5\)-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The mixture was freeze-pump-thaw degassed three times and then an atmosphere of \(\text{O}_2\) (1.0 bar) was introduced and the tube shaken vigorously. No obvious colour change was noted and no precipitate formed. Only solvent resonances were observed in the \(^1\text{H}\) NMR spectrum.

4.2.7.4 \(\text{H}_2\)

\([\text{Cr}_2(\text{L}^\text{Me})]\) (103 mg, 0.135 mmol) was dissolved in THF (7 mL) in a Teflon-tapped ampoule. The red-brown solution was freeze-pump-thaw degassed three times and then an atmosphere of \(\text{H}_2\) (1.0 bar) was introduced and the ampoule shaken vigorously. The solution was stirred for 1 week. No colour change was observed.

4.2.8 Reactions of \([\text{Cr}_2(\text{L}^\text{Me})]\), 1, with reducing agents

4.2.8.1 \(\text{KC}_8\)

\([\text{Cr}_2(\text{L}^\text{Me})]\) (11 mg, 0.014 mmol) was dissolved in THF (0.5 mL) in a Teflon-tapped NMR tube and one drop of \(\text{C}_6\text{D}_6\) was added as a reference. \(\text{KC}_8\) (4 mg, 0.030 mmol) was added and the mixture changed from dark red to dark brown. The \(^1\text{H}\) NMR spectrum showed only solvent resonances, no resonances corresponding to a chromium compound were observed.
4.2.8.2 K metal

[Cr₂(L³Me)] (18 mg, 0.024 mmol) was dissolved in THF (0.5 mL) in a Teflon-tapped NMR tube, with a drop of C₆D₆ added. Excess K metal (13 mg, 0.332 mmol) was added and the mixture was heated at 80 °C for 16 h in order to melt the potassium. After this time copious black precipitate formed in the NMR tube, precluding NMR analysis.

4.2.8.3 K metal/ naphthalene

K metal (15 mg, 0.384 mmol), naphthalene (55 mg, 0.429 mmol) and 18-crown-6 (105 mg, 0.398 mmol) were dissolved in THF (15 mL) and transferred onto a stirred solution of [Cr₂(L³Me)] (140 mg, 0.184 mmol) in THF (15 mL). Pale brown precipitate formed within 15 min. This was allowed to settle and the supernatant decanted and layered with hexane (15 mL). A brown solid formed which was isolated, washed with hexane (5 mL) and dried under reduced pressure to yield 96 mg of brown powder. The identity of the product(s) is unknown; various recrystallisation attempts were unsuccessful. ¹H NMR (d₅-pyridine): only solvent resonances observed.

4.2.9 Synthesis of [Cr₂(μ-I)(I)(THF)(L³Me)], 6

THF (15 mL) was added to a dry mix of [Cr₂(L³Me)] (490 mg, 0.644 mmol) and iodine crystals (165 mg, 0.650 mmol) in a Schlenk tube and the mixture was stirred for 16 h, during which time the solution changed colour from brown to deep red. The solution was filtered and the volatiles removed from the filtrate under reduced pressure to leave a sticky red solid, which was washed with hexane (2 x 10mL) and dried to afford the product as a microcrystalline red powder. Yield: 585 mg, 84 %.

¹H NMR (THF/C₆D₆): δ 24 (v br), 17 (v br), 14 (v br), 5.9, 4.3, 3.6 (overlapped, br), 1.4 (br, THF), −55 (v br), −58 (v br), −67 (v br) ppm. Evans’ method magnetic moment (THF/C₆D₆, 298 K): 5.43 µB. Elemental Analysis: Found: C, 50.94; H, 4.35; N, 10.27 %, C₄₆H₄₄Cr₂I₂N₈O requires: C, 50.84; H, 4.45; N, 10.31 %. Single crystals suitable for X-ray diffraction analysis were obtained by vapour diffusion of hexane into a THF solution of [Cr₂(μ-I)(I)(THF)(L³Me)].

4.2.10 Synthesis of [Cr₂(μ-I)(py)₂(L³Me)][I], 7

Pyridine (15 mL) was added to a Schlenk containing [Cr₂(L³Me)] (265 mg, 0.348 mmol) and iodine crystals (90 mg, 0.355 mmol) and the mixture was stirred for 1 h forming a purple-red solution containing a bronze suspension. The solid was allowed to settle and then isolated, washed with hexane (5 mL) and dried under reduced pressure. Yield: 205 mg, 50 %.
No 1H NMR data were obtained for the product due to its poor solubility. **Elemental Analysis:** Found: C, 53.14; H, 4.25; N, 11.87 %. C$_{55}$H$_{50}$Cr$_2$I$_2$N$_{10}$ requires: C, 53.25; H, 4.30; N, 11.94 %.

Single crystals suitable for X-ray diffraction analysis, though of poor quality, were obtained by slow diffusion of a pyridine solution of [Cr$_2$(L$_{Me}$)] into a pyridine solution of iodine at ambient temperature over 48 h.

4.2.11 Synthesis of [Cr$_2$(µ-I)(py)$_2$(L$_{Me}$)][B{(OC$_6$H$_2$(t-Bu)$_2$)$_2$}], 8

Pyridine (15 mL) was added to a Schlenk containing [Cr$_2$(L$_{Me}$)] (128 mg, 0.168 mmol) and iodine crystals (43 mg, 0.169 mmol) and the mixture was stirred for 2 h forming a purple-red solution containing a bronze suspension. A solution of [Na(THF)$_2$][B{(OC$_6$H$_2$(t-Bu)$_2$)$_2$}] (192 mg, 0.168 mmol) in pyridine (5 mL) was added to the mixture. No change was observed until the mixture was briefly refluxed causing the bronze precipitate to dissolve and forming a red solution. After 16 h the solvent was removed under reduced pressure leaving a sticky red oil which was washed with hexane to remove residual pyridine and dried. The resulting powder was extracted with boiling toluene (10 mL) to exclude the NaI by-product. The extract was stored at −30 °C for 16 h to afford the product as a red solid, which was isolated, washed with hexane (5 mL) and dried. The filtrate was concentrated to afford a second crop. Combined yield: 128 mg, 40 %.

1H NMR (C$_6$D$_6$/THF): no resonances observed. **Elemental Analysis:** Found: C, 69.27; H, 6.93; N, 7.41 %. C$_{108}$H$_{130}$BCr$_2$IN$_{10}$O$_4$ requires: C, 69.22; H, 6.99; N, 7.47 %. Single crystals suitable for X-ray diffraction analysis were not obtained.

4.2.12 Reactions of [Cr$_2$(µ-I)(I)(THF)(L$_{Me}$)], 6, with metal alkyls

4.2.12.1 ZnEt$_2$ in toluene

ZnEt$_2$ in hexane (0.6 mL, 1.0 M) was added dropwise to a red suspension of [Cr$_2$(µ-I)(I)(THF)(L$_{Me}$)] (170 mg, 0.156 mmol) in toluene (10 mL). The resulting green mixture was stirred for 2.5 h then concentrated to 3 mL. Hexane (3 mL) was added, the mixture was filtered and the filtrate stored at −30 °C. A small number of large, green crystals formed over 72 h. Single crystal X-ray diffraction analysis revealed that the composition of these crystals was [{Cr(Et)}$_2$(µ-I)ZnEt](L$_{Me}$)] (9). Bulk material was not isolated.

4.2.12.2 ZnEt$_2$ in pyridine

ZnEt$_2$ in hexane (0.2 mL, 1.0 M) was added dropwise to a solution of [Cr$_2$(µ-I)(I)(THF)(L$_{Me}$)] (130 mg, 0.120 mmol) in pyridine (5 mL). The mixture was stirred for 16 h and then the solvent was removed under reduced pressure. The resultant red-brown solids were extracted with toluene (10 mL), the extract was concentrated to 2 mL and hexane (5
mL) was added. The mixture was filtered and the filtrate stored at −30 °C overnight. Clusters of green needles formed. The crystals were isolated and recrystallized from a THF/hexane mix at −30 °C to afford single crystals suitable for X-ray diffraction analysis. The composition of these crystals was found to be \(\{\text{Cr(Et)}\}_2(\text{endo-py})(\text{L}^\text{Me}) \) \(10 \). Yield: 30 mg, 28 %.

Elemental Analysis: Found: C, 68.19; H, 6.26; N, 13.97 %. \(\text{C}_{51}\text{H}_{55}\text{Cr}_2\text{N}_9 \) requires: C, 68.21; H, 6.17; N, 14.04 %.

Attempts to carry out this reaction on a larger scale in order to isolate sufficient material for reactivity studies were unsuccessful; the reaction was found to be unrepeatable and no crystalline material was obtained again.

4.2.12.3 MgMe₂

THF (10 mL) was added to a dry mix of \(\{\text{Cr}_2(\mu-I)(I)(\text{THF})(\text{L}^\text{Me}) \} \) (110 mg, 0.101 mmol) and MgMe₂ (3 mg, 0.055 mmol) forming a red solution containing white solids. This mixture was stirred vigorously for 2 d, filtered and the solvent removed under reduced pressure. The resulting sticky red solid was washed with hexane (5 mL) and dried. The \(^1\text{H} \) NMR spectrum of the isolated material revealed that it was the starting material and that no reaction had taken place.

4.2.13 Synthesis of \(\{\text{Cr(Et)}\}_2(\text{endo-THF})(\text{L}^\text{Me}) \), 11

A solution of EtMgBr in THF (1.30 mL, 1.0 M) was added to a red solution of \(\{\text{Cr}_2(\mu-I)(I)(\text{THF})(\text{L}^\text{Me}) \} \) (690 mg, 0.634 mmol) in THF (15 mL). The resulting brown mixture was stirred for 45 min, during which time a pale precipitate formed, and then concentrated to one-third volume. Hexane (10 mL) was added and the mixture was stirred for 30 min, filtered and stored at −30 °C to afford the product as green-brown crystals. Yield: 215 mg, 38 %.

\(^1\text{H} \) NMR (\(\text{C}_6\text{D}_6 \)): δ 21 (v br), 9.9 (br, \(W_{\text{½}} 517 \text{Hz} \)), 6.5 (br, \(W_{\text{½}} 140 \text{Hz} \)) 5.3 (br, \(W_{\text{½}} 190 \text{Hz} \)), 3.8 (v br), 2.55 (v br), -42 (v br) ppm. \(^1\text{H} \) NMR (\(\text{CD}_2\text{Cl}_2 \)): δ 23.1 (v br), 15.1 (v br), 11.3 (v br), 7.1, 6.3 (br, overlapped), 5.4 (br, \(W_{\text{½}} 177 \text{Hz} \)), 3.91 (br, \(W_{\text{½}} 105 \text{Hz} \), THF), 3.2 (v br) 1.95 (br, \(W_{\text{½}} 37 \text{Hz} \), THF), -36.6 (v br), -44.4 (v br) ppm. **Elemental Analysis:** Found: C, 67.31; H, 6.43; N, 12.55 %. \(\text{C}_{50}\text{H}_{58}\text{Cr}_2\text{N}_8\text{O} \) requires: C, 67.40; H, 6.56; N, 12.58 %. The crystals obtained from the reaction mixture were suitable for single crystal X-ray diffraction analysis.

4.2.14 Reactions of \(\{\text{Cr(Et)}\}_2(\text{endo-THF})(\text{L}^\text{Me}) \), 11

4.2.14.1 CO

\(\{\text{Cr(Et)}\}_2(\text{endo-THF})(\text{L}^\text{Me}) \} \) (7 mg, 0.008 mmol) was dissolved in \(\text{C}_6\text{D}_6 \) (0.5 mL) to form a green-brown solution. The solution was freeze-pump-thaw degassed three times and then an
Chapter Four

atmosphere of CO (1.0 bar) was introduced. No obvious colour change occurred. The 1H NMR spectrum acquired after 6 h showed only starting material resonances.

4.2.14.2 H_2

$\{[\text{Cr}(\text{Et})_2(\text{endo-THF})]_{\text{Me}}\}$ (13 mg, 0.014 mmol) was dissolved in C$_6$D$_6$ (0.5 mL) to form a green-brown solution. The solution was freeze-pump-thaw degassed three times and then an atmosphere of H_2 (1.0 bar) was introduced. No obvious colour change occurred. 1H NMR spectra acquired after over 48 h showed only starting material resonances.

4.2.14.3 CH_2CH_2

$\{[\text{Cr}(\text{Et})_2(\text{endo-THF})]_{\text{Me}}\}$ (13 mg, 0.014 mmol) was dissolved in C$_6$D$_6$ (0.5 mL) to form a green-brown solution. The solution was freeze-pump-thaw degassed three times and then an atmosphere of ethylene (1.0 bar) was introduced. No obvious colour change occurred. 1H NMR spectra acquired after over 48 h showed only starting material resonances and dissolved ethylene. The solution gradually turned red over 2 weeks. 1H NMR (CD$_2$Cl$_2$, 14 d): δ 15.5 (v br), 7.7 (v br), 6.4 (v br), 5.41 (s, CH$_2$CH$_2$) 4.7, 4.2 (br, overlapped), 3.3 (v br), 1.8 (br, $W_{1/2}$ 40 Hz) ppm.

4.2.14.4 $[\text{CPh}_3][\text{B}(\text{ArF})_4]$

$\{[\text{Cr}(\text{Et})_2(\text{endo-THF})]_{\text{Me}}\}$ (12 mg, 0.013 mmol) and $[\text{CPh}_3][\text{B}(\text{ArF})_4]$ (12 mg, 0.013 mmol) were dissolved in CD$_2$Cl$_2$ (0.5 mL) forming a red-brown solution.

1H NMR (CD$_2$Cl$_2$): δ 17.8, 16.1, 13.7 (overlapping, v br), 8.10 (br, $W_{1/2}$ 193 Hz), 7.30 (m, 8H, meta ArH, HCPH$_3$), 7.23 (m, 4H, para ArH, HCPH$_3$), 7.15 (d, $^3J_{HH}$ 5.20 Hz, 8H, ortho ArH, HCPH$_3$), 5.56 (s, 1h, HCPH$_3$), 5.41 (s, 1H, CH$_2$CH$_2$), 4.29 (br, $W_{1/2}$ 105 Hz), 2.64 (m, 1H), 2.30 (br, $W_{1/2}$ 226 Hz), 1.29 (m, 0.6H, hexane CH$_2$), 1.23 (m, 0.1 H), 0.90 (m, 0.5H, hexane CH$_3$), 0.87 (s, 0.4H, CH$_3$CH$_3$), 0.76 (m, 0.2H), -30.6 (v br), -40.6 (v br), -49.7 (v br) ppm. 11B NMR (CD$_2$Cl$_2$): δ -16.6 (s, $[\text{B}(\text{ArF})_4]^{-}$) ppm. 19F NMR (CD$_2Cl_2$): δ -133.1 (s), -163.4 (s), -167.3 (s) ppm.

The sample was freeze-pump-thaw degassed three times and then an atmosphere of ethylene (1.0 bar) was introduced. The mixture turned red overnight.

1H NMR (CD$_2$Cl$_2$, 16h): δ 35.5 (v br), 17.8, 16.10 (overlapping, br), 7.30 (m, 8H, meta ArH, HCPH$_3$), 7.23 (m, 4H, para ArH, HCPH$_3$), 7.15 (d, $^3J_{HH}$ 5.20 Hz, 8H, ortho ArH, HCPH$_3$), 5.56 (s, 1H, HCPH$_3$), 5.41 (s, 23H, CH$_2$CH$_2$), 5.1 (v br), 4.0 (v br), 2.64 (m, 0.2H), 1.99 (v br), 1.29 (m, 0.6H, hexane CH$_2$), 1.23 (m, 0.1H), 0.90 (m 0.5H, hexane CH$_3$), 0.87 (s, 2.4H, CH$_3$CH$_3$), 0.76 (m, 0.2H), -30.6 (v br), -53.7 (v br), -69.5 (v br) ppm.

The 19F NMR spectrum was unchanged.
Chapter Four

4.3 Synthetic procedures for Chapter Three: Uranium Pacman Complexes

Note on reporting of NMR data: Though U(III) and U(IV) by their paramagnetism induce broadening and contact-shifting of NMR resonances, this is to a far lesser extent than observed for the Cr(II) and Cr(III) complexes. Signals remain reasonably sharp and can be reliably integrated, though H-H coupling is not usually resolved. In most cases separate resonances are expected for every different ligand proton environment. Therefore the number and relative integrations of the resonances reveal the symmetry of the macrocyclic environment. Limited information can be deduced from the value of the chemical shift of each resonance so it is usually impossible to assign different ligand environments which have the same relative integration.

4.3.1 NMR scale reactions of UI₃ with K₄Lᴬ

H₄Lᴬ (9 mg, 0.010 mmol) and KN" (9 mg, 0.045 mmol) were combined in d₅-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The mixture was allowed to stand for 10 min forming an orange suspension. Solid UI₃(dioxane)₁·₅ (16 mg, 0.021 mmol) was added and the mixture turned dark green. ¹H NMR (d₅-pyridine): δ 38.34 (s, 4H), 20.67 (s, 4H), 19.44 (s, 4H), 18.73 (s, 4H), 11.72 (s, 4H), 10.28 (s, 2H, ArH), 10.11 (s, 4H), 10.01 (s, 4H), 5.51 (s, 6H, meso Me), 3.63 (s, 37H, dioxane), 1.45 (s, 4H), 0.17 (s, 106H, HN(SiMe₃)₂), −2.09 (s, 6H, meso Me), −24.26 (s, 2H, ArH).

The reaction was repeated in THF/C₆D₆ and a very similar product was observed to form by ¹H NMR spectroscopy. When the solvent was removed under reduced pressure, the solid remaining turned yellow-brown and could not be redissolved for NMR analysis, indicating that decomposition had occurred.

The reaction was repeated in THF. Hexane was slowly diffused into the sample in an attempt to crystallise the product. After 3 d a pale brown precipitate formed which could not be re-dissolved for NMR analysis.

4.3.2 Attempted scaled-up reactions of UI₃ with K₄Lᴬ

Method A: A solution of KN" (200 mg, 1.00 mmol) in pyridine (5mL) was added to a solution of H₄Lᴬ (215 mg, 0.25 mmol) in pyridine (5 mL) and the mixture was stirred for 4 h before being transferred onto a suspension of UI₃(THF)₄ (453 mg, 0.50 mmol) in pyridine (10 mL). The dark green mixture was stirred for 16 h and then the solvent was removed under reduced pressure. The resulting sticky dark green solid was washed with hexane (3 x
10 mL) to remove residual pyridine and the green powder formed was dried. It was then extracted with hot toluene (20 mL) to separate the product from the KI by-product. Slow, continuous formation of pale yellow-green precipitate was observed in the extract. Considering that the product may be unstable in the absence of co-ordinating solvent, the toluene was removed under reduced pressure and the solids extracted with THF (10 mL). The extract was stored at −30 °C for 2 weeks, upon which a pale green precipitate formed which was isolated and dried. \(^1\)H NMR (\(d_5\)-pyridine): resonances corresponding to THF were observed in addition to many low intensity paramagnetic resonances that could not be assigned to a single product. None of the resonances corresponding to \([(\text{UI})_2(L^\Lambda)]\) were seen.

Method B: THF (20 mL) was added to a dry mix of \(H_4L^\Lambda\) (220 mg, 0.26 mmol) and KN" (210 mg, 1.05 mmol) and the orange suspension stirred for 3 h before being transferred onto a suspension of \(\text{UI}_3\) (dioxane)\(_{1.5}\) (339 mg, 0.51 mmol) in THF (5 mL). The dark green mixture was stirred (1 h), allowed to settle (1 h) and filtered. Pyridine (10 mL) was added to the filtrate in order to stabilise the product and the volatiles were removed under reduced pressure. The resulting sticky solid was dried for 16 h to yield a brown powder (353 mg). \(^1\)H NMR (\(d_5\)-pyridine): the resonances corresponding to \([(\text{UI})_2(L^\Lambda)]\) were observed but another set of resonances of roughly equal intensity to those of \([(\text{UI})_2(L^\Lambda)]\) were also present at δ 47.09 (s, 6H), 31.56 (s, 5H), 20.99 (s, 3H), 15.97 (s, 4H), 13.61 (s, 8H), 6.41 (s, 4H), 3.87 (s, 4H), −3.29 (s, 4H), −5.46 (s, 3H), −12.52 (s, 5H), −13.59 (s, 4H), −15.35 (s, 4H), −19.44 (s, 4H), −27.27 (s, 3H), −54.91 (s, 2H) ppm.

4.3.3 Attempted in situ reactions of \([(\text{UI})_2(L^\Lambda)]\)

The following reactions were carried out in either \(d_5\)-pyridine or in a THF/C\(_6\)D\(_6\) mixture. When \(d_5\)-pyridine was used, a fresh sample of \([(\text{UI})_2(L^\Lambda)]\) was prepared as described in 4.3.1 above. Otherwise 0.5 mL portions of a 0.019 M stock solution of \([(\text{UI})_2(L^\Lambda)]\) in THF/C\(_6\)D\(_6\) were used, which was prepared as follows: \(H_4L^\Lambda\) (150 mg, 0.17 mmol) and KN" (140 mg, 0.70 mmol) were combined in THF (8.5 mL) and C\(_6\)D\(_6\) (0.9 mL) and stirred for 15 min. \(\text{UI}_3\) (dioxane)\(_{1.5}\) (230 mg, 0.35 mmol) was added and the mixture stirred for a further 15 min before being centrifuged at 4500 rpm for 10 min leaving a green solution and a compact brown precipitate. The solution was decanted and stored in the glovebox.

4.3.3.1 DMAP

DMAP (2 mg, 0.016 mmol) was added to a stock solution of \([(\text{UI})_2(L^\Lambda)]\) in THF/C\(_6\)D\(_6\) (0.5 mL, 0.010 mmol) in a Teflon-tapped NMR tube. Green precipitate formed within 5 min. \(^1\)H NMR (THF/C\(_6\)D\(_6\)): no paramagnetic resonances were observed. The solvent was removed.
under reduced pressure and the sample re-dissolved in \(d_5\)-pyridine. \(^1\)H NMR (\(d_5\)-pyridine): several low intensity paramagnetic resonances were observed which could not be assigned to one product.

4.3.3.2 KO\(^{t}\)Bu

KO\(^{t}\)Bu (2.5 mg, 0.022 mmol) was added to “[(UI)\(_2\)(L\(^A\))]” (0.010 mmol) in \(d_5\)-pyridine (0.5 mL) in a Teflon-tapped NMR tube. \(^1\)H NMR (\(d_5\)-pyridine): several low intensity resonances were observed over the range \(\delta \) 90 to −55 ppm which could not be assigned to one product.

4.3.3.3 LiCl

Excess LiCl (5 mg, 0.118 mmol) was added to a stock solution of “[(UI)\(_2\)(L\(^A\))]” in THF/C\(_6\)D\(_6\) (0.5 mL, 0.010 mmol) in a Teflon-tapped NMR tube. A large amount of microcrystalline green precipitate formed within 5 min. The volatiles were removed under reduced pressure and the solid re-dissolved in \(d_5\)-pyridine. \(^1\)H NMR (\(d_5\)-pyridine): several resonances were observed in the diamagnetic aromatic region as well as several low intensity paramagnetic resonances over the range \(\delta \) 70 to −30 ppm.

4.3.3.4 NaBH\(_4\)

Excess NaBH\(_4\) (5 mg, 0.132 mmol) was added to a stock solution of “[(UI)\(_2\)(L\(^A\))]” in THF/C\(_6\)D\(_6\) (0.5 mL, 0.010 mmol) in a Teflon-tapped NMR tube. No obvious colour change was noted. \(^1\)H NMR (THF/C\(_6\)D\(_6\)): \(\delta \) 36.29 (s, 4H), 18.87 (s, 4H), 18.72 (s, 1H), 18.50 (s, 3H), 11.49 (d, \(^3\)J\(_{HH} \) 7.79 Hz, 4H, pyrrole H), 11.25 (s, 4H), 10.85 (s, 2H), 10.61 (s, 1H), 10.05 (d, \(^3\)J\(_{HH} \) 7.79 Hz, 4H, pyrrole H), 9.79 (s, 1H), 6.24 (s, 4H), 0.64 (s, 6H), −23.03 (s, 2H) ppm.

4.3.3.5 Sulphur

Excess S\(_8\) (4 mg, 0.125 mmol) was added to a stock solution of “[(UI)\(_2\)(L\(^A\))]” in THF/C\(_6\)D\(_6\) (0.5 mL, 0.010 mmol) in a Teflon-tapped NMR tube. The solution immediately turned red-brown and a brown precipitate formed. The solvent was removed under reduced pressure and the solid re-dissolved in \(d_5\)-pyridine. \(^1\)H NMR (\(d_5\)-pyridine): many resonances were observed in the range \(\delta \) 70 to −30 ppm, consistent with the formation of multiple paramagnetic products.

4.3.3.6 CO

A solution of “[(UI)\(_2\)(L\(^A\))]” (0.010 mmol) in \(d_5\)-pyridine (0.5 mL) in a Teflon-tapped NMR tube was freeze-pump-thaw degassed three times and then an atmosphere of CO (1.0 bar) was introduced. \(^1\)H NMR (\(d_5\)-pyridine, 15 min): showed mainly “[(UI)\(_2\)(L\(^A\))]” but several
new low intensity paramagnetic resonances were observed. A second spectrum acquired after 7 h was identical to the first. This indicates that some decomposition of the starting material occurred, probably due to ppm quantities of H₂O in the CO gas.

4.3.3.7 KC₈

KC₈ (3 mg, 0.022 mmol) was added to a solution of “[UI]₂(L⁴)” (0.010 mmol) in d₅-pyridine (0.5 mL) in a Teflon-tapped NMR tube. ¹H NMR (d₅-pyridine, 15 min): showed only “[UI]₂(L⁴)]”. A second spectrum acquired after 3 d showed “[UI]₂(L⁴)” and at least two new paramagnetic products of roughly equal intensity. A third spectrum acquired after 3 weeks was identical to the second.

4.3.4 Reactions between UI₃(solvent)x and NaBH₄

The trial reactions carried out and their results are summarised in Table 4.1. In all cases UI₃(solvent) was combined with 3.3 equivalents of NaBH₄ in the stated solvent. For entries (1) – (4) (Table 4.1) the reaction mixture was stirred for 24 h after which no change had occurred and the mixture was discarded. UI₃(dioxane)₁₅ is only sparingly soluble in Et₂O so reaction mixture (5) was stirred for 16 h, during which the suspended solid gradually changed colour from blue to purple-red. When the solvent was added to a dry mix of the reagents in entry (6) there was an immediate colour change from deep blue to brown-red and complete dissolution of the solids. ¹H NMR spectra of the crude products of reactions (5) and (6) were recorded in d₈-THF.

<table>
<thead>
<tr>
<th>Starting material</th>
<th>Solvent</th>
<th>Likely product</th>
<th>Product solubility</th>
<th>δ BH₄ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soluble in</td>
<td>Insoluble in</td>
</tr>
<tr>
<td>(1) UI₃</td>
<td>toluene</td>
<td>no reaction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) UI₃(THF)₄</td>
<td>toluene</td>
<td>no reaction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(3) UI₃</td>
<td>Et₂O</td>
<td>no reaction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(4) UI₃(THF)₄</td>
<td>Et₂O</td>
<td>no reaction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(5) UI₃(dioxane)₁₅</td>
<td>Et₂O</td>
<td>[U(BH₄)₃(dioxane)]₁₅</td>
<td>THF</td>
<td>Et₂O</td>
</tr>
<tr>
<td>(6) UI₃</td>
<td>THF</td>
<td>[U(BH₄)₃(THF)]₄</td>
<td>toluene</td>
<td>Et₂O, THF</td>
</tr>
</tbody>
</table>

4.3.5 Synthesis of [U(BH₄)₃(THF)]₂, 14

THF (30 mL) was added to a dry mix of UI₃ (2.86 g, 4.62 mmol) and NaBH₄ (520 mg, 13.7 mmol) in a Schlenk tube. The resultant red mixture was stirred at ambient temperature for 1 h. The THF solvent was removed under vacuum and the solid residue dried overnight. The
crude reaction mixture was soxhlet-extracted into Et₂O (150 mL) at 65 °C for 6 h. The volatiles were removed under vacuum and the solid residue dried overnight to yield [U(BH₄)₃(THF)₂] as a microcrystalline red solid. Yield: 1.75 g, 90 %.

1H NMR (d₆-THF): δ 85 (br, W₀ 2152 Hz, BH₄) ppm. **11B NMR** (d₆-THF): δ 232 (br, W₀ 2252 Hz, U-BH₄) ppm. **1H NMR** (d₆-toluene): δ 125 (12H, br, W₀ 499 Hz, BH₄), 5.17 (br, 14H, THF), 3.34 (br, 14H, THF) ppm. The degree of solvation was confirmed by NMR displacement reactions using DME (see 4.5.2 below) in C₆D₆. **1H NMR** (C₆D₆, 2 drops DME): δ 98 (br, W₀ 2312 Hz, 12H, BH₄), 3.50 (m, 12H, THF), 3.26 (s, 200H, DME CH₃), 3.06 (s, 300H, DME CH₃), 1.46 (m, 12H, THF) ppm. **11B NMR** (C₆D₆, 2 drops DME): δ 230 (br, W₀ 2258 Hz, U-BH₄) ppm. **IR** (nujol mull, BaF₂): ν 2446 (s, ν₁B₄), 2205 and 2147 (s, ν₂B₄) cm⁻¹. **Elemental Analysis**: Found: C, 22.33; H, 6.51 %. C₆H₂₂B₂O₂U requires: C, 22.52; H, 6.61 %.

4.3.6 Synthesis of [Na(THF)₄][{U(BH₄)₂(µ-BH₄)(L₄)}(THF)₂], 18

THF (30 mL) was added to a dry mix of H₄L₄ (763 mg, 0.89 mmol) and NaN⁺ (650 mg, 3.54 mmol) in a Schlenk tube and the resulting orange suspension was stirred for 20 min before being transferred onto a stirred suspension of [U(BH₄)₃(THF)₂] (760 mg, 1.78 mmol) in THF (15 mL). The brown-green mixture was stirred overnight and then the solvent was removed under reduced pressure leaving khaki solids which were extracted with THF (10 mL). The extract was stored at −30°C for 1 week to afford the product as dark green needles. Yield: 480 mg, 30 %.

1H NMR (d₆-THF): δ 35.14 (s, 4H), 18.52 (s, 4H), 15.83 (s, 4H), 11.08 (s, 2H, Ar-H), 10.27 (d, 3J_HH 8.3 Hz, 4H, pyrrole H), 10.05 (d, 3J_HH 8.3 Hz, 4H, pyrrole H), 8.79 and 8.71 (overlapping, 8H), 5.15 (s, 6H, CH₂CH₃), 4.64 (s, 4H), −0.14 (s, 6H, CH₂CH₃), −13.60 (s, 2H, Ar-H), −70.1 (br, W₀ 498 Hz, terminal BH₄) ppm. **1H{¹¹B} NMR** (d₆-THF): resonance at δ −70.1 ppm sharpens to W₀ 364 Hz. **11B NMR** (d₆-THF): δ 212 (s, 1B, µ-BH₄), 207 (s, 2B, terminal BH₄) ppm. **IR** (nujol mull, BaF₂): ν(B-H) 2435 (w), 2313 (w), 2200 (w), 2144 (w) cm⁻¹. **Elemental Analysis**: Found: C, 53.59; H, 6.07; N, 6.17 %. C₆H₁₀B₃N₄NaO₆U₂ requires: C, 53.72; H, 5.94; N, 6.11 %.

4.3.7 Synthesis of crude [Li(THF)₄][{U(BH₄)₂(µ-BH₄)(L₄)}(THF)₂], 17

THF (15 mL) was added to a dry mix of UI₃ (458 mg, 0.74 mmol) and LiBH₄ (50 mg, 2.30 mmol) forming a dark red solution and a red microcrystalline solid. The mixture was stirred for 30 mins before being transferred onto an orange solution of Li₃L₄ in THF (15 mL), formed in situ from H₄L₄ (318 mg, 0.37 mmol) and LiN⁺ (250 mg, 1.49 mmol). The resultant green-brown solution was stirred for 16 h before the volatiles were removed under
reduced pressure to yield an oily dark green residue. This was extracted with toluene (10 mL) and the extract was stored at −30 °C for 1 week to afford 293 mg of dark green microcrystals contaminated with LiBH₄.

\[^1H \text{ NMR (THF/C}_6\text{D}_6) : \delta 35.51 \text{ (s, 4H), 18.80 \text{ (s, 4H), 15.88 \text{ (s, 4H), 10.88 \text{ (s, 2H, Ar-H), 10.03 \text{ (s, 4H), 9.89 \text{ (s, 4H), 8.72 \text{ (s, 4H), 5.12 \text{ (s, 6H, meso CH}_2\text{CH}_3\text{), 4.49 \text{ (s, 4H}, 0.15 \text{ (1:1:1:1 q, } J_{BH} 80\text{ Hz, 60H, LiBH}_4\text{), −0.09 \text{ (s, 6H, meso CH}_2\text{CH}_3\text{), −12.70 \text{ (s, 2H, Ar-H), −69.4 ppm}.} \]

4.3.8 Synthesis of crude \([\{U(BH_4)\}_2(\mu-BH_4K)(L^A)(THF)_2]\), 19

THF (15 mL) was added to a dry mix of H₄L^A (390 mg, 0.45 mmol) and KN" (362 mg, 1.81 mmol) forming an orange suspension, which was stirred for 15 min. It was then transferred onto a suspension of \([U(BH_4)_3(THF)_2]\) (390 mg, 0.91 mmol) in THF (10 mL) forming a green-brown mixture which was stirred for 2 h and then left to settle for 16 h. The mixture was filtered and the volatiles were removed from the filtrate under reduced pressure yielding brown-green solids (642 mg) containing KN" and HN" in addition to \(19\).

\[^1H \text{ NMR (d}_8\text{-THF): } \delta 38.28 \text{ (s, 4H), 31.8 (br, } W_{1/2} 441 \text{ Hz, terminal BH}_4\text{), 18.84 \text{ (s, 4H), 17.50 \text{ (s, 4H), 10.85 \text{ (d, } J_{HH} 8.70 \text{ Hz, 4H, pyrrole H), 10.69 \text{ (s, 4H), 9.77 \text{ (d, } J_{HH} 8.70 \text{ Hz, 4H, pyrrole H), 9.65 \text{ (s, 4H), 6.11 \text{ (s, 6H, meso CH}_2\text{CH}_3\text{), 0.13 \text{ (s, 12H, KN"), 0.05 \text{ (s, 24H, HN"), −0.13 \text{ (s, 6H, meso CH}_2\text{CH}_3\text{), −18.40 \text{ (s, 2H, Ar-H), −66.1 ppm.} \]

4.3.9 Reaction of crude \([\{U(BH_4)_2(\mu-BH_4K)(L^A)(THF)_2]\], 19, with 18-crown-6

Crude \([\{U(BH_4)_2(\mu-BH_4K)(L^A)(THF)_2]\] (14 mg, 0.009 mmol) and excess 18-crown-6 (5 mg, 0.019 mmol) were combined in \(d_8\)-THF in a Teflon-tapped NMR tube. Green microcrystalline solid began to precipitate from the mixture immediately. As a result the \(^1\text{H NMR spectrum obtained was broad and of low intensity so some resonances could not be integrated reliably.} \(^1\text{H NMR (d}_8\text{-THF): } \delta 34.76 \text{ (s, 4H), 18.44 \text{ (s, 4H), 15.46 \text{ (s, 4H), 10.96 \text{ (s, 2H, Ar-H), 10.17 \text{ (s, 4H), 9.96 \text{ (s, 4H), 8.68 \text{ (s, 4H, 8.42 \text{ (2, 4H), 4.88 \text{ (s, overlapped), 3.48 \text{ (s, overlapped, 18-crown-6), −0.23 \text{ (s, overlapped), −12.48 \text{ (s, 2H, Ar-H), −66.1 \text{ (br, 8H, terminal BH}_4\text{), −12.48 \text{ (s, 2H, Ar-H), −66.1 \text{ (br, } W_{1/2} 208 \text{ Hz, 1B, } \mu\text{-BH}_4\text{), 207 \text{ (br, } W_{1/2} 296 \text{ Hz, 2B, terminal BH}_4\text{ ppm.} \]

4.3.10 Synthesis of \([\text{Li(THF)}_4][\{U(BH_4)_2(\mu-BH_4)(L^\text{Me})]\], 21

THF (20 mL) was added to a dry mix of H₄L^\text{Me} (410 mg, 0.62 mmol) and LiN" (415 mg, 2.48 mmol). The resulting brown solution was stirred for 10 min before being transferred onto a
stirred suspension of \([\text{U(BH}_4]_2(\text{THF})_2] \) (530 mg, 1.24 mmol) in THF (20 mL). The dark red-brown mixture was stirred overnight during which time a small quantity of orange precipitate formed. The mixture was filtered, and the filtrate concentrated to 15 mL and stored at −30°C to afford the product as dark brown crystals. Yield: 220 mg, 24%.

\(^1\text{H NMR} (d_8-\text{THF}): \delta 63.07 \text{ (br, W/½ 702 Hz, terminal BH}_4\text{), 50.66 \text{ (s, 4H), 33.88 \text{(s, 4H), 30.50 \text{(s, 4H), 8.25 \text{(s, 6H, meso Me), −2.45 \text{(s, 6H meso Me), −66.86 \text{(s, 4H ppm)}.)}}\text{}}}

\(^{11}\text{B NMR} (d_8-\text{THF}): \delta 32.5 \text{(s, 1B, bridging BH}_4\text{), 212 \text{(s, 2B, terminal BH}_4\text{)} ppm.}

\(^7\text{Li NMR} (d_8-\text{THF}): \delta −1.1 \text{(s, [Li(THF)]_4}) ppm.\text{}}\text{}}

\(\text{IR (nujol mull, BaF}_2\text{): ν(B-H)} 2414\text{(w), 2333\text{(w), 2193\text{(w), 2124\text{(w) cm}^{-1}.)}}\text{}}\text{}}

\(\text{Elemental Analysis: Found: C, 47.11; H, 5.55; N, 7.78 \text{%), C}_{58}\text{H}_{84}\text{B}_{3}\text{LiN}_{8}\text{O}_{4}\text{U}_{2} \text{requires: C, 47.30; H, 5.75; N, 7.61 \text{%).}}\text{}}\text{}}

\(\text{Author’s Note: Isolated crystalline [Li(THF)]_4[\text{U(BH}_4]_2(\mu\text{-BH}_4)(LMe)] cannot be redissolved in THF so the resonances reported above are taken from a small scale reaction in a Teflon-tapped NMR tube to form the product in situ. Dissolving [Li(THF)]_4[\text{U(BH}_4]_2(\mu\text{-BH}_4)(LMe)] in pyridine results in decomposition.}\text{}}\text{}}

4.3.11 Attempted ligand substitution reactions of [Na(THF)]_4[[\text{U(BH}_4]_2(\mu\text{-BH}_4)(L^A)(\text{THF})_2], 18, and [[\text{U(BH}_4]_2(\mu\text{-BH}_4)(L^A)(\text{THF})_2], 19

**4.3.11.1 NaOAr (Ar = 2,4,6-C_6H_2(tBu)_3)\text{}}\text{}}

Solid [Na(THF)]_4[[\text{U(BH}_4]_2(\mu\text{-BH}_4)(L^A)(\text{THF})_2] (13 mg, 0.007 mmol) and NaOAr (4 mg, 0.014 mmol) were combined in d_8-THF (0.5 mL) in a Teflon-tapped NMR tube forming a dark green solution. \(^1\text{H NMR} (d_8-\text{THF}): \delta 45.9 \text{(br, 4H), 38.5 \text{(br, 4H), 24.0 \text{(br, 4H), 23.0 \text{(br, 2H), 20.1 \text{(br, 10H), 18.2 \text{(br, 2H), 16.9 \text{(br, 2H), 15.5 \text{(br, 4H), 8.58 \text{(br, 4H), 6.89 \text{(s, 14.5H, NaOAr Ar-H), 6.1 \text{(br, 14H), 1.40 \text{(s, 130H, NaOAr o-Bu), 1.22 \text{(s, 65H, NaOAr p-Bu), −0.44 \text{(1:1:1:1 q, J_BH 81 Hz, 20H, NaBH}_4), −5.9 \text{(br, 4H), −7.3 \text{(br, 12H), −13.98 \text{(br, 6H), −24.7 \text{(br, 4H) ppm. All paramagnetic resonances were very broad and of very low intensity. Dark green crystals formed in the NMR tube over 3 weeks. X-ray diffraction analysis revealed their composition to be [([U(OAr)]_2(endo-BH}_4Na)(L^A)(\text{THF})_2] (23).}}\text{}}\text{}}

**4.3.11.2 KN”\text{}}\text{}}

Solid [Na(THF)]_4[[\text{U(BH}_4]_2(\mu\text{-BH}_4)(L^A)(\text{THF})_2] (14 mg, 0.007 mmol) and KN” (4 mg, 0.020 mmol) were combined in d_8-THF (0.5 mL) in a Teflon-tapped NMR tube forming a dark brown solution containing a pale brown precipitate. The \(^1\text{H NMR spectrum acquired after 2 h showed a mixture of paramagnetic and diamagnetic compounds. After 16 h a different set of low intensity paramagnetic resonances were observed which could not be}}\text{}}\text{}}
assigned to a single product. No resonance corresponding to NaBH₄ or KBH₄ could be identified.

4.3.11.3 NaO'Bu

Excess Na'OBU (4 mg, 0.042 mmol) was combined with crude [{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂} (14 mg, 0.09 mmol) in d₈-THF (0.5 mL) in a Teflon-tapped NMR tube. The mixture turned brown. ¹H NMR (d₈-THF): δ 13.33 (s, 1H), 7.20 (s, 1H), 2.55 (s, 1H), 1.32 (s, 12H), 1.08 (s, 280H, excess NaO'Bu), −0.41 (1:1:1:1 q, 1J₆085 Hz, 44H, NaBH₄), −8.67 (s, 2H) ppm. These resonances cannot be assigned to a Pacman complex. Other very low intensity resonances were observed over the range δ 98 to −33 ppm so it is likely that decomposition has occurred.

4.3.11.4 KCp*

Crude [{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂} (15 mg, 0.010 mmol) and KCp* (5 mg, 0.029 mmol) were combined in d₈-THF (0.5 mL) in a Teflon-tapped NMR tube. The mixture turned pale orange and an orange precipitate formed over 1 h. The ¹H NMR spectrum showed multiple low intensity paramagnetic resonances that could not be assigned to one product.

4.3.11.5 Benzyl potassium

Crude [{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂} (14 mg, 0.009 mmol) and benzyl potassium (2.3 mg, 0.018 mmol) were combined in d₈-THF (0.5 mL) in a Teflon-tapped NMR tube. The ¹H NMR spectrum showed multiple low intensity paramagnetic resonances that could not be assigned to one product, along with toluene (δ 7.24 (m, 2H, meta-H), 7.18 (d, ³J₃H₃ 7.3 Hz, 2H, ortho-H), 7.13 (t, ³J₃H₃ 7.4 Hz, 1H, para-H), 2.36 (s, 3H, Me) ppm), and KN⁺ (δ 0.17 (s, 8H) ppm).

4.3.11.6 Methylallyl lithium

Crude [{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂} (15 mg, 0.010 mmol) and methylallyl lithium (2 mg, 0.032 mmol) were combined in d₈-THF (0.5 mL) in a Teflon-tapped NMR tube. The ¹H NMR spectrum showed multiple, very low intensity paramagnetic resonances that could not be assigned to one product. LiBH₄ was observed at δ −0.51 (1:1:1:1 q, 1J₆80 Hz) ppm.

4.3.12 Attempted gas reactions of [Na(THF)₄]([{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂}], 18

In each case [Na(THF)₄]([{U(BH₄)]₂(µ-BH₄K)(L')(THF)₂}] (12 mg, 0.007 mmol) was dissolved d₈-THF (0.5 mL) and the solution was freeze-pump-thaw degassed three times.
before an atmosphere of the appropriate gas (1.0 bar) was introduced. The results are tabulated below.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>No reaction.</td>
</tr>
<tr>
<td>H₂</td>
<td>No reaction.</td>
</tr>
<tr>
<td>CO₂</td>
<td>Solution changed colour from dark green to pale orange and a yellow precipitate formed over 6 h. No paramagnetic resonances were observed in the (^1)H NMR spectrum.</td>
</tr>
</tbody>
</table>

4.3.13 Attempted reaction of [Li(THF)]₄[[U(BH₄)]₂(μ-BH₄)(L\(^{Me}\))]\(_2\), 21, with KOAr
[Li(THF)]₄[[U(BH₄)]₂(μ-BH₄)(L\(^{Me}\))] (12 mg, 0.008 mmol) and KOAr (6 mg, 0.020 mmol Ar = 2,4,6-C₆H₂(tBu)₃) were combined in \(d_8\)-THF (0.5 mL) in a Teflon-tapped NMR tube to form a dark brown solution. The subsequent \(^1\)H NMR spectrum showed multiple paramagnetic products with resonances appearing over the range δ 42 to −81 ppm.

4.3.14 Synthesis of [[U(OAr)]₂(endo-BH₄K)(L\(^\Lambda\))(THF)]\(_2\), 22
THF (15 mL) was added to a dry mix of [Na(THF)]₄[[U(BH₄)]₂(μ-BH₄)(L\(^\Lambda\))(THF)]\(_2\) (385 mg, 0.210 mmol) and KOAr (127 mg, 0.423 mmol Ar = 2,4,6-C₆H₂(tBu)₃) and the mixture was stirred for 16 h. Dark green crystals formed that were isolated by filtration and dried under reduced pressure. Yield: 253 mg, 59 %. Single crystals suitable for X-ray diffraction were grown from an NMR scale reaction in \(d_8\)-THF.
\(^1\)H NMR (\(C_6D_6\)): δ 27.0 (br, 4H), 24.9 (br, 4H), 17.7 (br, 4H), 14.6 (br, 2H, ArH), 13.9 (br, 4H), 12.4 (br, 4H), 10.5 (br, 4H), 8.6 (br, 2H ArH), 7.7 (br, 6H, meso CH₂CH₃ + 4H), 6.0 (br, 4H), 4.1 (br, 18H, para tBu), 3.60 (br, 24H, THF), 1.42 (br, 24H, THF), −0.1 (br, 36 H, ortho tBu), −10.0 (br, 4H), −12.8 (br, 6H, meso CH₂CH₃) ppm.
\(^1\)B NMR (\(C_6D_6\)): δ 188 (br, \(W_{1/2} 1161 \text{ Hz, (μ-BH₄K)}\)) ppm.
Elemental Analysis: Found: C, 59.46; H, 5.91; N, 5.36 %, \(C_{102}H_{126}B_1K_1N_8O_4U_2\) requires: C, 59.64; H, 6.18; N, 5.46 %.

4.3.15 Reaction of [[U(OAr)]₂(endo-BH₄K)(L\(^\Lambda\))(THF)]\(_2\), 22, with 18-crown-6
Solid 18-crown-6 (4 mg, 0.015 mmol) was added to a dark green suspension of [[U(OAr)]₂(μ-BH₄K)(L\(^\Lambda\))(THF)]\(_2\) (20 mg, 0.010 mmol) in \(C_6D_6\) (0.5 mL). A green solution containing a pale green precipitate formed.
\(^1\)H NMR (\(C_6D_6\)): δ 40.85 (s, 6H, meso CH₂CH₂H) 22.91 (s, 4H), 19.7 (br, \(W_v 400 \text{ Hz, 2H, OAr meta-H}\)), 18.4 (br, \(W_v 366 \text{ Hz, 2H, OAr meta-H}\)), 10.53 (s, 4H), 9.27 (s, 4H), 8.97 (s, 4H), 8.55 (s, 4H), 8.34 (s, 4H), 5.93 (s, 18H, para-\(^3\)Bu), 4.18 (s, 4H), 3.69 (s, 220H, 18-crown-6 + THF), 2.52 (s, 2H, ArH), 1.42 (br, 20H, THF), −0.22 (1:1:1:1 q, \(^1\)J\(_{BH} 82 \text{ Hz, 2H,} \)
Chapter Four

177

MBH₂, −0.94 (s, 4H), −3.1 (br, \(W\frac{1}{2}\) 379 Hz, 18H, \textit{ortho}-\textit{t}Bu), −7.1 (br, \(W\frac{1}{2}\) 359 Hz, 18H, \textit{ortho}-\textit{t}Bu), −12.36 (s, 6H, \textit{meso} CH₂CH₃), −43.61 (s, 2H, ArH) ppm. \(^{11}\text{B NMR (C}_6\text{D}_6\)): no resonances visible over the range 340 – 60 ppm.

4.3.16 Attempted gas reactions of \([\{\text{U(OAr)}\}_2(L^\Lambda)]\), 24

In each case “\([\{\text{U(OAr)}\}_2(L^\Lambda)]\)” was formed \textit{in situ} in a Teflon-tapped NMR tube by reaction of \([\{\text{U(OAr)}\}_2(\mu-\text{BH}_4\text{K})(L^\Lambda)(\text{THF})_2]\) with excess 18-crown-6 in C₆D₆. The solution was then freeze-pump-thaw degassed three times before an atmosphere of the appropriate gas (1.0 bar) was introduced. The results are tabulated below.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>No reaction.</td>
</tr>
<tr>
<td>H₂</td>
<td>No reaction.</td>
</tr>
<tr>
<td>CO₂</td>
<td>Solution turned light orange, very low intensity resonances were observed that could not be assigned to a single product.</td>
</tr>
</tbody>
</table>

4.3.17 Synthesis of \([\{\text{U(OAr)}\}_2(\mu-S_2)(L^\Lambda)]\), 25

C₆D₆ (0.5 mL) was added to a dry mix of \([\{\text{U(OAr)}\}_2(\text{endo-}\text{BH}_4\text{K})(L^\Lambda)(\text{THF})_2]\) (10 mg, 0.005 mmol) and S₈ (0.6 mg, 0.002 mmol) in a vial in the glovebox forming a pale orange solution. The mixture was left to stand for 2 h before being filtered. Hexane (1.5 mL) was added and the mixture left to stand. Dark orange crystals and yellow powder formed after 1 week. The yellow powder was re-suspended, the supernatant decanted and the crystals dried under vacuum. Yield: 4 mg, 43 %. Single crystals were grown by vapour diffusion of hexane into a benzene solution at ambient temperature.

\(^{1}\text{H NMR (C}_6\text{D}_6\):} δ 65.54 (s, 4H), 48.45 (s, 2H), 36.97 (s, 2H), 35.67 (2, 6H, \textit{meso} CH₂CH₃), 29.51 (s, 18H, \textit{ortho}-\text{t}Bu), 15.09 (s, 18H, \textit{para}-\text{t}Bu), 13.94 (s, 4H), 4.30 (s, 4H), −4.04 (s, 4H), −6.96 (s, 4H), −10.95 (s, 4H), −11.55 (s, 4H), −12.13 (s, 2H), −13.19 (s, 4H), −31.15 (s, 4H), −31.72 (s, 18H, \textit{ortho}-\text{t}Bu), −56.12 (s, 2H) ppm. \(^{11}\text{B NMR (C}_6\text{D}_6\):} no resonances visible over the range 250 – 50 ppm. \textbf{Elemental Analysis} Found: C, 59.02; H, 5.63; N, 5.76 %. \(\text{C}_{94}\text{H}_{106}\text{N}_8\text{O}_2\text{S}_2\text{U}_2\) requires: C, 58.80; H, 5.56; N, 5.84 %.

4.3.18 Reactions of \([\{\text{U(OAr)}\}_2(\text{endo-}\text{BH}_4\text{K})(L^\Lambda)(\text{THF})_2]\), 22, with CS₂

4.3.18.1 Room temperature

Three drops of CS₂ were added to a green suspension of \([\{\text{U(OAr)}\}_2(\text{endo-}\text{BH}_4\text{K})(L^\Lambda)(\text{THF})_2]\) (10 mg, 0.005 mmol) in \(d_6\)-toluene (0.5 mL) in a Teflon-tapped NMR tube. The solution turned orange-brown over 10 min.
1H NMR (d$_8$-toluene, 1 h): δ 77.54 (s, 2H), 45.38 (s, 1H, OAr meta-H), 36.51 (s, 9H, 'Bu), 31.31 (s, 1H, OAr meta-H), 26.94 (s, 3H, meso CH$_2$CH$_3$), 20.82 (s, 3H, meso CH$_2$CH$_3$), 17.18 (s, 9H, 'Bu), 15.01 (s, 9H, 'Bu), 13.40 (s, 9H, 'Bu), 12.67 (s, 2H), 5.35 (s, 2H), 5.27 (s, 2H), 3.59 (br, 30H, THF), 3.06 (s, 2H), 2.78 (s, 2H), 1.45 (br, 30H, THF), −5.05 (s, 2H), −5.94 (s, 2H), −7.28 (s, 2H), −7.95 (s, 2H), −8.15 (s, 2H), −9.90 (s, 2H, meso CH$_2$CH$_3$), −10.36 (s, 2H), −10.63 (s, 3H, meso CH$_2$CH$_3$), −15.45 (s, 2H), −18.75 (s, 2H), −27.13 (s, 2H), −27.51 (s, 2H), −35.20 (s, 9H, tBu), −36.25 (s, 2H) ppm.

One of the aryloxide tBu resonances is missing; it may be concealed by a THF resonance.

11B NMR (d$_8$-toluene): no resonances observed between 240 and −60 ppm.

The mixture was filtered and hexane was vapour diffused into the filtrate. Orange crystals formed after 5 d. X-ray diffraction analysis revealed their composition to be [U(OAr)$_2$µ-S(L$^\Lambda$)]2 (27).

4.3.18.2 High temperature

The reaction was repeated in C$_6$D$_6$ and the reaction mixture was heated at 80 °C for 2.5 h forming an orange solution containing brown precipitate.

1H NMR (C$_6$D$_6$): δ 72.40 (br, 4H), 39.49 (br, W$^\frac{1}{2}$140 Hz, 18H, ortho-'Bu), 18.66 (s, 4H), 16.91 (s, 4H), 15.78 (br, 2H, OAr meta-H), 15.20 (s, 2H, Ar-H), 13.59 (s, 18H, para-'Bu), 9.02 (s, 4H), 6.15 (br, 6H, meso CH$_2$CH$_3$), 5.24 (s, 4H), 2.38 (s, 2H, Ar-H), −6.31 (s, 4H), −7.60 (s, 4H), −9.90 (s, 3H, meso CH$_2$CH$_3$), −10.36 (s, 2H), −10.63 (s, 3H, meso CH$_2$CH$_3$), −15.45 (s, 2H), −18.75 (s, 2H), −27.13 (s, 2H), −27.51 (s, 2H), −35.20 (s, 9H, 'Bu), −36.25 (s, 2H) ppm. This symmetric product is assigned as [U(OAr)$_2$µ-S(L$^\Lambda$)]2 (27). A few lower intensity resonances were also observed.

Excess S$_8$ (3 mg, 0.012 mmol) was added to the filtered sample. The 1H NMR spectrum was unaltered after 2 h but after 7 d resonances corresponding to both [U(OAr)$_2$µ-S(L$^\Lambda$)]2 and [U(OAr)$_2$µ-S$_2$(L$^\Lambda$)]2 were observed in a 2:1 ratio. The sample was heated at 80 °C for 3 h.

The subsequent 1H NMR spectrum showed that the ratio of [U(OAr)$_2$µ-S(L$^\Lambda$)]2:[U(OAr)$_2$µ-S$_2$(L$^\Lambda$)]2 present had shifted to 1:7. After another 3 h heating at 80 °C only resonances corresponding to [U(OAr)$_2$µ-S$_2$(L$^\Lambda$)]2 were observed along with some unassigned low intensity resonances.

4.3.19 Reaction of [U(OAr)$_2$µ-(endo-BH$_4$K)(L$^\Lambda$)(THF)$_2$], 22, with O$_2$

[U(OAr)$_2$µ-(endo-BH$_4$K)(L$^\Lambda$)(THF)$_2$] (12 mg, 0.006 mmol) was suspended in C$_6$D$_6$ (0.5 mL) in a Teflon-tapped NMR tube. The mixture was freeze-pump-thaw degassed three times and an atmosphere of dry O$_2$ was introduced. An immediate colour change from dark green to dark red occurred. The 1H NMR spectrum displayed resonances corresponding to a mixture
Chapter Four

of paramagnetic and diamagnetic compounds. Dark red crystals formed over 4 d which were analysed by X-ray diffraction and found to be $\{\text{UO}_2\}_2(\text{THF})_2(L^\Lambda)$ (28).

4.3.20 Protonolysis reactions of $[\text{Na}(\text{THF})_4][\{\text{U}(\text{BH}_4)\}_2(\mu-\text{BH}_4)(L^\Lambda)(\text{THF})_2]$, 18

4.3.20.1 One equivalent of $[\text{HNEt}_3][\text{BPh}_4]\]

$[\text{Na}(\text{THF})_4][\{\text{U}(\text{BH}_4)\}_2(\mu-\text{BH}_4)(L^\Lambda)(\text{THF})_2]$ (14 mg, 0.008 mmol) and $[\text{HNEt}_3][\text{BPh}_4]$ (4 mg, 0.010 mmol) were combined in d_6-THF (0.5 mL) in a Teflon-tapped NMR tube, forming a green solution.

$^1\text{H NMR (}d_6\text{-THF)}$: δ 36.00 (s, 2H), 33.01 (s, 2H), 19.54 (s, 2H), 18.67 (s, 2H), 16.77 (s, 2H), 15.20 (s, 2H), 12.39 (s, 2H), 11.77 (s, 3H), 10.95 (s, 3H), 10.29 (s, 2H), 8.52 (s, 2H), 7.71 (s, 2H), 7.20 (m, 21H, $[\text{BPh}_4]^{-}$ ortho H), 6.99 (s, 2H), 6.80 (m, 10.5H, $[\text{BPh}_4]^{-}$ meta H), 6.68 (t, 5.12 (s, 3H), 4.59 (s, 0.3H, H_2), 2.75 (q, 14H, $H_3 B\cdot N(C\text{H}_2\text{CH}_3)_3$), 2.49 (q, 2H, $[\text{HN}(\text{CH}_2\text{CH}_3)_3]^{-}$), 1.55 (s, 2H), 1.35 (s, 2H), 1.16 (t, 1.02 (q, J_{HH} 7.13 Hz, 3H, $[\text{HN}(\text{CH}_2\text{CH}_3)_3]$, J_{HH} 7.32 Hz, 2H, $[\text{HN}(\text{CH}_2\text{CH}_3)_3]^{-}$), 1.54 (s, overlapped with THF signals), −0.86 (s, 0.3B, $[\text{BPh}_4]^{-}$), −24.36 (s, 2H, $[\text{HN}(\text{CH}_2\text{CH}_3)_3]^{-}$), ppm. One ligand resonance was not found.

$^{11}\text{B NMR (}d_6\text{-THF)}$: δ 234 (br, W_0 275 Hz, 1B, $\mu-\text{BH}_4$), 178 (br, W_0 317 Hz, 1B, terminal BH_4), −6.6 (s, 0.3B, $[\text{BPh}_4]^{-}$), −13.0 (q, J_{BH} 97 Hz, 2B, $H_3 B\cdot \text{NEt}_3$) ppm.

4.3.20.2 Excess $[\text{HNEt}_3][\text{BPh}_4]$

$[\text{Na}(\text{THF})_4][\{\text{U}(\text{BH}_4)\}_2(\mu-\text{BH}_4)(L^\Lambda)(\text{THF})_2]$ (14 mg, 0.008 mmol) and $[\text{HNEt}_3][\text{BPh}_4]$ (10 mg, 0.024 mmol) were combined in d_6-THF (0.5 mL) in a Teflon-tapped NMR tube, forming a green solution.

$^1\text{H NMR (}d_6\text{-THF)}$: δ 32.44 (s, 4H), 17.95 (s, 4H), 16.82 (s, 4H), 16.13 (s, 4H), 13.97 (s, 2H, Ar-H), 12.46 (s, 4H), 11.05 (s, 4H), 9.18 (br, 6H, $\text{meso-CH}_2\text{CH}_3$ + 4H), 1.54 (s, overlapped with THF signals), −0.86 (s, 6H, $\text{meso CH}_2\text{CH}_3$), −24.36 (s, 2H, Ar-H) ppm. $^{11}\text{B NMR (}d_6\text{-THF)}$: δ 334 (s) ppm.

4.3.20.3 Excess $[\text{HNEt}_3][\text{BPh}_4]$ in DME

$[\text{Na}(\text{THF})_4][\{\text{U}(\text{BH}_4)\}_2(\mu-\text{BH}_4)(L^\Lambda)(\text{THF})_2]$ (15 mg, 0.008 mmol) and $[\text{HNEt}_3][\text{BPh}_4]$ (8 mg, 0.019 mmol) were combined in DME (0.5 mL) in a Teflon tapped NMR tube. Effervescence was observed. A drop of C_6D_6 was added. $^1\text{H NMR (DME}/C_6D_6\text{:}$ spectrum was swamped by DME signals. $^{11}\text{B NMR (DME}/C_6D_6\text{:}$ 246 (s) ppm.
4.3.20.4 Excess [HNEt₃][BPh₄] with 2,2-bipyridyl

[Na(THF)₄][{U(BH₄)}₂(µ-BH₂)(Lⁿ)(THF)₂] (12 mg, 0.006 mmol), [HNEt₃][BPh₄] (6 mg, 0.014 mmol) and 2,2-bipyridyl (3 mg, 0.019 mmol) were combined in d₆-THF (0.5 mL) in a Teflon-tapped NMR tube forming a dark brown solution with some brown precipitate. NMR spectra were obtained and then the solvent was removed under reduced pressure and C₆D₆ added to investigate the solubility of the product in non-coordinating solvent. ¹H NMR spectra were acquired with selective decoupling of each ¹B resonance in turn in order to assign the BH₄ protons to the terminal and bridging BH₄ environments.

¹H NMR (d₆-THF): δ 85.3 (br, Wₐ 325 Hz, terminal BH₄), 61.1 (br, Wₐ 363 Hz, µ-BH₄), 51.65 (s, 2H), 37.58 (s, 2H), 31.16 (s, 2H), 26.39 (s, 2H), 20.49 (s, 2H), 20.00 (s, 2H), 7.25 (m, 8H, LiBPh₄ ortho H), 6.84 (t, ³J_HH 7.38 Hz, 8H, LiBPh₄ meta H), 6.70 (t, ³J_HH 7.12 Hz, 4H, LiBPh₄ para H), 5.78 (s, 6H), 2.75 (q, ³J_HH 7.23 Hz, 6H, H₃B•N(CH₂CH₃)₃) 2.27 (s, 2H), 1.16 (t, ³J_HH 7.23 Hz, 9H, H₃B•N(CH₂CH₃)₃) 0.15 (s, 6H), −0.07 (s, 2H), −1.16 (s, 6H), −48.48 (s, 6H) ppm. ¹¹B NMR (d₆-THF): δ 371 (s, 1B, µ-BH₄), 210 (s, 1B, terminal BH₄), −6.6 (s, LiBPh₄), −12.9 (q, ³J_HH 98 Hz, H₃B•NET₃) ppm. ¹H NMR (C₆D₆): δ 87.3 (br, Wₐ 338 Hz, terminal BH₄), 64.6 (br, Wₐ 396 Hz, µ-BH₄), 51.64 (s, 2H), 37.58 (s, 2H), 37.33 (s, 2H), 26.80 (s, 2H), 20.49 (s, 2H), 19.89 (s, 2H), 7.67 (br, 6H, LiBPh₄ ortho H), 6.91 (br, 6H, BPh₄ meta H), 6.81 (br, 3H, BPh₄ para H), 5.83 (s, 6H), 4.57 (s, 0.01H, H₂), 2.47 (s, 2H), 2.26 (br, 8H, H₃B•N(CH₂CH₃)₃) 0.76 (br, 12H, H₃B•N(CH₂CH₃)₃) 0.19 (s, 6H), 0.13 (s, 2H), −1.21 (s, 6H), −46.16 (s, 6H) ppm. ¹¹B NMR (C₆D₆): δ 370 (s, 1B, µ-BH₄), 205 (s, 1B, terminal BH₄), −6.6 (s, LiBPh₄), −12.9 (q, ³J_HH 98 Hz, H₃B•NET₃) ppm. ¹H{¹¹B @ 205 ppm} NMR (C₆D₆): resonance at δ 87.3 ppm sharpens to Wₐ 263 Hz, resonance at δ 64.6 ppm does not sharpen (Wₐ 391 Hz). ¹H{¹¹B @ 370 ppm} NMR (C₆D₆): resonance at δ 87.3 ppm does not sharpen (Wₐ 346 Hz).
4.3.21.2 Excess [HNEt₃][BPh₄]

[Li(THF)₄][{U(BH₄)₃(µ-BH₄)(L₄)} (10 mg, 0.007 mmol) and [HNEt₃][BPh₄] (9 mg, 0.021 mmol) were combined in d₅-THF (0.5 mL) in a Teflon-tapped NMR tube forming a dark brown solution.

¹H NMR (d₅-THF): δ 80.70 (br, Wᵥ 402 Hz, µ-BH₄), 38.31 (s, 4H), 25.88 (s, 4H), 21.94 (s, 4H), 7.10 (m, 28H, [BPh₄]⁻ ortho H), 6.71 (t, ³J_HH 7.28 Hz, 28H, [BPh₄]⁻ meta H), 6.59 (t, ³J_HH 7.17 Hz, 14H, [BPh₄]⁻ para H), 4.58 (s, 0.1H, H₂), 3.007 ppm corresponding to formation of multiple species.

4.3.22 Reactions of [U₂(µ-BH₄)(L₄)] [BPh₄], 30, with gases

“[U₂(µ-BH₄)(L₄)] [BPh₄]” (30) was formed in situ in a Teflon-tapped NMR tube by reaction of [Na(THF)₄][{U(BH₄)₃} (µ-BH₄)(L₄)(THF)₃] with excess [HNEt₃][BPh₄] in d₅-THF (0.5 mL). The solution was then freeze-pump-thaw degassed three times before an atmosphere of the appropriate gas (1.0 bar) was introduced. The results are tabulated below.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>No reaction.</td>
</tr>
<tr>
<td>CO</td>
<td>Slow reaction occurred.</td>
</tr>
</tbody>
</table>

After 24 h several very low intensity resonances were observed in the ¹H NMR spectrum, indicating multiple product formation.

4.3.23 Reaction of [U₂(µ-BH₄)(L₄)] [BPh₄], 32, with CO

[Li(THF)₄][{U(BH₄)₃} (µ-BH₄)(L₄) (15 mg, 0.010 mmol) and [HNEt₃][BPh₄] (9 mg, 0.021 mmol) were combined in d₅-THF (0.5 mL) in a Teflon-tapped NMR tube. The green solution was then freeze-pump-thaw degassed three times and then an atmosphere of CO (1.0 bar) was introduced. ¹H NMR (d₅-THF, 1 h): many resonances were observed over the range 60 - 30 ppm corresponding to formation of multiple species. ¹H NMR (d₅-THF, 7 d): only very low intensity paramagnetic and diamagnetic resonances remain.

4.3.24 Synthesis of [Li(THF)₄][{U(Cl)₃(µ-Cl)}] (L₄)], 33

A mixture of H₂L₄ (586 mg, 0.681 mmol) and LiN⁺ (456 mg, 2.8725 mmol) in THF (20 mL) was stirred for 4 h and then added to a stirred solution of UCl₄(THF)ₙ (591 mg, 1.362 mmol) in THF (10 mL). Orange precipitate began to form in the resulting orange solution within 30 min. The mixture was stirred gently for 3 d, after which the precipitate was
isolated, washed with THF (2 x 5 mL) and dried to give an orange powder. Yield: 488 mg, 39 %.

1H NMR (d_5-pyridine): δ 42.80 (br, 4H), 15.93 (s, 6H, CH$_2$C$_6$H$_5$), 14.79 (s, 4H), 9.71 (s, 4H), 9.04 (s, 4H), 5.64 (s, 4H), 5.23 (s, 4H), 4.30 (s, 2H, Ar-H), 3.63 (m, 26H, THF), 1.59 (m, 26H, THF), 0.92 (s, 4H), 0.23 (s, 6H, CH$_2$C$_6$H$_5$) −0.72 (s, 4H), −49.82 (s, 2H, Ar-H) ppm.

7Li NMR (d_5-pyridine): δ 3.5 (s, [Li(py)$_4]^+$) ppm.

Elemental Analysis: Found: C, 48.97; H, 4.60; N, 6.18 %. C$_{74}$H$_{80}$Cl$_5$LiN$_8$O$_4$U$_2$ requires: C, 49.22; H, 4.47; N, 6.21 %.

4.3.25 Attempted reduction of [Li(THF)$_4$][(U(Cl)$_2$(µ-Cl)$_3$(L$_A$))]$_2$, 33

K metal (3 mg, 0.077 mmol) and naphthalene (20 mg, 0.156 mmol) were dissolved in THF (0.5 mL) forming a green solution which turned purple-brown when transferred onto [Li(THF)$_4$][(U(Cl)$_2$(µ-Cl)$_3$(L$_A$))]$_2$ (15 mg, 0.008 mmol) in a Teflon-tapped NMR tube. A drop of C$_6$D$_6$ was added. 1H NMR (THF/C$_6$D$_6$): no resonances observed in the paramagnetic region.

4.3.26 Attempted ligand substitution reactions of [Li(THF)$_4$][(U(Cl)$_2$(µ-Cl)$_3$(L$_A$))]$_2$, 33

4.3.26.1 KO'Bu

[Li(THF)$_4$][(U(Cl)$_2$(µ-Cl)$_3$(L$_A$))]$_2$ (15 mg, 0.008 mmol) and KO'Bu (2 mg, 0.018 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube, forming a yellow solution. 1H NMR (d_5-pyridine): δ 85.95 (s, 9H, O'Bu), 77.00 (s, 2H), 69.74 (s, 9H, O'Bu), 9.69 (s, 2H), 6.37 (s, 2H), 5.66 (s, 3H, meso CH$_2$C$_6$H$_5$), 5.22 (s, 2H), 4.97 (s, 3H, meso CH$_2$C$_6$H$_5$), 4.06 (s, 2H), 1.44 (s, 3H, meso CH$_2$C$_6$H$_5$), 1.20 (s, 2H), 0.46 (br, 2H), −0.68 (s, 2H), −5.09 (s, 2H), −5.21 (s, 2H), −5.55 (s, 2H), −6.50 (s, 3H, meso CH$_2$C$_6$H$_5$), −7.73 (s, 2H), −8.66 (s, 2H), −9.72 (s, 2H), −14.28 (s, 2H), −17.37 (s, 2H), −33.17 (s, 2H) ppm. The resonances recorded correspond to the major asymmetric product and other low intensity resonances were also observed.

The solvent was removed under reduced pressure and the resultant solids extracted into C$_6$D$_6$ (0.5 mL). Vapour diffusion of hexane into this solution led to the formation of yellow single crystals which were found to have composition [(U(O'Bu)(Cl)){U(O'Bu)(py)}(µ-Cl)(L$_A$)] (34) by X-ray diffraction analysis.

4.3.26.2 KN”

[Li(THF)$_4$][(U(Cl)$_2$(µ-Cl)$_3$(L$_A$))]$_2$ (14 mg, 0.008 mmol), and KN” (4 mg, 0.020 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The 1H NMR spectrum
acquired after 1 h showed a mixture of paramagnetic products with resonances appearing between $\delta 56$ and -30 ppm. The sample was heated at 80 °C for 2 h during which the colour of the solution changed from orange to dark brown. The subsequent 1H NMR spectrum showed a few very low intensity paramagnetically shifted resonances which could not be assigned to one product and indicated that thermal decomposition had occurred.

4.3.26.3 LiN"

$[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\text{Cl})_3(\text{L}^A)\}]$ (13 mg, 0.007 mmol), and LiN" (3 mg, 0.018 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The 1H NMR spectrum acquired after 1 h showed starting material and LiN". The sample was heated at 80 °C for 2 h. The subsequent 1H NMR spectrum still only showed starting material resonances but these had decreased in intensity relative to the solvent signals by 50%.

4.3.26.4 LiNEt$_2$

LiNEt$_2$ (2 mg, 0.025 mmol) was added to a solution of $[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\text{Cl})_3(\text{L}^A)\}]$ (18 mg, 0.010 mmol) in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The solution changed colour from orange to yellow-brown and a yellow precipitate was formed. No paramagnetic resonances were observed in the 1H NMR spectrum.

4.3.26.5 K(OTbtp)

$[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\text{Cl})_3(\text{L}^A)\}]$ (15 mg, 0.008 mmol), and K(OTbtp) (6 mg, 0.020 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The 1H NMR spectrum acquired after 1 h showed a mixture of paramagnetic products with resonances appearing between $\delta 53$ and -35 ppm. The sample was heated at 80 °C for 4 h in an attempt to convert this mixture to one thermodynamic product. The subsequent 1H NMR spectrum showed very low intensity, very broad, paramagnetically shifted resonances which could not be assigned to one product and indicated that thermal decomposition had occurred.

4.3.26.6 K(acac)

$[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\text{Cl})_3(\text{L}^A)\}]$ (15 mg, 0.008 mmol), and K(acac) (4 mg, 0.029 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. No obvious colour change occurred. The 1H NMR spectrum showed a mixture of several paramagnetic and diamagnetic products with resonances appearing over the range $\delta 105$ to -45 ppm.

4.3.26.7 NaCp

$[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\text{Cl})_3(\text{L}^A)\}]$ (22 mg, 0.012 mmol), and NaCp (2 mg, 0.023 mmol) were combined in d_5-pyridine (0.5 mL) in a Teflon-tapped NMR tube. A large amount of orange
precipitate formed immediately. 1H NMR (d_{5}-pyridine): multiple paramagnetic peaks of different intensity observed, consistent with the formation of 2 - 3 different products.

4.3.26.8 NaN$_3$

[Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)] (14 mg, 0.008 mmol), and NaN$_3$ (3 mg, 0.046 mmol) were combined in d_{5}-pyridine (0.5 mL) in a Teflon-tapped NMR tube. No paramagnetic resonances were observed in the 1H NMR spectrum.

4.3.26.9 MgMe$_2$

[Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)] (14 mg, 0.008 mmol), and MgMe$_2$ (4 mg, 0.074 mmol) were combined in d_{5}-pyridine (0.5 mL) in a Teflon-tapped NMR tube. The 1H NMR spectrum acquired after 1 h showed several very low intensity paramagnetically shifted resonances from δ 51 to −31 ppm. After 72 h, all paramagnetic resonances had disappeared, indicating decomposition.

4.3.26.10 KH

[Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)] (14 mg, 0.008 mmol), and KH (3 mg, 0.075 mmol) were combined in d_{5}-pyridine (0.5 mL) in a Teflon-tapped NMR tube. No paramagnetic resonances were observed in the 1H NMR spectrum.

4.3.27 Attempted synthesis of [(U(O'$_{et}$Bu)(Cl))(U(O'$_{et}$Bu)(py))(µ-Cl)(LA)], 34

A solution of KO'Bu (71 mg, 0.633 mmol) in THF (5 mL) was added to an orange solution of [Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)] (570 mg, 0.313 mmol) in pyridine (25 mL). The mixture was stirred for 1 h during which its colour changed to yellow-brown. The solvent was removed under reduced pressure leaving a sticky brown residue which was extracted with toluene (25 mL). The extract was concentrated to 3 mL and stored at −30 °C for 48 h. The yellow solid that formed was isolated (140 mg) but found to contain a mixture of products. 1H NMR (d_{5}-pyridine): the major product formed was the target compound [(U(O'$_{et}$Bu)(Cl))(U(O'$_{et}$Bu)(py))(µ-Cl)(LA)] but resonances corresponding to roughly two other minor products were also observed. 7Li NMR (d_{5}-pyridine): δ 4.0 (v br, v low intensity) ppm.

4.3.28 Attempted cation substitution reactions of [Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)], 33

4.3.28.1 [Ph$_3$PNPPh$_3$][Cl] (PPNCl)

[Li(THF)$_4$]$_2$[(U(Cl)$_2$(µ-Cl)$_3$(LA)] (15 mg, 0.008 mmol), and PPNCl (5 mg, 0.009 mmol) were combined in d_{5}-pyridine (0.5 mL) in a Teflon-tapped NMR tube. 1H NMR (d_{5}-pyridine):
pyridine): several very low intensity paramagnetic resonances were observed between δ 24 and −30 ppm, which could not be assigned to one product.

4.3.28.2 $[^6\text{Bu}_4\text{N}][\text{Br}]$

Excess $[^6\text{Bu}_4\text{N}][\text{Br}]$ (7 mg, 0.022 mmol) was dissolved in THF (0.5 mL) and added to solid $[\text{Li(THF)}_4][\{\text{U(Cl)}_2(\mu-\text{Cl})_3(\text{L}^A)\}]$ (10 mg, 0.005 mmol) in a Teflon-tapped NMR tube. An orange solution formed. The solvent was removed under reduced pressure and C_6D_6 (0.5 mL) was added to the residue. ^1H NMR (C_6D_6): δ 45.23 (s, 3H) 16.98 (s, 5H), 16.42 (s, 4H), 9.92 (s, 3H), 8.22 (s, 4H), 5.33 (s, 4H), 3.59 (m, 120H, $[^6\text{Bu}_4\text{N}])$, 2.21 (m, 310H, $[^6\text{Bu}_4\text{N})$, 0.30 (s, 3H), −0.40 (s, 6H), −0.86 (s, 4H), −1.73 (s, 4H), −54.74 (s, 2H) ppm.

4.4 Evans’ method determination of magnetic moments

Measurement of the solution phase magnetic moments of complexes was carried out in triplicate at 298 K on a Bruker 400 MHz spectrometer. The magnetic moments of $[\text{Cr}_2(\text{L}^\text{Me})]$ and $[\text{Cr}_2(\mu-\text{I})(\text{THF})(\text{L}^\text{Me})]$ were measured in a THF/C_6D_6 mixture and that of $[\text{Cr}_2(\mu-\text{CNBu})(\text{L})]$ in C_6D_6. Solutions of concentration 0.01 - 0.02 mM were prepared and placed into NMR tubes along with capillary tubes containing the respective solvent or solvent mixture as a reference. In all cases the frequency difference between the reference and contact shifted C_6D_6 residual protio resonances was measured. The magnetic moment was then calculated by the Evans’ method using the equations below. A solvent correction was not applied. The results are tabulated in Table 4.2.

$$\chi_m = \frac{3\Delta \nu M_r}{4\pi c \nu} - \chi_D, \quad \mu_{\text{eff}} = \sqrt{8 \chi_m T}$$

χ_m	molar susceptibility (cm3mol$^{-1}$)
$\Delta \nu$	change in frequency (Hz)
M_r	molar mass (gmol$^{-1}$)
c	concentration (gcm$^{-3}$)
ν	spectrometer frequency (Hz)
χ_D	diamagnetic correction (cm3mol$^{-1}$)
μ_{eff}	magnetic moment (µB)
T	temperature (K)
Table 4.2. Determination of solution phase magnetic moments of chromium complexes.

<table>
<thead>
<tr>
<th>Complex</th>
<th>c (g cm(^{-3}))</th>
<th>(\Delta v) (Hz)</th>
<th>(\chi_D) (cm(^3) mol(^{-1}))</th>
<th>(\mu_{\text{eff}}) ((\mu_B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cr}_2(\text{L}^{\text{Me}})])</td>
<td>0.027</td>
<td>984</td>
<td>-0.0004088</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>0.026</td>
<td>960</td>
<td></td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>908</td>
<td></td>
<td>6.34</td>
</tr>
<tr>
<td>([\text{Cr}_2(\mu-\text{CN}^t\text{Bu})(\text{L}^{\text{Me}})])</td>
<td>0.030</td>
<td>536</td>
<td></td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td>0.024</td>
<td>456</td>
<td>-0.0004705</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>356</td>
<td></td>
<td>4.64</td>
</tr>
<tr>
<td>([\text{Cr}_2(\mu-\text{I})(\text{THF})(\text{L}^{\text{Me}})])</td>
<td>0.030</td>
<td>552</td>
<td></td>
<td>5.44</td>
</tr>
</tbody>
</table>

4.5 NMR quenching experiments

4.5.1 Determination of \(x\) in \([\text{Cr}_2(\text{CNXYl})_x(\text{L}^{\text{Me}})]\)

\([\text{Cr}_2(\text{CNXYl})_x(\text{L}^{\text{Me}})]\) was hydrolysed by the addition of \(d_7\)-methanol forming an insoluble orange chromium-containing precipitate and liberating CNXYl into solution. The quantity of free CNXYl was calculated from the \(^1\text{H}\) NMR spectrum by integration against a 1,3,5-tri-\(t\)-tert-butylbenzene (benz*) internal standard. To ensure that all available CNXYl had been liberated into solution, two drops of conc. HCl were added to the samples, dissolving the precipitate. The new \(^1\text{H}\) NMR spectra acquired showed the same ratio of CNXYl : benz*. The experiment was carried out in duplicate with the results tabulated below.

<table>
<thead>
<tr>
<th>Mass ([\text{Cr}_2(\text{CNXYl})_x(\text{L}^{\text{Me}})]) (mg)</th>
<th>Mass benz* (mg)</th>
<th>Theoretical integration CNXYl : benz*</th>
<th>Experimental integration CNXYl : benz*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 1)</td>
<td>(x = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 21.0</td>
<td>4.8</td>
<td>1 : 3.72</td>
<td>1 : 2.14</td>
</tr>
<tr>
<td>2. 18.7</td>
<td>4.7</td>
<td>1 : 4.09</td>
<td>1 : 2.35</td>
</tr>
</tbody>
</table>

4.5.2 Determination of \(x\) in \([\text{U(BH}_4)_3(\text{THF})_x]\)

Excess DME was added to a suspension of \([\text{U(BH}_4)_3(\text{THF})_x]\) in \(C_6D_6\), forming a pale red solution and liberating the coordinated THF which was then integrated against an internal standard, Si(SiMe\(_3\))\(_4\). Integration against the broad BH\(_4\) resonance was found to be unreliable. The competitive displacement experiment was carried out in duplicate with the results tabulated below.
Table 4.3

<table>
<thead>
<tr>
<th></th>
<th>Mass [U(BH₄)₃(THF)ₓ] (mg)</th>
<th>Mass Si(SiMe₃)₄ (mg)</th>
<th>Integration THF : Si(SiMe₃)₄</th>
<th>Theoretical</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 1</td>
<td>5.2</td>
<td>3.0</td>
<td>1 : 5.74</td>
<td>1 : 3.45</td>
<td>1 : 2.69</td>
</tr>
<tr>
<td>x = 2</td>
<td>6.2</td>
<td>3.9</td>
<td>1 : 6.26</td>
<td>1 : 3.77</td>
<td>1 : 2.94</td>
</tr>
<tr>
<td>x = 3</td>
<td></td>
<td></td>
<td></td>
<td>1 : 3.49</td>
<td>1 : 3.69</td>
</tr>
</tbody>
</table>

4.6 X-ray crystallography

Single crystal X-ray diffraction data were recorded on either an Excalibur Eos diffractometer at 170(2) K using Mo Kα radiation (λ = 0.71073 Å) or on a Supernova dual source Atlas diffractometer, utilising the Cu Kα source (λ = 1.54184 Å) at 120(2) K. All of the structures were solved using either SIR-92 or SHELXS-97 direct methods and least-square refined using SHELXL97 in the WinGX suite of programs. Unless otherwise stated, all non-H atoms were refined anisotropically and all H atoms were placed in calculated positions and refined using a riding model. All BH₄ protons were omitted from the crystallographic models unless they could be located in the residual electron density map. A summary of the crystal data, data collection and structure refinement for each X-ray structure is presented in Table 4.3.

Where structures were found to contain disordered solvent molecules that could not be successfully modelled, the SQUEEZE routine of PLATON was used to remove the associated residual electron density. The use of SQUEEZE and any restraints applied to the main molecular residue during refinement are detailed below, along with selected structural parameters for each structure. Where it was necessary to restrain the bond distances of THF solvent molecules in order for them to be chemically sensible, the 1,2 and 1,3 distances were fixed to the values shown in Figure 4.1.

![Figure 4.1 Metrics used to restrain THF molecules. All distances are in Å.](image)

High pressure X-ray diffraction data were collected for 1 by Dr Alessandro Prescimone at the Diamond Light Source utilising synchrotron radiation (λ = 0.48590 Å) at 300 K. A single crystal of 1 was inserted into a diamond-anvil cell containing a hydrostatic medium and a ruby chip. The pressure in the cell was determined from the ruby
Chapter Four

luminescence.14 Dr Alessandro Prescimone carried out the structure solution and refinement for all high pressure data sets.

4.6.1 Structure of [Cr\textsubscript{2}(LMe)], 1

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4_2}
\caption{Structure of 1. Thermal ellipsoids are drawn at 50 \% probability. H atoms and lattice solvent are omitted.}
\end{figure}

Single crystals were obtained by cooling a saturated benzene solution of [Cr\textsubscript{2}(LMe)] from 80 °C to room temperature.

4.6.2 Structure of [Cr\textsubscript{2}(LA)(THF)]\textsubscript{2}, 2\textsubscript{THF}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4_3}
\caption{Structure of 2\textsubscript{THF}. There are two molecules in the asymmetric unit, only one is shown. Thermal ellipsoids are drawn at 50 \% probability. H atoms and lattice solvent are omitted.}
\end{figure}

Single crystals were obtained from the NMR scale reaction of [Cr(N"A)\textsubscript{2}(THF)]\textsubscript{2} with H\textsubscript{4}LA in THF. Hereafter the imine and pyrrole nitrogen atoms will not be labelled explicitly for each structure. The same atom labelling scheme has been used in all cases such that N1,

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1'</td>
</tr>
<tr>
<td>Cr1-N1</td>
</tr>
<tr>
<td>Cr1-N2</td>
</tr>
<tr>
<td>Cr1-N3</td>
</tr>
<tr>
<td>Cr1-N4</td>
</tr>
<tr>
<td>Cr1-N\textsubscript{4} plane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr2</td>
</tr>
<tr>
<td>Cr1-N1</td>
</tr>
<tr>
<td>Cr1-N2</td>
</tr>
<tr>
<td>Cr1-N3</td>
</tr>
<tr>
<td>Cr1-N4</td>
</tr>
<tr>
<td>Cr2-N5</td>
</tr>
<tr>
<td>Cr2-N6</td>
</tr>
<tr>
<td>Cr2-N7</td>
</tr>
<tr>
<td>Cr2-N8</td>
</tr>
<tr>
<td>Cr1-N\textsubscript{4} plane</td>
</tr>
<tr>
<td>Cr2-N\textsubscript{4} plane</td>
</tr>
</tbody>
</table>
N4, N5 and N8 refer to the imine nitrogens whilst N2, N3, N6 and N7 are the pyrrole nitrogens. M1 is bound to N1-N4 whilst M2 is bound to N5-N8.

4.6.3 Structure of $[\text{Cr}_2(\text{OPPh}_3)_2(L^\text{Me})]$, 3

![Structure of $[\text{Cr}_2(\text{OPPh}_3)_2(L^\text{Me})]$, 3](image)

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1′ 4.3210(5) Cr1-O1 2.327(2)</td>
</tr>
<tr>
<td>Cr1-N1 2.107(2) O1-P1 1.497(2)</td>
</tr>
<tr>
<td>Cr1-N2 1.995(2) Cr1-O1-P1 137.6(1)</td>
</tr>
<tr>
<td>Cr1-N3 1.983(2) bite angle 67</td>
</tr>
<tr>
<td>Cr1-N4 2.145(2) twist angle 24</td>
</tr>
<tr>
<td>Cr1-N4 plane +0.16</td>
</tr>
</tbody>
</table>

Figure 4.4 Structure of 3. Thermal ellipsoids are drawn at 50 % probability. H atoms are omitted.

Single crystals were obtained from the NMR scale reaction of $[\text{Cr}_2(L^\text{Me})]$ with OPPh$_3$ in toluene. The crystal analysed was found to be merohedrally twinned. The twin law $[0 1 0, 1 0 0, 0 0 -1]$ was applied to the data and the contribution from the two twin components refined as 0.106:0.894.
4.6.4 Structure of $[\text{Cr}_2(\mu-\text{CNXyl})(\text{L}^\text{Me})]$, 4

Figure 4.5 Structure of 4. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained from the NMR scale reaction of $[\text{Cr}_2(\text{L}^\text{Me})]$ with CNXyl in fluorobenzene.

4.6.5 Structure of $[\text{Cr}_2(\mu-\text{CN}^\text{tBu})(\text{L}^\text{Me})]$, 5

Figure 4.6 Structure of 5 with major orientation of the isocyanide tert-Bu group shown. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained from the NMR scale reaction of $[\text{Cr}_2(\text{L}^\text{Me})]$ with CN'Bu in THF/C$_6$D$_6$. The tert butyl group of $[\text{Cr}_2(\mu-\text{CN}^\text{tBu})(\text{L})]$ was found to be rotationally disordered over two sites in the ratio 0.716(7):0.284(7). All disordered C atoms were refined anisotropically with distance restraints applied to the 1,2 and 1,3 C-C distances of the 'Bu group of 1.51(2) Å and 2.53(4) Å respectively. In order not to violate the crystallographic symmetry, the hydrogen atoms attached to the disordered carbon atoms C24A and C24B were located in the electron density difference map. The positions of these hydrogens were
refined with a distance restraint of 0.98(1) Å applied to the C-H bond lengths and H2A and H2D were constrained to lie upon the crystallographic mirror plane.

4.6.6 Structure of [Cr₂(µ-I)(L⁵Me)(THF)], 6

Figure 4.7 Structure of 6. Thermal ellipsoids are drawn at 50% probability. H atoms and lattice solvent are omitted.

Single crystals were grown by vapour diffusion of hexane into a THF solution of [Cr₂(µ-I)(L⁵Me)(THF)] at room temperature.

4.6.7 Structure of [Cr₂(µ-I)(L⁵Me)(py)_2][I], 7

Figure 4.8 Structure of the cationic portion of 7. Thermal ellipsoids are drawn at 50% probability. H atoms are omitted.

Single crystals were obtained by layering a pyridine solution of [Cr₂(L⁵Me)] on top of a pyridine solution of iodine. The crystal data resolution of [Cr₂(µ-I)(L⁵Me)(py)_2][I] was poor which led to problems with refinement of the structure. The carbon atoms of each aryl ring of the macrocycle and their substituents were constrained to lie upon common planes with a
Chapter Four

standard deviation of 0.01 Å from planarity. The \(\text{C}_{\text{ring}}-\text{C}_{\text{Me}} \) distances between the \(\text{ipso} \) aryl carbons and the aryl Me substituents were restrained to 1.51(2) Å (C17-C21, C38-C41) and 1.510(5) Å (C16-C20, C37-C42). The SIMU (su 0.04 Å\(^2\)) and DELU (su 0.01 Å\(^2\)) commands were applied to all atoms in the structure to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms. The data were treated with SQUEEZE to remove residual electron density equating to 4.4 molecules of pyridine per formula unit from the unit cell.

4.6.8 Structure of \([\text{Cr(Et)}]_2(\mu-\text{iZnEt})(\text{L}^\text{Me})\), 9

Figure 4.9 Structure of 9. The major Zn and \(\text{meso-Me} \) positions are shown. Thermal ellipsoids are drawn at 50 % probability. H atoms are omitted.

Single crystals were obtained from a toluene/hexane mixture stored at \(-30 \) °C for 48 hours. The \(\text{meso} \) Me groups were found to be disordered over two positions related by tilting of the \(\text{meso} \) carbon into and out of the cleft. The contributions of the two orientations were refined to 0.53(3):0.47(3). The disordered carbons were refined isotropically. The Zn atom is disordered both over two sites and about a \(C_2 \) crystallographic rotation axis which passes through I1 and the centroid of the macrocycle aryl rings. The occupancies of the Zn sites was set to 0.5 to allow for the disorder about the rotational axis and then the contributions of the two different sites refined as 0.63(1):0.37(1). The Zn atoms were refined anisotropically with distance restraints of 2.75(2) Å and 2.00(2) Å applied to the Zn-I and Zn-C\(_{\text{Et}}\) distances respectively. The large thermal ellipsoids of C24 and C25 indicate some unresolved disorder; this could not be satisfactorily modelled so the SIMU (su 0.04 Å\(^2\)) and DELU (su 0.01 Å\(^2\)) commands were applied to C24 and C25 to normalise the magnitude and direction of their atomic displacement parameters. The data were treated with SQUEEZE to remove residual electron density equating to 1 molecule of hexane or toluene per unit cell.

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr1’</td>
</tr>
<tr>
<td>Cr1-N1</td>
</tr>
<tr>
<td>Cr1-N2</td>
</tr>
<tr>
<td>Cr1-N3</td>
</tr>
<tr>
<td>Cr1-N4</td>
</tr>
<tr>
<td>Cr1-N(4)(\text{plane})</td>
</tr>
<tr>
<td>Cr1-C22</td>
</tr>
<tr>
<td>Cr1-I1</td>
</tr>
<tr>
<td>C22-C23</td>
</tr>
<tr>
<td>I1-Zn1a</td>
</tr>
</tbody>
</table>
4.6.9 Structure of \([\{\text{Cr(Et)}\}_2(\text{endo-py})(\text{L}^{\text{Me}})]\), 10

Figure 4.10 Structure of 10. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained by recrystallisation of \([\{\text{Cr(Et)}\}_2(\text{endo-py})(\text{L}^{\text{Me}})]\) from a THF/hexane mixture at −30 °C.

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr1···Cr2 4.550(1)</td>
</tr>
<tr>
<td>Cr1-N1 2.136(3)</td>
</tr>
<tr>
<td>Cr1-N2 1.984(3)</td>
</tr>
<tr>
<td>Cr1-N3 1.987(3)</td>
</tr>
<tr>
<td>Cr1-N4 2.123(3)</td>
</tr>
<tr>
<td>Cr2-N5 2.082(3)</td>
</tr>
<tr>
<td>Cr2-N6 1.978(3)</td>
</tr>
<tr>
<td>Cr2-N7 1.975(3)</td>
</tr>
<tr>
<td>Cr2-N8 2.091(3)</td>
</tr>
<tr>
<td>Cr1-N4 plane −0.02 bite angle 71</td>
</tr>
<tr>
<td>Cr2-N4 plane +0.27 twist angle 7</td>
</tr>
<tr>
<td>Cr1-C43 2.087(3)</td>
</tr>
</tbody>
</table>

4.6.10 Structure of \([\{\text{Cr(Et)}\}_2(\text{endo-THF})(\text{L}^{\text{Me}})]\), 11

Figure 4.11 Structure of 11. The major orientation of the bridging THF molecule is shown. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained from a THF/hexane mixture stored at −30 °C for 48 hours. The carbon atoms at the 2 and 3 positions of the in-cleft THF molecule were found to be disordered over two sites in a 0.73(2):0.27(2) ratio. The disordered components were
refined anisotropically. Appropriate C-C and C-O distance restraints were applied to two molecules of THF lattice solvent.

4.6.11 Structure of [{UI(py)}{U(OH)(py)}{(μ-O)(L^A)}], 13

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond Distances</td>
</tr>
<tr>
<td>U1···U2</td>
</tr>
<tr>
<td>U1-N1</td>
</tr>
<tr>
<td>U1-N2</td>
</tr>
<tr>
<td>U1-N3</td>
</tr>
<tr>
<td>U1-N4</td>
</tr>
<tr>
<td>U2-N5</td>
</tr>
<tr>
<td>U2-N6</td>
</tr>
<tr>
<td>U2-N7</td>
</tr>
<tr>
<td>U2-N8</td>
</tr>
<tr>
<td>U1-N4 plane</td>
</tr>
</tbody>
</table>

Figure 4.12 Structure of 13. Thermal ellipsoids are drawn at 50 % probability. All H atoms except H2 and lattice solvent are omitted.

Single crystals grew as a result of serendipitous oxidation of a pyridine/hexane solution of 12 stored in the glovebox. The OH proton of [{UI(py)}{U(OH)(py)}{(μ-O)(L^A)}] was located in the residual electron density map and its position refined with a distance restraint of 0.82(2) Å applied to the O-H bond length. The SIMU (su 0.04 Å²) and DELU (su 0.01 Å²) commands were applied to all atoms in the structure to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms. The data were treated with SQUEEZE to remove residual electron density equating to half a molecule of hexane per unit cell.
4.6.12 Structure of [U(BH₄)₂(THF)₅][U₂(BH₄)₄.89I₂.11(THF)₅], 15

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₁⋯B₁ 2.72(1) U₂⋯B₅ 2.73(2)</td>
</tr>
<tr>
<td>U₁⋯B₂ 2.79(1) U₂⋯B₆ 2.69(2)</td>
</tr>
<tr>
<td>U₁-O₁ 2.563(7) U₂⋯B₇ 2.72(1)</td>
</tr>
<tr>
<td>U₁-O₂ 2.531(9) U₂-I₁ 3.330(1)</td>
</tr>
<tr>
<td>U₁-O₃ 2.561(9) U₂-I₂ 3.240(1)</td>
</tr>
<tr>
<td>U₁-O₄ 2.53(1) U₂-I₃ 3.05(2)</td>
</tr>
<tr>
<td>U₁-O₅ 2.511(9) U₂-O₈ 2.56(1)</td>
</tr>
<tr>
<td>U₂⋯U₃ 4.9379(9) U₂-I₁-U₃ 96.96(3)</td>
</tr>
<tr>
<td>U₃⋯B₃ 2.69(2) U₂-I₂-U₃ 100.92(4)</td>
</tr>
<tr>
<td>U₃⋯B₄ 2.63(2) I₁-U₂-I₂ 78.18(3)</td>
</tr>
<tr>
<td>U₃-I₁ 3.265(1) I₁-U₃-I₂ 80.24(3)</td>
</tr>
<tr>
<td>U₃-I₂ 3.163(2) B₆-U₂-B₇ 99.5(4)</td>
</tr>
<tr>
<td>U₃-O₆ 2.44(1) B₃-U₃-B₄ 99.3(6)</td>
</tr>
<tr>
<td>U₃-O₇ 2.521(9) B₁-U₁-B₂ 177.2(4)</td>
</tr>
</tbody>
</table>

Figure 4.13 Structure of 15 showing both components at the disordered BH₄/I site and only the major orientation of disordered THF ligands. Thermal ellipsoids are drawn at 50% probability. H atoms are omitted.

Single crystals were grown by recrystallisation of 14 from Et₂O at 4°C. One terminal equatorial ligand site of the anion was found to be part occupied by BH₄⁻ and part by I⁻ in a 0.897(7):0.103(7) ratio. B₇ and I₃ were refined isotropically with the U-B and U-I distances fixed to 2.70(2) Å and 3.20(2) Å respectively. The THF ligand (O₈, C₂₉-C₃₂) was found to be exist in two conformations related by rotation about the U₂-O₈ bond. Their relative occupancy was refined as 0.35(3):0.65(3) and all atoms were modelled anisotropically. C₁₁, the carbon at the 2 position of THF ligand (O₃, C₉-C₁₂) was also found to be disordered over two sites in a 0.54(6):0.46(6) ratio.
4.6.13 Structure of \([\text{U(BH}_4\text{)}_{2.59}\text{I}_{0.41}(\text{DME})_2]_1, 16\)

![Structure of 16 showing both components at the disordered BH\(_4\)/I site. Thermal ellipsoids are drawn at 50 % probability. H atoms are omitted.](image)

Single crystals were grown by slow diffusion of hexane into a DME/benzene solution of 14. One terminal equatorial ligand site of the molecule was found to be part occupied by BH\(_4^-\) and part by I\(^-\) in a 0.586(6):0.414(6) ratio. B2 and I1 were refined anisotropically with the U···B distance fixed to 2.80(2) Å.

4.6.14 Structure of \([\text{Na(py)}_4][\{\text{U(BH}_4\text{)}_2(\mu-\text{BH}_4\text{})(\text{L}^4\text{})(\text{py})_2]\], 18\text{py}\)

![Structure of 18\text{py}. Thermal ellipsoids are drawn at 50 % probability. Four molecules of pyridine solvent ligating Na1, lattice solvent and all H atoms except those of the BH\(_4\) groups are omitted.](image)

Single crystals were grown from a pyridine/hexane solution of 18 at room temperature. The H atoms of the three BH\(_4\) groups were located in the residual electron density map and their positions refined. The following constraints were imposed on the BH\(_4\)
groups: (a) all B-H distances were constrained to be equal within a standard uncertainty of 0.02 Å (b) H···H distances within the same BH₄ group were constrained to be equal within a standard uncertainty of 0.04 Å (c) the atomic displacement parameters of all H atoms were constrained to be equal (d) for the bridging BH₄ group only, all H-U distances were constrained to be equal within a standard uncertainty of 0.02 Å. Two molecules of pyridine lattice solvent located at the corners of the unit cell were necessarily refined for reasons of crystal symmetry with two ring positions half-N and half-C occupied. The N and C components were constrained to occupy the same position and possess the same atomic displacement parameters. The SIMU (su 0.04 Å²) and DELU (su 0.01 Å²) commands were applied to the atoms of two pyridine rings (one ligating Na1, the other bound to U2 in the fifth equatorial site) to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms.

4.6.15 Structure of [Li(THF)₄][{U(BH₄)}₂(µ-BH₄)(LMe)], 21

![Diagram of the anionic portion of 21]

Selected bond distances (Å) and angles (°)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2</td>
<td>4.7884(3)</td>
<td></td>
</tr>
<tr>
<td>U1-N1</td>
<td>2.590(9)</td>
<td></td>
</tr>
<tr>
<td>U1-N2</td>
<td>2.491(7)</td>
<td>2.630(9)</td>
</tr>
<tr>
<td>U1-N3</td>
<td>2.51(1)</td>
<td>2.915(7)</td>
</tr>
<tr>
<td>U1-N4</td>
<td>2.585(9)</td>
<td>2.911(7)</td>
</tr>
<tr>
<td>U2-N5</td>
<td>2.575(9)</td>
<td>2.640(9)</td>
</tr>
<tr>
<td>U2-N6</td>
<td>2.512(8)</td>
<td>110.5(3)</td>
</tr>
<tr>
<td>U2-N7</td>
<td>2.487(9)</td>
<td>158.7(3)</td>
</tr>
<tr>
<td>U2-N8</td>
<td>2.585(9)</td>
<td>158.6(3)</td>
</tr>
</tbody>
</table>

Figure 4.16 Structure of the anionic portion of 21. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained by recrystallisation of 21 from refluxing THF. The [Li(THF)₄]⁺ cation of 21 was found to be considerably disordered. Unfortunately, this disorder could not be satisfactorily modelled and instead appropriate restraints were applied to the 1,2 and 1,3 distances of the THF rings and all Li-O distances were fixed to 1.94(2) Å.
Due to this unresolved disorder of the ligating THF molecules, H atoms on neighbouring THF molecules approached too close to one another. The BUMP command was used to increase the separation of the carbon atoms whose H atoms were approaching too close to each other.

4.6.16 Structure of [(U(OAr))₂(endo-BH₄K)(L⁴)(THF)]₂, 22

Selected bond distances (Å) and angles (°)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U1′</td>
<td>6.5881(3)</td>
<td></td>
</tr>
<tr>
<td>U1-02</td>
<td>2.554(5)</td>
<td></td>
</tr>
<tr>
<td>U1-N1</td>
<td>2.654(6)</td>
<td>3.036(11)</td>
</tr>
<tr>
<td>U1-N2</td>
<td>2.513(6)</td>
<td>3.154(2),</td>
</tr>
<tr>
<td>U1-N3</td>
<td>2.494(6)</td>
<td>3.153(2)</td>
</tr>
<tr>
<td>U1-N4</td>
<td>2.654(6)</td>
<td>168.2(4)</td>
</tr>
<tr>
<td>U1-N₄ plane +0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1-O1·U1·B1·U1′</td>
<td>3.3116(11)</td>
<td>178.3(2)</td>
</tr>
<tr>
<td>U1-O1·B1·K1</td>
<td>84.1(2)</td>
<td></td>
</tr>
<tr>
<td>U1-O1·Cᵦ₃</td>
<td>2.231(5)</td>
<td>154.0(5)</td>
</tr>
</tbody>
</table>

Figure 4.17 Structure of 22 showing the major orientation of the tBu groups. Thermal ellipsoids are drawn at 50% probability. H atoms and lattice solvent are omitted.

Single crystals were obtained from the NMR scale reaction of 18 with Kₐ(OAr) in d₈-THF, left to stand for 24 hours. The para tert-butyl group of the aryloxide ligand was found to be rotationally disordered over two sites in the ratio 0.42(2):0.58(2). All atoms were successfully refined anisotropically with distance restraints of 1.53(2) Å applied to the 1,2 C-CH₃ distances, 2.44(4) Å to the 1,3 CH₃···CH₃ distances and 2.50(4) Å to the 1,3 ipso-C···CH₃ distances. The atomic displacement parameters of the three carbon atoms in each orientation were constrained to be equal.
Chapter Four

4.6.17 Structure of $\text{[(U(OAr)}_2(\text{endo-BH}_4\text{Na})(\text{L}^4)(\text{THF})_2], 23}$

![Figure 4.18](image)

Selected bond distances (Å) and angles (°)

<table>
<thead>
<tr>
<th>Bond or Angle</th>
<th>Distance/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U1′</td>
<td>6.5265(7)</td>
</tr>
<tr>
<td>Na1-B1</td>
<td>2.747(2)</td>
</tr>
<tr>
<td>U1-N1</td>
<td>2.636(7)</td>
</tr>
<tr>
<td>Na1-Pyrcent</td>
<td>2.85(4)</td>
</tr>
<tr>
<td>U1-N2</td>
<td>2.506(7)</td>
</tr>
<tr>
<td></td>
<td>3.04(2)</td>
</tr>
<tr>
<td>U1-N3</td>
<td>2.506(7)</td>
</tr>
<tr>
<td></td>
<td>3.08(4)</td>
</tr>
<tr>
<td>U1-N4</td>
<td>2.654(5)</td>
</tr>
<tr>
<td></td>
<td>3.61(2)</td>
</tr>
<tr>
<td>U1-N4 plane</td>
<td>+0.69</td>
</tr>
<tr>
<td>U1-B1-U1′</td>
<td>173.0(6)</td>
</tr>
<tr>
<td>U1-O2</td>
<td>2.592(6)</td>
</tr>
<tr>
<td>O1-U1-B1</td>
<td>177.6(1)</td>
</tr>
<tr>
<td>U1···B1</td>
<td>3.269(1)</td>
</tr>
<tr>
<td>U1-B1-Na1</td>
<td>89.1(8)</td>
</tr>
<tr>
<td>U1-O1</td>
<td>2.245(6)</td>
</tr>
<tr>
<td>U1-O1-Cipso</td>
<td>153.3(6)</td>
</tr>
</tbody>
</table>

Figure 4.18 Structure of 23 showing major orientation of meso Et groups and only one Na position. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were obtained from the NMR scale reaction of 18 with Na(OAr) in d_8-THF, left to stand for 10 days. The CH$_3$ groups of the meso ethyl groups were found to be disordered over two sites in the ratio 0.51(1):0.49(1). All disordered atoms were refined anisotropically. In the initial solution Na1 lay on the crystallographic C_2 rotational axis. However, its thermal ellipsoid was severely elongated so the position of Na1 was perturbed creating two half-occupied Na sites related by rotation about the C_2 axis. The data were treated with SQUEEZE to remove residual electron density equating to 3 molecules of THF per unit cell.
4.6.18 Structure of $\{\text{U(OAr)}\}_2(\mu$-$\text{S}_2)(\text{L}^\Lambda)$, 25

![Structure of 25](image)

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U1'</td>
</tr>
<tr>
<td>U1-N1</td>
</tr>
<tr>
<td>U1-N2</td>
</tr>
<tr>
<td>U1-N3</td>
</tr>
<tr>
<td>U1-N4</td>
</tr>
<tr>
<td>U1-N4 plane</td>
</tr>
<tr>
<td>U1-O1</td>
</tr>
<tr>
<td>U1-S1</td>
</tr>
<tr>
<td>U1-S2</td>
</tr>
</tbody>
</table>

Figure 4.19 Structure of 25 omitting the second, symmetry generated S2 position. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were grown by vapour diffusion of hexane into a benzene solution of $\{\text{U(OAr)}\}_2(\mu$-$\text{S}_2)(\text{L}^\Lambda)$ at room temperature. S2 was found to be disordered over two sites about the crystallographic C_2 rotational axis so the occupancy of each site was set to 0.5. The C-C bonds of a molecule of benzene lattice solvent were fixed to a distance of 1.38(1) Å and all six carbon atoms were constrained to lie upon a single plane. The SIMU (su 0.04 Å2) and DELU (su 0.01 Å2) commands were applied to the benzene carbon atoms. The data were treated with SQUEEZE to remove residual electron density equating to 2.5 molecules of hexane per unit cell.
4.6.19 Structure of \([\{\text{U(OAr)}\}_2(\mu-\text{S})(\text{L}^4)]\), 27

Figure 4.20 Structure of 27. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were grown by vapour diffusion of hexane into a mixture of \([\{\text{U(OAr)}\}_2(\text{endo-BH}_4\text{K})(\text{L}^4)(\text{THF})_2]\) and CS$_2$ in toluene at room temperature. One meso carbon atom of the macrocycle and the two ethyl groups bound to it appeared to be disordered. However, this disorder could not be modelled successfully so instead distance restraints were applied to the 1,2 C-C distances of 1.56(1) Å (C$_{\text{meso}}$-CH$_2$) and 1.52(1) Å (CH$_2$-CH$_3$). The magnitude and direction of the atomic displacement parameters of these five C atoms were normalised using the SIMU (su 0.04 Å2) and DELU (su 0.01 Å2) commands. The six ring carbon atoms of the molecule of toluene lattice solvent were refined as a perfect hexagon and the methyl carbon was constrained to lie in the plane of the ring with distance restraints placed on the 1,3 CH$_3$-C$_{\text{ortho}}$ distances of 2.55(2) Å. The SIMU (su 0.04 Å2) and DELU (su 0.01 Å2) commands were applied to all the toluene carbon atoms.

<table>
<thead>
<tr>
<th>Bond distances (Å)</th>
<th>Angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2 5.1899(5)</td>
<td>U2-N$_4$ plane −0.03</td>
</tr>
<tr>
<td>U1-N1 2.627(7)</td>
<td>U1-O1 2.081(6)</td>
</tr>
<tr>
<td>U1-N2 2.415(7)</td>
<td>U1-S1 2.594(2)</td>
</tr>
<tr>
<td>U1-N3 2.418(6)</td>
<td>U2-S1 2.608(2)</td>
</tr>
<tr>
<td>U1-N4 2.561(8)</td>
<td>U2-O2 2.099(6)</td>
</tr>
<tr>
<td>U2-N5 2.621(7)</td>
<td>U1-S1-U2 172.0(1)</td>
</tr>
<tr>
<td>U2-N6 2.427(7)</td>
<td>O1-U1-S1 143.2(2)</td>
</tr>
<tr>
<td>U2-N7 2.409(7)</td>
<td>S1-U2-O2 140.1(2)</td>
</tr>
<tr>
<td>U2-N8 2.555(7)</td>
<td>U1-O1-C$_{\text{ipso}}$ 170.4(5)</td>
</tr>
<tr>
<td>U1-N$_4$ plane −0.10</td>
<td>U2-O2-C$_{\text{ipso}}$ 167.8(6)</td>
</tr>
</tbody>
</table>
4.6.20 Structure of \([\{\text{UO}_2\}_2(L^\Lambda)(\text{THF})_2]\), 28

![Structure of 28](image)

Thermal ellipsoids are drawn at 50% probability. H atoms and lattice solvent are omitted.

Single crystals formed in both a THF solution of \([\text{Na(THF)}_4][\{\text{U(BH}_4\}_2(\mu\text{-BH}_4)(L^\Lambda)(\text{THF})_2]\) under O\(_2\) and in a C\(_6\)D\(_6\) solution of \([\{\text{U(OAr)}_2(\text{endo-BH}_4\text{K})(L^\Lambda)(\text{THF})_2]\) under O\(_2\). The data quality for the crystal isolated from THF was superior and is presented here. The unit cell parameters \((a, b, c (\text{Å}), \alpha, \beta, \gamma (\text{°}), V (\text{Å}^3))\) of the crystal from C\(_6\)D\(_6\) were \(14.0407(5), 14.6897(5), 19.0950(6), 89.884(3), 86.652(3), 81.574(3), 3889.1(2)\). The structure of the pyridine adduct \([\{\text{UO}_2\}_2(L^\Lambda)(\text{py})_2]\) has been reported.\(^{15}\)

During structure refinement appropriate 1,2 and 1,3 distance restraints were applied to two molecules of THF lattice solvent. The SIMU (su 0.04 Å\(^2\)) and DELU (su 0.01 Å\(^2\)) commands were applied to the atoms of all the THF molecules to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms. The data were treated with SQUEEZE to remove residual electron density equating to 0.5 molecules of THF per unit cell.

<table>
<thead>
<tr>
<th></th>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U1···U2</td>
</tr>
<tr>
<td>U1-N1</td>
<td>2.559(4)</td>
</tr>
<tr>
<td>U1-N2</td>
<td>2.432(4)</td>
</tr>
<tr>
<td>U1-N3</td>
<td>2.436(4)</td>
</tr>
<tr>
<td>U1-N4</td>
<td>2.566(4)</td>
</tr>
<tr>
<td>U2-N5</td>
<td>2.532(4)</td>
</tr>
<tr>
<td>U2-N6</td>
<td>2.420(4)</td>
</tr>
<tr>
<td>U2-N7</td>
<td>2.442(4)</td>
</tr>
<tr>
<td>U2-N8</td>
<td>2.595(4)</td>
</tr>
<tr>
<td>U1-N(_4) plane</td>
<td>+0.09</td>
</tr>
</tbody>
</table>
4.6.21 Structure of \([\text{Li(py)}_4\{[(\text{U(Cl)})_2(\mu-\text{Cl})_3(L^A)]}\), 33

Figure 4.22 Structure of the anionic portion of 33 showing major orientation of meso Et groups. Thermal ellipsoids are drawn at 50% probability. H atoms and lattice solvent are omitted.

Single crystals were grown by layering toluene on top of a pyridine solution of \([\text{Li(py)}_4\{[(\text{U(Cl)})_2(\mu-\text{Cl})_3(L^A)]}\) in an NMR tube. Two of the meso Et groups were found to be disordered over two sites each. The contributions of the two conformers were refined as 0.58(4):0.42(4) and 0.52(1):0.48(1). One pyridine molecule co-ordinated to the Li cation was found to exist in two orientations related by rotation about the Li-N bond in the ratio 0.51(1):0.49(1). Two molecules of pyridine lattice solvent located at inversion centres were necessarily refined for reasons of crystal symmetry with two ring positions half-N and half-C occupied. The N and C components were constrained to occupy the same position and possess the same atomic displacement parameters. The SIMU (su 0.04 Å²) and DELU (su 0.01 Å²) commands were applied to the atoms of the pyridine rings bound to the Li cation to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms.
4.6.22 Structure of [(U(OtBu)Cl)\{U(OtBu)py\}(\mu-Cl)(LA)], 34

![Structure of 34](image)

Figure 4.23 Structure of 34 showing major orientation of tBu groups. Thermal ellipsoids are drawn at 50 % probability. H atoms and lattice solvent are omitted.

Single crystals were grown by vapour diffusion of hexane into a benzene solution of [(U(OtBu)Cl)\{U(OtBu)py\}(\mu-Cl)(LA)] at room temperature. The tBu groups of the alkoxides were found to be rotationally disordered over two sites in the ratio 0.45(3):0.55(3). The SIMU (su 0.04 Å2) and DELU (su 0.01 Å2) commands were applied to ca. half the atoms of the macrocycle to normalise the magnitude and direction of the atomic displacement parameters of neighbouring atoms. The data were treated with SQUEEZE to remove residual electron density equating to 5.4 molecules of hexane per unit cell.

<table>
<thead>
<tr>
<th>Selected bond distances (Å) and angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U2</td>
</tr>
<tr>
<td>U1-N1</td>
</tr>
<tr>
<td>U1-N2</td>
</tr>
<tr>
<td>U1-N3</td>
</tr>
<tr>
<td>U1-N4</td>
</tr>
<tr>
<td>U2-N5</td>
</tr>
<tr>
<td>U2-N6</td>
</tr>
<tr>
<td>U2-N7</td>
</tr>
<tr>
<td>U2-N8</td>
</tr>
<tr>
<td>U1-N4 plane</td>
</tr>
<tr>
<td>U2-N4 plane</td>
</tr>
</tbody>
</table>
Table 4.3: Summary of crystal data, data collection and structure refinement.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2_{THF}</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{42}H_{40}Cr_{2}N_{8}·(C_{6}H_{6})</td>
<td>C_{66}H_{64}Cr_{2}N_{8}O_{2}·C_{8}H_{16}O_{2}</td>
<td>C_{78}H_{70}Cr_{2}N_{8}O_{2}P_{2}</td>
<td>C_{51}H_{49}Cr_{2}N_{9}·C_{6}H_{6}F</td>
</tr>
<tr>
<td>M_r</td>
<td>838.93</td>
<td>1249.46</td>
<td>1317.36</td>
<td>988.09</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, C2/c</td>
<td>Monoclinic, P2_{1}/C</td>
<td>Tetragonal, I4_{1}/A</td>
<td>Triclinic, P_{1}</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>170</td>
<td>120</td>
<td>120</td>
<td>170</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>21.1687 (4)</td>
<td>13.6236 (2)</td>
<td>15.7156 (3)</td>
<td>16.3764 (3)</td>
</tr>
<tr>
<td></td>
<td>25.4554 (5)</td>
<td>25.4554 (5)</td>
<td>43.7105 (8)</td>
<td>8.8576 (2)</td>
</tr>
<tr>
<td></td>
<td>11.7478 (3)</td>
<td>11.7478 (3)</td>
<td>24.1946 (5)</td>
<td>92.446 (2)</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90</td>
<td>114.066 (2)</td>
<td>90</td>
<td>104.808 (2)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>92.446 (2)</td>
<td>99.316 (2)</td>
<td>96.709 (2)</td>
<td>96.709 (2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4138.32 (13)</td>
<td>12622.5 (4)</td>
<td>13216.2 (3)</td>
<td>2462.53 (10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo Kα</td>
<td>Cu Kα</td>
<td>Cu Kα</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.57</td>
<td>3.29</td>
<td>3.60</td>
<td>0.49</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.34×0.20×0.11</td>
<td>0.25×0.07×0.03</td>
<td>0.16×0.08×0.04</td>
<td>0.57×0.19×0.10</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Xcalibur, Eos</td>
<td>SuperNova</td>
<td>SuperNova</td>
<td>Xcalibur, Eos</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>$T_{\text{min}}, T_{\text{max}}$</td>
<td>0.974, 1.000</td>
<td>0.665, 1.070</td>
<td>0.700, 0.869</td>
<td>0.836, 1.000</td>
</tr>
<tr>
<td>No. of measured, independent and observed ${I > 2\sigma(I)}$ reflections</td>
<td>29441, 4751, 3952</td>
<td>189180, 22526, 15529</td>
<td>53067, 6667, 6256</td>
<td>56973, 11283, 9000</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.036</td>
<td>0.095</td>
<td>0.041</td>
<td>0.037</td>
</tr>
<tr>
<td>$(\sin \theta/\lambda)_{\text{max}}$ (Å⁻¹)</td>
<td>0.649</td>
<td>0.597</td>
<td>0.623</td>
<td>0.649</td>
</tr>
<tr>
<td>$R[F^2 > 2\sigma(F^2)]$, $wR(F^2), S$</td>
<td>0.036, 0.112, 0.69</td>
<td>0.075, 0.226, 1.03</td>
<td>0.038, 0.111, 1.06</td>
<td>0.043, 0.111, 1.02</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>266</td>
<td>1593</td>
<td>418</td>
<td>620</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding</td>
<td>riding</td>
<td>riding</td>
<td>riding</td>
</tr>
<tr>
<td>$\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}$ (e Å⁻³)</td>
<td>0.34, -0.33</td>
<td>0.95, -1.04</td>
<td>0.94, -0.42</td>
<td>0.51, -0.51</td>
</tr>
<tr>
<td>CCDC Number</td>
<td>958989</td>
<td>958992</td>
<td>958990</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C_{27}H_{54}Cr_{2}N_{9} \cdot 2(C_{8}H_{6})</td>
<td>C_{40}H_{68}Cr_{2}I_{2}N_{6}O \cdot C_{8}H_{6} \cdot [C_{52}H_{50}Cr_{3}In_{10}] [I]</td>
<td>[C_{40}H_{68}Cr_{2}I_{2}N_{6}O \cdot C_{8}H_{6} \cdot [C_{52}H_{50}Cr_{3}In_{10}] [I]]</td>
<td>C_{48}H_{55}Cr_{2}In_{8} Zn</td>
</tr>
<tr>
<td>M_r</td>
<td>1000.16</td>
<td>1164.83</td>
<td>1172.82</td>
<td>1040.27</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, $P2_1/m$</td>
<td>Monoclinic, $P2_1/n$</td>
<td>Hexagonal, $P3_21$</td>
<td>Orthorhombic, $Pbcn$</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>170</td>
<td>170</td>
<td>120</td>
<td>170</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>9.6071 (2)</td>
<td>13.0276 (3)</td>
<td>18.671 (5)</td>
<td>13.2716 (4)</td>
</tr>
<tr>
<td></td>
<td>19.8185 (5)</td>
<td>15.5305 (4)</td>
<td>18.671 (5)</td>
<td>26.3101 (8)</td>
</tr>
<tr>
<td></td>
<td>13.4726 (3)</td>
<td>24.4412 (6)</td>
<td>35.936 (5)</td>
<td>14.8764 (4)</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90</td>
<td>90.911 (2)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>93.101 (2)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2564.84 (10)</td>
<td>4937.8 (2)</td>
<td>10849 (4)</td>
<td>5194.5 (3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo Kα</td>
<td>Mo Kα</td>
<td>Cu Kα</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.47</td>
<td>1.74</td>
<td>9.43</td>
<td>1.50</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.84×0.16×0.14</td>
<td>0.53×0.19×0.03</td>
<td>0.31×0.08×0.08</td>
<td>0.73×0.52×0.23</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td>SuperNova</td>
<td>Xcalibur, Eos</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
<td>Gaussian</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>T_{min}, T_{max}</td>
<td>0.804, 1.000</td>
<td>0.783, 1.000</td>
<td>0.179, 0.624</td>
<td>0.735, 1.000</td>
</tr>
<tr>
<td>No. of measured, independent and observed</td>
<td>36945, 6053</td>
<td>47034, 11320</td>
<td>56758, 14791</td>
<td>5953, 10423</td>
</tr>
<tr>
<td>$</td>
<td>I > 2\sigma(I)</td>
<td>$ reflections</td>
<td>5065</td>
<td>8585</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.032</td>
<td>0.050</td>
<td>0.043</td>
<td>0.028</td>
</tr>
<tr>
<td>$(\sin \theta/\lambda)_{max}$ (Å⁻¹)</td>
<td>0.649</td>
<td>0.649</td>
<td>0.630</td>
<td>0.649</td>
</tr>
<tr>
<td>$R[F^2 > 2\sigma(F^2)], wR(F^2), S$</td>
<td>0.034, 0.087, 1.01</td>
<td>0.047, 0.125, 1.04</td>
<td>0.089, 0.290, 1.13</td>
<td>0.083, 0.255, 1.08</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>357</td>
<td>582</td>
<td>575</td>
<td>302</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>10</td>
<td>48</td>
<td>649</td>
<td>7</td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding and independent</td>
<td>riding</td>
<td>riding</td>
<td>riding</td>
</tr>
<tr>
<td>$\Delta_{max}, \Delta_{min}$ (e Å⁻³)</td>
<td>0.33, -0.38</td>
<td>1.14, -1.05</td>
<td>1.48, -1.03</td>
<td>3.11, -1.81</td>
</tr>
<tr>
<td>CCDC Number</td>
<td>958991</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>$\text{C}{51}\text{H}{55}\text{Cr}_2\text{N}_9\cdot\text{C}_4\text{H}_8\text{O}$</td>
<td>$\text{C}{50}\text{H}{53}\text{Cr}_3\text{N}_9\text{O}_2\cdot\text{2(C}_2\text{H}_6\text{O})$</td>
<td>$\text{C}{68}\text{H}{59}\text{IN}_10\text{O}_2\cdot\text{U}_2\cdot\text{3(C}_5\text{H}_5\text{N})$</td>
<td>$[\text{C}{25}\text{H}{59}\text{B}3\text{O}3\text{U}]\cdot[\text{C}{12}\text{H}{24}\text{B}{2.90}\text{I}{2.10}\text{O}_7\text{U}_2]$</td>
</tr>
<tr>
<td>M_r</td>
<td>970.14</td>
<td>1035.25</td>
<td>1888.51</td>
<td>1620.39</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorhombic, Pbca</td>
<td>Orthorhombic, Pbca</td>
<td>Triclinic, $\text{P} \bar{1}$</td>
<td>Monoclinic, P_2_1/c</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>120</td>
<td>170</td>
<td>170</td>
<td>120</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90</td>
<td>90</td>
<td>87.395 (2), 90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>9833 (4)</td>
<td>10944 (4)</td>
<td>3735.17 (13)</td>
<td>5446 (3)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Cu $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td>Cu $K\alpha$</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>4.02</td>
<td>0.45</td>
<td>4.80</td>
<td>34.01</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.33×0.10×0.09</td>
<td>0.67×0.29×0.20</td>
<td>0.24×0.11×0.01</td>
<td>0.29×0.24×0.20</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>SuperNova</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td>SuperNova</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Gaussian</td>
<td>Analytical</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>$T_{\text{min}}, T_{\text{max}}$</td>
<td>0.884, 0.953</td>
<td>0.969, 0.991</td>
<td>0.784, 1.000</td>
<td>0.430, 1.000</td>
</tr>
<tr>
<td>No. of measured, independent and observed ${I > 2\sigma(I)}$ reflections</td>
<td>40676, 10014, 8449</td>
<td>67719, 11106, 9128</td>
<td>9100, 9100, 7133</td>
<td>131284, 11371, 11140</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.085</td>
<td>0.042</td>
<td>0.102</td>
<td>0.124</td>
</tr>
<tr>
<td>$\sin \theta/\lambda_{\text{max}}$ (Å⁻¹)</td>
<td>0.629</td>
<td>0.624</td>
<td>0.526</td>
<td>0.630</td>
</tr>
<tr>
<td>$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S</td>
<td>0.061, 0.155, 1.05</td>
<td>0.070, 0.182, 1.12</td>
<td>0.045, 0.105, 0.91</td>
<td>0.073, 0.194, 1.12</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>608</td>
<td>663</td>
<td>918</td>
<td>507</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>0</td>
<td>91</td>
<td>962</td>
<td>96</td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding</td>
<td>riding</td>
<td>riding and independent</td>
<td>riding</td>
</tr>
<tr>
<td>Δ_{max}, Δ_{min} (e Å⁻³)</td>
<td>0.74, −0.68</td>
<td>0.82, −0.53</td>
<td>1.80, −0.72</td>
<td>5.22, −5.43</td>
</tr>
<tr>
<td>CCDC Number</td>
<td>-</td>
<td>-</td>
<td>999594</td>
<td>-</td>
</tr>
<tr>
<td>Compound</td>
<td>16</td>
<td>18<sub>py</sub></td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>(\text{C}8\text{H}{20}\text{B}2.59\text{I}{0.41}\text{O}_4\text{U})</td>
<td>(\text{C}{8}\text{H}{20}\text{B}_2\text{N}_14\text{Na}_2.5\text{U}_3(\text{C}_2\text{H}_4\text{H}_2\text{N}))</td>
<td>(\text{C}{102}\text{H}{128}\text{BKN}_8\text{O}_4\text{U}_2.\text{C}_4\text{H}_8\text{O})</td>
<td>(\text{M}_{r})</td>
</tr>
<tr>
<td></td>
<td>498.76</td>
<td>2112.52</td>
<td>1676.98</td>
<td>2122.15</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Tetragonal, (I4_1a)</td>
<td>Triclinic, (P\bar{1})</td>
<td>Monoclinic, (P2_1)</td>
<td>Orthorhombic, (Pnma)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>120</td>
<td>170</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>(\alpha, \beta, \gamma (^\circ))</td>
<td>90</td>
<td>103.397 (2), 101.111 (2), 99.360 (2)</td>
<td>90.588 (1)</td>
<td>90</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>3498 (3)</td>
<td>4677.74 (16)</td>
<td>3602.98 (5)</td>
<td>9652.0 (2)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Cu (\text{K}\alpha)</td>
<td>Mo (\text{K}\alpha)</td>
<td>Cu (\text{K}\alpha)</td>
<td>Cu (\text{K}\alpha)</td>
</tr>
<tr>
<td>(\mu (\text{mm}^{-1}))</td>
<td>31.59</td>
<td>3.52</td>
<td>12.99</td>
<td>10.19</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.20×0.12×0.02</td>
<td>0.64×0.20×0.02</td>
<td>0.13×0.12×0.08</td>
<td>0.14×0.10×0.03</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>SuperNova</td>
<td>Xcalibur, Eos</td>
<td>SuperNova</td>
<td>SuperNova</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
<td>Gaussian</td>
</tr>
<tr>
<td>(T_{\text{min}} \rightarrow T_{\text{max}})</td>
<td>0.119, 1.000</td>
<td>0.526, 1.000</td>
<td>0.703, 1.000</td>
<td>0.789, 0.952</td>
</tr>
<tr>
<td>No. of measured, independent and observed ({I > 2\sigma(I)}) reflections</td>
<td>28860, 1847, 1553</td>
<td>68401, 19119, 13698</td>
<td>119820, 15028, 14418</td>
<td>159878, 10302, 8057</td>
</tr>
<tr>
<td>(R_{\text{int}})</td>
<td>0.111</td>
<td>0.055</td>
<td>0.046</td>
<td>0.067</td>
</tr>
<tr>
<td>((\sin \theta/\lambda)_{\text{max}} (\text{Å}^{-1}))</td>
<td>0.634</td>
<td>0.625</td>
<td>0.631</td>
<td>0.632</td>
</tr>
<tr>
<td>(R[F^2 > 2\sigma(F^2)], wR(F^2), S)</td>
<td>0.040, 0.121, 0.043, 0.092, 0.039, 0.102, 0.047, 0.131</td>
<td>1.12, 1.06, 1.06, 1.06</td>
<td>1.12, 1.06, 1.06, 1.06</td>
<td></td>
</tr>
<tr>
<td>No. of parameters</td>
<td>82</td>
<td>1172</td>
<td>824</td>
<td>575</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>8</td>
<td>180</td>
<td>324</td>
<td>130</td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding</td>
<td>riding and independent</td>
<td>riding</td>
<td>riding</td>
</tr>
<tr>
<td>(\Delta_{\text{max}}, \Delta_{\text{min}} (\text{e Å}^3))</td>
<td>0.99, -2.54</td>
<td>2.34, -0.83</td>
<td>2.28, -1.19</td>
<td>2.44, -2.11</td>
</tr>
<tr>
<td>CCDC Number</td>
<td>-</td>
<td>999593</td>
<td>999592</td>
<td>-</td>
</tr>
<tr>
<td>Compound</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C_{102}H_{122}BN_{8}NaO_{4}U_{2}·2(C_{4}H_{8}O)</td>
<td>C_{396}H_{390}N_{30}O_{15}S_{2}U_{2}·C_{4}H_{8}</td>
<td>C_{39}H_{106}N_{30}O_{15}S_{2}U_{2}·2(C_{4}H_{8})</td>
<td></td>
</tr>
<tr>
<td>M_r</td>
<td>2178.14</td>
<td>1998.15</td>
<td>1971.05</td>
<td></td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, $C2/c$</td>
<td>Monoclinic, $C2/c$</td>
<td>Triclinic, $P\ 1$</td>
<td></td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>15.5798 (8), 33.7882 (17), 20.7334 (12)</td>
<td>17.3745 (5), 34.2240 (8), 17.0130 (5)</td>
<td>15.9605 (3), 16.6905 (3), 18.0699 (4)</td>
<td></td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90</td>
<td>90</td>
<td>67.132 (2),</td>
<td></td>
</tr>
<tr>
<td>V (Å3)</td>
<td>10514.6 (10)</td>
<td>9377.3 (5)</td>
<td>4396.61 (15)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td></td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>3.14</td>
<td>3.55</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.25×0.11×0.04</td>
<td>0.47×0.06×0.03</td>
<td>0.41×0.23×0.07</td>
<td></td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Analytical</td>
<td>Multi-scan</td>
<td>Analytical</td>
<td></td>
</tr>
<tr>
<td>$T_{\text{min}}, T_{\text{max}}$</td>
<td>0.867, 0.976</td>
<td>0.570, 1.000</td>
<td>0.035, 0.356</td>
<td></td>
</tr>
<tr>
<td>No. of measured, independent and observed ${I > 2\sigma(I)}$ reflections</td>
<td>49850, 7555, 5446</td>
<td>57840, 9563, 7001</td>
<td>108077, 17944, 14244</td>
<td></td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.119</td>
<td>0.069</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>$\sin \theta/\lambda_{\text{max}}$ (Å$^{-1}$)</td>
<td>0.556</td>
<td>0.625</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td>$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S</td>
<td>0.059, 0.108, 1.08</td>
<td>0.039, 0.102, 0.80</td>
<td>0.058, 0.141, 1.05</td>
<td></td>
</tr>
<tr>
<td>No. of parameters</td>
<td>602</td>
<td>519</td>
<td>1015</td>
<td></td>
</tr>
<tr>
<td>No. of restraints</td>
<td>104</td>
<td>24</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding</td>
<td>riding</td>
<td>riding</td>
<td></td>
</tr>
<tr>
<td>$\Delta\gamma_{\text{max}}, \Delta\delta_{\text{min}}$ (e Å$^{-3}$)</td>
<td>0.83, −1.44</td>
<td>2.59, −1.04</td>
<td>7.56, −4.45</td>
<td></td>
</tr>
<tr>
<td>CCDC Number</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>28</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C_{66}H_{64}N_{8}O_{6}U_{2}·4(C_{2}H_{4}O)</td>
<td>C_{56}H_{58}Cl_{2}N_{4}U_{2}·C_{2}H_{8}O_{3}LiN_{4}·3(C_{2}H_{2}N)</td>
<td>C_{71}H_{71}Cl_{2}N_{9}O_{2}U_{2}·C_{6}H_{6}</td>
<td></td>
</tr>
<tr>
<td>M_r</td>
<td>1829.72</td>
<td>2070.99</td>
<td>1707.44</td>
<td></td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, $P\bar{1}$</td>
<td>Triclinic, $P\bar{1}$</td>
<td>Monoclinic, $P2_1/c$</td>
<td></td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>96.866 (2), 102.010 (1), 91.407 (1)</td>
<td>79.854 (2), 86.369 (2), 72.946 (2)</td>
<td>90.0, 90.0, 90.0</td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3863.08 (11)</td>
<td>4225.21 (13)</td>
<td>7952.6 (4)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td>Mo $K\alpha$</td>
<td></td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>4.25</td>
<td>4.04</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.35×0.17×0.05</td>
<td>0.36×0.30×0.07</td>
<td>0.28×0.22×0.03</td>
<td></td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td>Xcalibur, Eos</td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
<td>Multi-scan</td>
<td></td>
</tr>
<tr>
<td>T_{min}, T_{max}</td>
<td>0.675, 1.000</td>
<td>0.734, 1.000</td>
<td>0.523, 1.000</td>
<td></td>
</tr>
<tr>
<td>No. of measured, independent and observed ${I > 2\sigma(I)}$ reflections</td>
<td>63978, 15789, 12604</td>
<td>79205, 17287, 14003</td>
<td>13540, 13540, 9695</td>
<td></td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.042</td>
<td>0.043</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>$(\sin \theta/\lambda)_{\text{max}}$ (Å⁻¹)</td>
<td>0.625</td>
<td>0.625</td>
<td>0.588</td>
<td></td>
</tr>
<tr>
<td>$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S</td>
<td>0.035, 0.089, 0.93</td>
<td>0.035, 0.079, 0.99</td>
<td>0.100, 0.226, 1.16</td>
<td></td>
</tr>
<tr>
<td>No. of parameters</td>
<td>919</td>
<td>1096</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>No. of restraints</td>
<td>215</td>
<td>279</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>H-atom treatment</td>
<td>riding</td>
<td>riding</td>
<td>riding</td>
<td></td>
</tr>
<tr>
<td>$\Delta\rho_{\text{max}}$, $\Delta\rho_{\text{min}}$ (e Å⁻³)</td>
<td>1.87, −0.70</td>
<td>1.15, −1.13</td>
<td>4.48, −9.55</td>
<td></td>
</tr>
<tr>
<td>CCDC Number</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Four

4.7 References

Appendix I

Publications based on the work presented in this thesis

Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes

Charlotte J. Stevens, Gary S. Nichol, Polly L. Arnold, and Jason B. Love *

*Organometallics, 2013, 32 (23), pp 6879–6882

New Chemistry from an Old Reagent: Mono- and Dinuclear Macrocyclic Uranium(III) Complexes from [U(BH₄)₃(THF)₂]

Polly L. Arnold,* Charlotte J. Stevens, Joy H. Farnaby, Micheal G. Gardiner, Gary S. Nichol, Jason B. Love *